JPH0716569B2 - Superconducting magnetic separator and operating method thereof - Google Patents

Superconducting magnetic separator and operating method thereof

Info

Publication number
JPH0716569B2
JPH0716569B2 JP4148604A JP14860492A JPH0716569B2 JP H0716569 B2 JPH0716569 B2 JP H0716569B2 JP 4148604 A JP4148604 A JP 4148604A JP 14860492 A JP14860492 A JP 14860492A JP H0716569 B2 JPH0716569 B2 JP H0716569B2
Authority
JP
Japan
Prior art keywords
magnetic
superconducting
filter
liquid
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4148604A
Other languages
Japanese (ja)
Other versions
JPH0623213A (en
Inventor
幸男 和田
修巳 塚本
千枝 三宅
茂宏 西嶋
健司 小原
善弘 見目
Original Assignee
動力炉・核燃料開発事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 動力炉・核燃料開発事業団 filed Critical 動力炉・核燃料開発事業団
Priority to JP4148604A priority Critical patent/JPH0716569B2/en
Priority to FR9305629A priority patent/FR2691080B1/en
Publication of JPH0623213A publication Critical patent/JPH0623213A/en
Publication of JPH0716569B2 publication Critical patent/JPH0716569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/06Filters making use of electricity or magnetism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/032Matrix cleaning systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0335Component parts; Auxiliary operations characterised by the magnetic circuit using coils
    • B03C1/0337Component parts; Auxiliary operations characterised by the magnetic circuit using coils superconductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導電磁石により発
生する強磁場を利用する高勾配磁気分離技術に関し、更
に詳しく述べると、磁気フィルタと超電導電磁石との間
に可動式の超電導磁気シールドを配置することにより、
永久電流モードで分離処理と洗浄処理を行えるようにし
た超電導磁気分離装置及びその運転方法に関するもので
ある。この技術は、特に限定されるものではないが、例
えば使用済核燃料の再処理工程液の清澄技術として有用
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high gradient magnetic separation technique utilizing a strong magnetic field generated by a superconducting electromagnet, and more specifically, a movable superconducting magnetic shield is arranged between a magnetic filter and the superconducting electromagnet. By doing
The present invention relates to a superconducting magnetic separation device capable of performing a separation process and a cleaning process in a persistent current mode and an operating method thereof. This technique is not particularly limited, but is useful, for example, as a refining technique for reprocessing process liquid of spent nuclear fuel.

【0002】[0002]

【従来の技術】使用済核燃料の再処理工程液の清澄技術
として現在実用化されているのは、パルスフィルタ法と
遠心清澄法である。パルスフィルタ法は、多孔質の焼結
金属フィルタ内に被処理液を導入し、その被処理液に脈
動(パルス)を与えて微小粒子の分離効率を高める方法
である。遠心清澄法は、遠心力を利用して液体から、そ
れと比重の異なる微小粒子を分離する方法である。
2. Description of the Related Art Currently, the pulse filter method and the centrifugal clarification method have been put into practical use as the clarification technology for spent fuel reprocessing process liquid. The pulse filter method is a method in which a liquid to be treated is introduced into a porous sintered metal filter and pulsation is given to the liquid to be treated to enhance the separation efficiency of fine particles. The centrifugal clarification method is a method of separating fine particles having a specific gravity different from that of a liquid by using a centrifugal force.

【0003】また近年、超電導電磁石を用いた高勾配磁
気分離法についての研究が行われている。これは、超電
導電磁石の励磁中に、磁場内に置かれた磁気フィルタに
被処理液を通し、電磁力により被処理液中の微小粒子を
フィルタ素材に付着させることにより分離する方法であ
る。この技術は、原子力分野でも、例えば原子力発電所
の冷却水中のクラッド除去などへの応用が検討されてい
る。
Further, in recent years, studies have been conducted on a high gradient magnetic separation method using a superconducting electromagnet. This is a method in which a liquid to be treated is passed through a magnetic filter placed in a magnetic field during excitation of a superconducting electromagnet, and fine particles in the liquid to be treated are attached to a filter material by an electromagnetic force to separate the particles. In the nuclear field, application of this technology is being studied, for example, for removing clad in cooling water of a nuclear power plant.

