JPH07166B2 - Co吸着分離方法 - Google Patents

Co吸着分離方法

Info

Publication number
JPH07166B2
JPH07166B2 JP62237452A JP23745287A JPH07166B2 JP H07166 B2 JPH07166 B2 JP H07166B2 JP 62237452 A JP62237452 A JP 62237452A JP 23745287 A JP23745287 A JP 23745287A JP H07166 B2 JPH07166 B2 JP H07166B2
Authority
JP
Japan
Prior art keywords
adsorption
gas
pressure
desorption
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62237452A
Other languages
English (en)
Other versions
JPS6480418A (en
Inventor
博之 蔦谷
順 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62237452A priority Critical patent/JPH07166B2/ja
Publication of JPS6480418A publication Critical patent/JPS6480418A/ja
Publication of JPH07166B2 publication Critical patent/JPH07166B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はCO含有ガスからCOを吸着分離する方法に関し、
特に製鉄プラント、オートサーマル部分酸化法、空気吹
き石炭ガス化プラント等で生成するCO,N2を含有する多
成分ガスからのCO吸着分離方法に関する。
〔従来の技術〕
製鉄プラントのオフガス、天然ガス、液化石油ガス、ナ
フサを原料とし空気を助燃剤とするオートサーマル部分
酸化法、空気吹き石炭ガス化プラントではCO,N2,CO2
H2O,H2等を主成分とするガスを生成する。
この混合ガスからのCOの選択的な濃縮はCOに各種用途が
あるので極めて有意義かつ重要である。1つのCOの用途
としてはCO,H2の混合ガスからのメタノール合成の原料
とすることである。他の用途としてはCOはH2Oガスの共
存下でシフト反応によりH2を生成するのでH2の原料とす
ることである。又、他の用途としてはメタノールCOを作
用させて酢酸を生成するカルボニル化法の原料としても
考えられる。特に近年メタノールを原料とするガソリン
合成の実用化への展望が開かれつつあり、その意味でも
重要である。
従来、COの分離は塩化アルミニウム銅(CuAlCl4)のト
ルエン溶液による液相吸収方法が最とも性能がよいとい
われている。この方法では(1)式に示すようなCOの吸
収反応で塩化アルミニウム銅との等モル吸収を起す。
CuAlCl4+COCuAlCl4・CO (1) 通常、室温付近で上記(1)式の吸収反応により上記吸
収液にCOを吸収させ、100℃以上の高温で一度吸収したC
Oを離脱させて回収する方法である。この方法におけるC
Oの吸収容量は圧力が高い程増加するのでイニシヤルコ
ストの低減のために数ataのやや高圧を採用する場合も
ある。又、この方法では、COと随伴するガスが殆どない
ため、得られるCOガスの濃度は99%程度と極めて高くか
つ回収率も高い。
なお、この方法以外に銅液洗浄法、深冷分離法塔のCO濃
縮方法があるが、上記液相吸収方法が装置価格、動力
費、得られるCO濃度のいずれでも優れていることから主
流になりつつある。
〔発明が解決しようとする問題点〕
しかし、塩化アルミニウム銅のトルエン溶液によるCOの
吸収分離方法に於ける最大の欠点は、誤操作等によつて
混入するH2O,H2S,SO2等とCuAlCl4が反応して、CuCl,H
Cl,CuAlCl6(OH)等に分解し、塩化アルミニウム銅の減
耗を生ずると共に、回収したCOにHClが随伴して製品の
品位を著しく減ずることである。
次に挙げられる欠点は、オレフイン、アセチレンがCuAl
Cl4と反応して沈澱を生成することであり、この反応は
不可逆であるため、CuAlCl4のメークアップが必要であ
ることである。又溶媒としてトルエンを使用しているの
で、オフガス及びCO回収(ストリツパー)ユニツトのい
ずれにもトルエンが随伴することから活性炭を吸着剤と
して使用して水蒸気を再生ガスとするトルエン回収ユニ
ツトが必要であることであり、当然のことながらトルエ
ンのメークアツプも必要となる欠点がある。
この方法は動力費としては吸収工程を大気圧近くで操作
することも可能であり、電力消費は少ないという長所も
あるが、トルエン回収ユニツトの再生用水蒸気、CO回収