【0004】[0004]

【発明が解決しようとする課題】再処理工程液中には、
粒径数μmの微小粒子(不溶解残渣)が多く含まれてい
るが、従来のパルスフィルタ法では、その運転効率上、
粒径10μm程度以下の微小粒子の除去は困難である。
そのため充分に分離できなかった微小粒子によって抽出
工程で第3相が形成され、それが抽出効率の低下をもた
らしている。また逆洗を行ってもフィルタ素材の劣化は
完全には解消されず、そのため頻繁に(通常、1回/2
〜3週間の頻度で)交換する必要がある。再処理工程液
に含まれている微小粒子は高放射性であるため、それら
は高レベル廃棄物であり、高レベル廃棄物量の増大は処
理コストの上昇をもたらす。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
It contains many fine particles (insoluble residue) with a particle size of several μm, but the conventional pulse filter method
It is difficult to remove fine particles having a particle size of about 10 μm or less.
Therefore, the fine particles that could not be sufficiently separated form a third phase in the extraction process, which causes a reduction in extraction efficiency. Also, backwashing does not completely eliminate the deterioration of the filter material, so it often (usually once / 2
Need to be replaced (~ 3 weeks). Since the fine particles contained in the reprocessing step liquid are highly radioactive, they are high-level waste, and an increase in the amount of high-level waste causes an increase in processing cost.

【0005】遠心清澄法では、高速回転駆動部があり、
保守頻度が多くなる。この種の機器は高放射能区域に設
置され、全て遠隔操作で取り扱わねばならないから、複
雑な機構及び保守頻度の増大は大きな負担となる。また
ロータ内壁に付着した不溶解残渣の除去が難しい欠点も
ある。
In the centrifugal clarification method, there is a high-speed rotation drive unit,
Frequent maintenance. Since this kind of equipment is installed in a highly radioactive area and must be handled by remote control, the complicated mechanism and the increase in maintenance frequency become a great burden. There is also a drawback that it is difficult to remove the insoluble residue attached to the inner wall of the rotor.

【0006】超電導電磁石を用いた高勾配磁気分離法
は、高効率で微小粒子を捕集でき、洗浄後のフィルタ素
材の劣化は全くない(半永久的に使用できる)という利
点があるが、原子力分野では未だ使用実績がなく、耐環
境性(特に耐放射線性)や未臨界性の点で検討すべき課
題は多い。この方法で微小粒子をフィルタ素材に付着さ
せて分離した後、付着した微小粒子を取り出すために
は、外部磁場を落とした状態で洗浄する操作を行う。し
かし、超電導コイルへの電流をオフにして消磁する時及
び電流をオンにして再励磁する時は、超電導コイル中で
交流損失を引き起こすため、冷媒質の液体ヘリウムの大
量消費の原因となり、運転コストの面から不利である。
操作の効率化から超電導電磁石の稼働率を上げるために
は、高速で励磁及び消磁を行う機構の開発が要求され
る。これらの理由で、現在の超電導電磁石を用いた高勾
配磁気分離法は、特に再処理工程液の清澄処理などに適
用する場合には、機器の構造及び運転方法について、更
に改良すべき点は多々ある。
The high gradient magnetic separation method using a superconducting electromagnet has the advantage that it can collect fine particles with high efficiency and that there is no deterioration of the filter material after cleaning (it can be used semipermanently). However, there are many issues that need to be considered in terms of environmental resistance (especially radiation resistance) and subcriticality. After the fine particles are attached to the filter material by this method and separated, in order to take out the attached fine particles, a washing operation is performed with the external magnetic field being dropped. However, when deenergizing by turning off the current to the superconducting coil and when re-exciting by turning on the current, it causes an AC loss in the superconducting coil, which causes a large consumption of liquid helium, which is a refrigerant, and an operating cost. Is disadvantageous in terms of.
In order to increase the operating rate of the superconducting electromagnet in order to improve the operation efficiency, it is necessary to develop a mechanism for exciting and demagnetizing at high speed. For these reasons, the current high gradient magnetic separation method using a superconducting electromagnet has many points to be further improved in the structure and operation method of the equipment, especially when it is applied to the refining process of the reprocessing process liquid. is there.

【0007】ところで超電導電磁石の利点を生かすため
には永久電流モードで運転することが望ましい。そこ
で、超電導コイルへの電流をオン・オフせずに、超電導
電磁石に対して磁気フィルタを出し入れすることで外部
磁場の制御を行うことが考えられる。永久電流モードで
磁気分離を行う時の問題点は、磁気フィルタの出し入れ
に費やす力が損失となることである。磁気フィルタにダ
ミーフィルタを連結して一緒に動かすことも考えられる
が、そのような工夫をしても、磁気フィルタに連結して
いる配管系も一緒に駆動する必要があり、超電導電磁石
の上下に大きな空間を必要とする。また超電導電磁石の
磁場中に配置されるダミーフィルタはデッドスペースと
なるため、高磁場空間を有効利用できない。
In order to take advantage of the superconducting electromagnet, it is desirable to operate in the permanent current mode. Therefore, it is conceivable to control the external magnetic field by moving the magnetic filter in and out of the superconducting electromagnet without turning on / off the current to the superconducting coil. A problem when performing magnetic separation in the persistent current mode is that the force used for putting in and out the magnetic filter is lost. It is possible to connect a dummy filter to the magnetic filter and move them together.However, even if such a device is devised, it is necessary to drive the piping system connected to the magnetic filter as well. Requires a large space. Further, since the dummy filter arranged in the magnetic field of the superconducting electromagnet becomes a dead space, the high magnetic field space cannot be effectively used.

【0008】本発明の目的は、超電導磁気分離技術の利
点を生かし、被処理液中の微小粒子の脱着操作を容易に
且つ効率良く行うことができ、運転コストの低減を図る
ことができる超電導磁気分離装置及びその運転方法を提
供することである。
An object of the present invention is to make use of the advantages of the superconducting magnetic separation technique, to easily and efficiently perform the desorption operation of fine particles in the liquid to be treated, and to reduce the operating cost. The purpose of the present invention is to provide a separation device and a method of operating the separation device.

【0009】[0009]

【課題を解決するための手段】本発明の超電導磁気分離
装置は、内部にフィルタ素材が充填されている磁気フィ
ルタと、該磁気フィルタの周囲に配置される超電導電磁
石とを備えている。そして、本発明の特徴は、前記磁気
フィルタと超電導電磁石との間隙部分に対して挿入・抜
出自在の超電導磁気シールドを設ける点にある。特に、
別系統の2台の磁気フィルタを縦列配置し、両磁気フィ
ルタの周囲に共通に超電導電磁石を配置して、前記両磁
気フィルタと超電導電磁石との間隙部分に、各磁気フィ
ルタに対して交互に挿入・抜出自在の超電導磁気シール
ドを設ける構成が好ましい。
A superconducting magnetic separator according to the present invention comprises a magnetic filter having a filter material filled therein, and a superconducting electromagnet disposed around the magnetic filter. A feature of the present invention resides in that a superconducting magnetic shield that can be inserted into and removed from the gap between the magnetic filter and the superconducting electromagnet is provided. In particular,
Two magnetic filters of different systems are arranged in tandem, a superconducting electromagnet is commonly arranged around both magnetic filters, and the magnetic filters are alternately inserted into the gap between the magnetic filters and the superconducting electromagnet. -It is preferable to provide a superconducting magnetic shield that can be pulled out freely.

【0010】本発明の典型的な適用対象は、使用済核燃
料の再処理工程液からの不溶解残渣の分離回収並びに清
澄である。その場合、磁気フィルタは、その内部に充填
されるフィルタ素材をガドリニウム細線の表面に金被覆
を施した素材とし、被処理液が流れるフィルタ格納容器
は未臨界形状を確保し、超電導電磁石は耐放射線性を有
する材料で製作する。
The typical application of the present invention is the separation and recovery of insoluble residues from the reprocessing step liquid of spent nuclear fuel and the clarification. In that case, the magnetic filter is made of a gadolinium thin wire coated with gold as the filter material to fill the inside, the filter container in which the liquid to be treated flows has a subcritical shape, and the superconducting electromagnet is radiation resistant. It is made of a material with properties.

【0011】本発明の運転方法では、前記の別系統の2
台の磁気フィルタを縦列配置する構成の超電導磁気分離
装置を使用し、超電導電磁石は永久電流モードで運転
し、超電導磁気シールドで覆われていない片方の磁気フ
ィルタに被処理液を流通させて微小粒子を付着分離し、
その間、超電導磁気シールドで覆われている他方の磁気
フィルタに洗浄液を流通させて付着している微小粒子を
除去洗浄し、この工程を両磁気フィルタについて交互に
行う。
In the operating method of the present invention, the above-mentioned separate system 2 is used.
Using a superconducting magnetic separator with a structure in which the magnetic filters of the table are arranged in tandem, the superconducting electromagnet operates in the permanent current mode, and the liquid to be treated is circulated through one magnetic filter that is not covered by the superconducting magnetic shield to form fine particles. Attached and separated,
Meanwhile, a cleaning liquid is circulated through the other magnetic filter covered with the superconducting magnetic shield to remove and clean the adhered fine particles, and this process is alternately performed for both magnetic filters.