ユニツトの回収用熱源としての水蒸気が必要であり、こ
の水蒸気発生のための熱量は電力換算で上記消費電力の
2〜3倍に相当し結局消費電力は大で経済的ではない。
〔発明の目的〕
本発明はCO,N2等を主として含有する混合ガスからCOの
みを選択的に比較的低圧(但し、大気圧以上)で吸着
し、これを0.5ata以下の減圧条件で回収することによる
極めて簡単なプロセスにより殆ど化学薬品のメークアッ
プをせず、又保守操作の容易なCOの回収方法を提供しよ
うとするものである。
〔問題点を解決するための手段〕 本発明は、COの選択吸着剤として、化学式Ca43(AlO2)86
(SiO2)108で表わされるCa−X型ゼオライトを吸着剤と
して使用することを新規とするものである。
この吸着剤を少くとも2塔以上の吸着塔に充填し、吸着
塔の温度は−30℃以上25℃(室温)以下として、1塔に
CO,N2を含有するガスを1〜5ataで流過してCOを吸着さ
せ、又他塔では前に吸着したCOを0.05ataから0.5ataの
減圧してN2の共吸着を抑制しつつ高濃度にCOを回収する
ことも新規な点とするものである。
更に回収したCOを吸着工程終了直後の吸着塔に吸着工程
と同じガス流れ方向に流下して塔内に残存するN2を掃気
して、減圧再生時に回収されるCOの濃度を向上させるこ
とを好ましい実施態様とするものである。
すなわち本発明は、化学式Ca43(AlO2)86(SiO2)108で表
わされるCa−X型ゼオライトをCO吸収剤として充填した
少なくとも2塔以上の吸着塔に、CO,N2などを主として
含有する混合ガスを導き、吸着圧力1〜5ata、吸着温度
室温〜−30℃の操作条件でCO吸着を行わせた後、脱着圧
力0.05〜0.5ataの操作条件でCOを脱着させることを特徴
とするCO吸着分離方法に関するものである。
〔本発明の応用分野〕
本発明は、H2製造工業、メタノール工業、酢酸工業、合
成ガソリン工業(C1化学工業)に有利に適用することが
でき、オフガス、プロセスガス等ボイラ燃料の発熱量向
上にも役立たせることができる。
〔実施例1〕 以下、本発明の第1の実施例を、第1図を参照しながら
説明する。
第1図において、1はプロパンを原料とし、助燃剤とし
て酸素富化空気を使用した部分酸化法によるCO,H2合成
ガス製造装置である。該CO,H2合成ガス製造装置1内の
ガス組成の1例を第1表に示す。
CO,H2合成ガス製造装置1内の合成ガスは流路2を通じ
て圧縮機3で加圧される。加圧された合成ガスは、流路
4を通じてバルブ5に至る。この時バルブ5,6は開とな
つており、合成ガスは吸着塔8を流過する。吸着塔8及
び8aでは入口側半分に活性アルミナが後方には活性炭が
充填されている。そのため、吸着塔8の前方では水が吸
着され、後方ではCO2が吸着される。一方、一度吸着さ
れたH2O,CO2は吸着塔8aの状態、即ち減圧脱着工程にあ
り、バルブ7aが開いており、バルブ7,6aが閉じている。
バルブ7,7aに通じる流路9は他方を真空ポンプ10と通じ
ている。吸着塔8aは最高到達圧力は0.05ataに達し、H
2O,CO2を除去再生する。吸着塔8,8aを2〜10分程度で
交互に切り換えて連続的に除湿、CO2除去を行なう。
除湿、CO2除去された合成ガスは流路11、サージタンク1
2を通じて熱交換器13、冷凍機14に至り、ガス温度は室
温以下−60℃迄の任意の温度に冷却されてバルブ15に至
る。バルブ15及び16は開状態となつている。流過する合
成ガスの流路11でのガス組成を第2表に示す。
CO吸着塔18を流過する合成ガスからCOは吸着され、又CO
吸着剤の選択性に応じてN2が共吸着されるが、この事例
ではH2の吸着は無視し得る。
CO吸着の終了した吸着塔18aはバルブ15a,16a,17が閉じ
られ、バルブ17aが開いており、流路19、熱交換器13a、
真空ポンプ20を通じて吸着塔18aの吸着されたCOは減圧
状態で流路21から高い濃度に回収される。この操作を1
〜5分おきに交互にくり返すことにより高濃度のCOが連
続して回収される。
熱交換器22は真空ポンプの後方の製品COの温度が150℃
程度に上昇するので冷却のために設置されている。
1方吸着塔18、バルブ16を通じて流路23からCO濃度の低
いガスが流過する。
なお、流路23の低COガスは高濃度にH2を含むため、Ca置
換Na−A型ゼオライトなどN2吸着量の大きな吸着剤でN2
を除去すると高濃度のH2が得られる。又深冷分離法によ
り液化して除去しても同様に高純度のH2が得られる。又
流路の23のガスは燃料として使用すれば熱回収もでき
る。なお熱収支的にみると流路11のガスと流路19、流路
23のガスは熱交換器13,13a,13bでガス−ガス熱交換をし
ているため、冷凍機14の消費電力は極めて少ない。
本発明では吸着塔18,18a及びその周囲の配管、バルブを
コールドボツクス24に設置して低温での吸着操作を行な
つた。
以上の装置構成及びガス組成で第3表の操作を行ないCO
の回収を試みた。
上記の操作条件でのCOの回収結果を示す。
第2図は吸着温度0℃、脱着圧力0.1ataでのCO回収時の
各吸着剤の性能を、横軸に吸着圧力、縦軸にCO濃度を選
び示したものである。
第3図は吸着圧力1.2ata、吸着温度0℃での各吸着剤の
COの回収性能を横軸に脱着圧力、縦軸にCO濃度を選び示
したものである。
第4図は吸着圧力1.2ata、脱着圧力0.1ataでの各吸着剤
のCO回収性能を横軸に吸着時の温度、縦軸にCO濃度に選
び示したものである。
以上で判るように、Ca−X型ゼオライトはCO,N2等からN
2の吸着を極力抑制しつつ高いCO選択性で回収し得るこ
とを示した。これは従来知られていないことであり、新
しいCOの吸着分離方法ということができるものである。
なお本発明方法におけるCOの回収率は原料のCO濃度に大
きく依存するが、原料CO濃度(流路11でCO2,H2O除去後
のもの)が50vol%の時約90%前後である。
なおCOの回収率は で定義している。
第3図において再生圧力は絶対真空に近ずく程、回収CO
濃度は上昇している。しかし0.05ata以下では真空ポン
プの消費電力が増大し又容量の制限も受けるため、工業
的に有効とはいえない。
第4図において−30℃以下の低温でも良好なCO吸着性能
を示していることが判る。しかしながら−30℃以上であ
れば一元冷媒の1段圧縮器で冷凍機は構成される。しか
し、−30℃以下になると冷媒が2種類以上必要であると
か圧縮機が2段必要とかで設備的に大変であり、又冷凍
時の消費電力も大幅に上昇するので好ましくない。
〔実施例2〕 本発明の第2の実施例を第5図によつて説明する。第5
図において第1図と同一符号は第1図と同じ部分を示
す。
第5図に示す如く、流路19、熱交換器13aを通じて減圧
条件で真空ポンプ20によつて吸着塔18aから回収されたC
Oは熱交換器22を通じて流路21にとり出される。この時
吸着塔18に着目すると、吸着塔18の前方には原料COガス
が流入し塔の後方にいく程N2濃度が上昇している。
第1の実施例(第1図)ではこの状態からCOを回収した
ため塔のボイド部に残留するN2が随伴しCOの濃度を低下
させていた。
そのため、ここでは吸着工程終了直後に製品タンク25の
ガスの一部を流路26、熱交換器13cを通じて開状態にな
つているバルブ27,15から製品COを掃気する。このよう
にすると、吸着塔18のボイド部の残留N2は開状態のバル
ブ16、流路23、熱交換器13bを通じて系外に放出され
る。この際、塔18のCO濃度が上昇するためボイド部のN2
だけでなく共吸着したN2の一部も除去される。
なお製品COによるボイド部の掃気は製品として回収した
COの10%程度で充分である。
本発明でCa−X型ゼオライトについて、吸着圧力1.2ata
再生圧力0.1ata、塔温度0℃で製品COによる掃気を実施
しいずれも99%以上の濃度のCOを得る事ができた。
下記のバルブ操作の1例を示す。
【図面の簡単な説明】
第1図は本発明の第1の実施例を説明するフロー、第2
図は吸着温度0℃、脱着圧力0.1ataでのCO回収時の吸着
剤の性能を、横軸に吸着圧力、縦軸にCO濃度を選んで示
したグラフ、第3図は吸着温度0℃での吸着剤のCOの回
収性能を横軸に脱着圧力、縦軸にCO濃度を選んで示した
グラフ、第4図は吸着圧力1.2ata、脱着圧力0.1ataでの
吸着剤のCO回収性能を、横軸に吸着時の温度、縦軸にCO
濃度を選んで示したグラフ、第5図は本発明の第2実施
例を説明するフローである。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】化学式Ca43(AlO2)86(SiO2)108で表わされ
    るCa−X型ゼオライトをCO吸収剤として充填した少なく
    とも2塔以上の吸着塔に、CO,N2などを主として含有す
    る混合ガスを導き、吸着圧力1〜5ata、吸着温度室温〜
    −30℃の操作条件でCO吸着を行わせた後、脱着圧力0.05
    〜0.5ataの操作条件でCOを脱着させることを特徴とする
    CO吸着分離方法。
  2. 【請求項2】吸着終了時の吸着塔に、回収されたCOガス
    により吸着時と同一方向のガス流れで掃気した後、脱着
    操作を行うことを特徴とする特許請求の範囲(1)記載
    の方法。
JP62237452A 1987-09-24 1987-09-24 Co吸着分離方法 Expired - Lifetime JPH07166B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62237452A JPH07166B2 (ja) 1987-09-24 1987-09-24 Co吸着分離方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62237452A JPH07166B2 (ja) 1987-09-24 1987-09-24 Co吸着分離方法