【0012】[0012]

【作用】超電導磁気分離装置では、超電導電磁石による
強力な磁場中に置かれた磁気フィルタに被処理液を通
し、被処理液中に含まれている微小粒子を電磁力により
フィルタ素材に付着させて分離する。従って、被処理液
は清澄化される。分離した微小粒子の取り出しは、外部
磁場の影響を無くした状態で洗浄液を通すことにより行
う。本発明では、洗浄操作の際に、超電導磁気シールド
を挿入してそれが磁気フィルタを取り囲むことによっ
て、超電導電磁石による磁場が磁気フィルタに及ばない
ようにする。つまり本発明では超電導磁気シールドを移
動することによって、超電導コイルの電流オン・オフを
行わずに、磁気フィルタに対する励磁・消磁の切り換え
動作が効率よく行われる。
In the superconducting magnetic separation device, the liquid to be treated is passed through the magnetic filter placed in a strong magnetic field by the superconducting electromagnet, and the fine particles contained in the liquid to be treated are attached to the filter material by the electromagnetic force. To separate. Therefore, the liquid to be treated is clarified. The separated fine particles are taken out by passing the cleaning liquid in a state where the influence of the external magnetic field is eliminated. In the present invention, during the cleaning operation, the superconducting magnetic shield is inserted so that it surrounds the magnetic filter so that the magnetic field of the superconducting conductive magnet does not reach the magnetic filter. That is, according to the present invention, by moving the superconducting magnetic shield, the switching operation between excitation and demagnetization of the magnetic filter is efficiently performed without turning on / off the current of the superconducting coil.

【0013】特に2台の磁気フィルタを縦列配置し、超
電導磁気シールドが交互に一方の磁気フィルタを取り囲
むように構成した場合は、超電導磁気シールドで囲まれ
ていない方の磁気フィルタで磁気分離動作が行われ、超
電導磁気シールドで囲まれている方の磁気フィルタで洗
浄動作が行われる。超電導磁気シールドは超電導電磁石
による強磁場中を移動するだけであるから、その移動に
は殆ど駆動力を必要とせず、超電導電磁石は、永久電流
モードで運転でき、超電導電磁石の利点が生かされる。
そして常にどちらか一方の磁気フィルタで分離操作が行
われていることになり、運転効率が向上する。
In particular, when two magnetic filters are arranged in tandem and the superconducting magnetic shields alternately surround one magnetic filter, the magnetic filter not surrounded by the superconducting magnetic shields can perform the magnetic separation operation. The cleaning operation is performed with the magnetic filter surrounded by the superconducting magnetic shield. Since the superconducting magnetic shield only moves in the strong magnetic field of the superconducting electromagnet, it requires almost no driving force for its movement, and the superconducting electromagnet can be operated in the permanent current mode, and the advantages of the superconducting electromagnet can be utilized.
Then, the separation operation is always performed by one of the magnetic filters, which improves the operation efficiency.

【0014】[0014]

【実施例】図1は本発明に係る超電導磁気分離装置の原
理説明図であり、Aは磁気分離操作状態を、Bは洗浄操
作状態を示し、下のグラフはそれらの操作工程において
磁気フィルタに印加される磁場の強さを表している。こ
の装置は、内部にフィルタ素材10が充填されて被処理
液が流通する円筒状の磁気フィルタ12と、該磁気フィ
ルタ12の周囲に配置される円筒状の超電導電磁石14
とを備えている。更に本発明では、前記磁気フィルタ1
2と超電導電磁石14との間隙部分に対して挿入・抜出
自在の円筒状の超電導磁気シールド16を設けており、
その点に特徴がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of the principle of a superconducting magnetic separation apparatus according to the present invention. A shows a magnetic separation operation state, B shows a washing operation state, and the lower graph shows a magnetic filter in those operation steps. It represents the strength of the applied magnetic field. This apparatus has a cylindrical magnetic filter 12 filled with a filter material 10 and through which a liquid to be treated flows, and a cylindrical superconducting electromagnet 14 arranged around the magnetic filter 12.
It has and. Further, in the present invention, the magnetic filter 1
A cylindrical superconducting magnetic shield 16 that can be inserted into and removed from the gap between the superconducting electromagnet 14 and the superconducting electromagnet 14 is provided.
There is a feature in that point.

【0015】磁気フィルタ12の詳細を図2に示す。磁
気フィルタ12は全体が円筒状であり、下方の流入管2
0と、それに連通する中心管22と、該中心管22の周
囲に円筒状に位置するフィルタ素材10と、それらと同
軸状に配置される外側フィルタ容器24と、外側フィル
タ容器24の内部の外側領域26に連通し上方に引き出
される流出管28を有する。フィルタ素材10は、例え
ばステンレス鋼細線のような強磁性細線からなる。ここ
で被処理液は、流入管20から中心管22へ流入し、フ
ィルタ素材10中を半径方向に流れて外側領域26に達
し、流出管28から流出する。被処理液の流れ方向を矢
印で示す。これは、いわゆる並流型の磁気フィルタであ
る。
Details of the magnetic filter 12 are shown in FIG. The magnetic filter 12 has a cylindrical shape as a whole, and the lower inlet pipe 2
0, a central tube 22 that communicates therewith, a filter material 10 that is cylindrically positioned around the central tube 22, an outer filter container 24 that is arranged coaxially with them, and an outer side inside the outer filter container 24. It has an outflow pipe 28 that communicates with the region 26 and is drawn upward. The filter material 10 is made of a ferromagnetic thin wire such as a stainless steel thin wire. Here, the liquid to be treated flows from the inflow pipe 20 into the central pipe 22, flows in the filter material 10 in the radial direction, reaches the outer region 26, and flows out from the outflow pipe 28. The flow direction of the liquid to be treated is indicated by an arrow. This is a so-called parallel flow type magnetic filter.

【0016】超電導磁気シールド16は、例えば被覆し
ていない超電導線材をコイル状に巻装し、それを低融点
金属に含浸することによって構成する。これは、両端を
接続し、接続部の長さを最長にしたコイルと見なすこと
ができる。この超電導磁気シールド16の利点は、外部
磁場に応じた遮蔽電流が誘起され、大きな遮蔽空間を形
成できることと、安定性に優れていることである。この
種の超電導磁気シールド16を用いて3テスラ程度の遮
蔽が可能であることが実証されている。
The superconducting magnetic shield 16 is constructed, for example, by winding an uncoated superconducting wire into a coil and impregnating it with a low melting point metal. This can be regarded as a coil in which both ends are connected and the length of the connection is maximized. The advantage of this superconducting magnetic shield 16 is that a shielding current is induced according to an external magnetic field, a large shielding space can be formed, and the stability is excellent. It has been proved that the superconducting magnetic shield 16 of this type can be used to shield about 3 Tesla.

【0017】磁気フィルタ12、超電導電磁石14、及
び超電導磁気シールド16などからなる装置全体は、液
体ヘリウムなどの冷媒質により超低温状態に保たれる。
超電導磁気シールド16は、駆動装置(図示せず)によ
って、図面の上下方向に同軸状態を維持したまま移動可
能であり、それによって磁気フィルタ12に印加される
磁場を制御する。
The entire apparatus including the magnetic filter 12, the superconducting electromagnet 14, the superconducting magnetic shield 16 and the like is kept in an ultralow temperature state by a coolant such as liquid helium.
The superconducting magnetic shield 16 is movable by a driving device (not shown) while maintaining the coaxial state in the vertical direction of the drawing, and thereby controls the magnetic field applied to the magnetic filter 12.

【0018】図1のAに示すように、超電導磁気シール
ド16を引き抜いた状態では、超電導電磁石14で生じ
る磁場で磁気フィルタ12が励磁され、被処理液中の微
小粒子はフィルタ素材10に捕捉されて分離し、清澄し
た液のみが流出する。この磁気分離操作工程が進行する
と、フィルタ素材10には徐々に多くの微小粒子が付着
してフィルタ圧損が増大していく。そこで一定時間経過
後に洗浄を行う。洗浄操作工程は、超電導電磁石14に
電流が流れている状態のまま、超電導磁気シールド16
を磁気フィルタ12と超電導電磁石14との間隙部分に
挿入する(図1のB参照)。それによって磁気フィルタ
12には超電導電磁石14で生じている磁場は印加され
ず、該磁気フィルタ12は消磁された状態となる。洗浄
液を上方から下方へ、又は下方から上方へ流通させるこ
とで、フィルタ素材10に付着していた微小粒子は剥が
れて洗浄水と一緒に流出し、磁気フィルタ12が再生さ
れる。
As shown in FIG. 1A, when the superconducting magnetic shield 16 is pulled out, the magnetic filter 12 is excited by the magnetic field generated by the superconducting electromagnet 14, and the fine particles in the liquid to be treated are captured by the filter material 10. Only the clarified liquid flows out. As this magnetic separation operation step progresses, many fine particles gradually adhere to the filter material 10 and the filter pressure loss increases. Therefore, cleaning is performed after a certain period of time. In the cleaning operation step, the superconducting magnetic shield 16 is kept in a state where the current is flowing in the superconducting electromagnet 14.
Is inserted into the gap between the magnetic filter 12 and the superconducting electromagnet 14 (see B in FIG. 1). As a result, the magnetic field generated by the superconducting electromagnet 14 is not applied to the magnetic filter 12, and the magnetic filter 12 is demagnetized. By circulating the cleaning liquid from the upper side to the lower side or from the lower side to the upper side, the fine particles adhered to the filter material 10 are peeled off and flow out together with the cleaning water, and the magnetic filter 12 is regenerated.