Publications (2)

Publication Number Publication Date
JPS6480418A JPS6480418A (en) 1989-03-27
JPH07166B2 true JPH07166B2 (ja) 1995-01-11

Family

ID=17015553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62237452A Expired - Lifetime JPH07166B2 (ja) 1987-09-24 1987-09-24 Co吸着分離方法

Country Status (1)

Country Link
JP (1) JPH07166B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531809A (en) * 1994-09-14 1996-07-02 Air Products And Chemicals, Inc. Pretreatment layer for CO-VSA
JPH09286039A (ja) 1996-04-22 1997-11-04 Komatsu Ltd 板状複合体およびその製造法
FR2758739B1 (fr) * 1997-01-24 1999-02-26 Ceca Sa Perfectionnement dans les procedes psa de purification de l'hydrogene
US8119048B2 (en) * 2006-09-22 2012-02-21 Nissha Printing Co., Ltd. Housing case, method for manufacturing housing case, and glass insert molding die used in same

Also Published As

Publication number Publication date
JPS6480418A (en) 1989-03-27

Similar Documents

Publication Publication Date Title
CA2732129C (en) Recovery of carbon dioxide from flue gas
CA2745351C (en) Separation of a sour syngas stream
CA2647909C (en) Carbon dioxide and hydrogen production method from synthesis gas
EP0257493A1 (en) Adsorptive separation of gas mixtures
CN102083512A (zh) 二氧化碳回收
US20110223100A1 (en) Production of hydrogen from a reforming gas and simultaneous capture of co2 co-product
JPH01313301A (ja) 水素及び二酸化炭素の連産
KR20030040068A (ko) 합성가스 정제 방법
JP5319140B2 (ja) 高炉ガスの分離方法、および高炉ガスの分離システム
CN103159192B (zh) 氦气的纯化方法和纯化装置
US4043770A (en) Absorption-adsorption system for purifying cryogenic gases
JP3985006B2 (ja) 高純度水素製造方法
JP3947752B2 (ja) 高純度水素製造方法
WO2006132040A1 (ja) 高純度水素製造方法
CN102311103B (zh) 氦气的纯化方法及纯化装置
JPS5891003A (ja) Psa法による純水素製造を目的とするcog精製法
JPH07166B2 (ja) Co吸着分離方法
JP5736916B2 (ja) 混合ガスからの二酸化炭素の回収・液化方法
JPH10273301A (ja) 水素製造装置
CN103224225B (zh) 氩气的纯化方法及纯化装置
JP4758711B2 (ja) ガスハイドレート製造の前処理方法
JPH0574404B2 (ja)
JPS58190801A (ja) コ−クス炉ガスからの高純度水素回収方法
JP2001335305A (ja) Coガス/h2ガス回収装置及びcoガス/h2ガス回収方法
JPH0530762B2 (ja)