【0019】被処理液が使用済核燃料の再処理工程液
(溶解工程から生じる液)の場合は、特段の改良が必要
である。その場合、磁気分離装置は、再処理施設の高放
射線雰囲気下(約103 〜105 レントゲン/時)に設
置されるため、絶縁材などの使用材料は全て高い耐放射
線性を有するものとする。例えばフィルム材としてはポ
リイミドフィルム、含浸材料としては芳香族アミン硬化
エポキシ樹脂、ポリブチレンテレフタレート樹脂、ポリ
イミド樹脂など、有機複合材料としてはポリブチレンテ
レフタレート樹脂をマトリックスとしたガラス繊維強化
プラスチックスなどを用いる。
When the liquid to be treated is a spent nuclear fuel reprocessing process liquid (a liquid generated from the melting process), particular improvement is required. In that case, since the magnetic separation device is installed in a high radiation atmosphere of the reprocessing facility (about 10 3 to 10 5 roentgen / hour), all materials used such as insulating materials have high radiation resistance. . For example, a polyimide film is used as a film material, an aromatic amine-cured epoxy resin, a polybutylene terephthalate resin, a polyimide resin is used as an impregnating material, and a glass fiber reinforced plastic having a matrix of polybutylene terephthalate resin is used as an organic composite material.

【0020】再処理工程液は数十グラムU+Pu/リッ
トルの核燃料物質と共存状態にあるため、磁気フィルタ
12の再処理工程液が流れる部分は、いかなる場合でも
核***の連鎖反応の未臨界状態を保てるように形状管理
する必要がある。円筒状容器での未臨界形状管理となる
ため、その制限値はウラン溶液では直径12.7cm、プ
ルトニウム溶液では10.7cmとなる。しかし、この程
度の寸法では工程処理能力が充分でなく、直径を大きく
するような工夫が必要である。そこでフィルタ素材とし
て、一般に用いられているステンレス鋼細線に代えて、
中性子吸収断面積が非常に大きく強磁性材料のガドリニ
ウム(Gd:約46,000バーン)細線(直径10〜100
μm程度)に、耐酸性を確保するため金被覆(例えばメ
ッキ)を施した材料を使用するのが好ましい。これによ
って磁気フィルタの外側フィルタ容器の直径を20cm以
上にでき、処理能力を上げることができる。
Since the reprocessing process liquid coexists with several tens of grams U + Pu / liter of nuclear fuel material, the portion of the magnetic filter 12 where the reprocessing process liquid flows can maintain the subcritical state of the fission chain reaction in any case. It is necessary to manage the shape like this. Since the subcritical shape is controlled in a cylindrical container, the limit value is 12.7 cm in diameter for uranium solution and 10.7 cm for plutonium solution. However, such a size does not have sufficient process capacity, and it is necessary to devise to increase the diameter. Therefore, instead of the commonly used stainless steel thin wire as a filter material,
The gadolinium (Gd: approx. 46,000 barn) fine wire (diameter: 10-100) with a very large neutron absorption cross section
It is preferable to use a material coated with gold (for example, plated) in order to secure acid resistance (about .mu.m). As a result, the diameter of the outer filter container of the magnetic filter can be made 20 cm or more, and the processing capacity can be improved.

【0021】図3は本発明の他の実施例を示す構造説明
図である。本実施例では2台の磁気フィルタ32a,3
2bを縦列配置する。各磁気フィルタ32a,32b
は、内部にフィルタ素材30が充填されていて、被処理
液が別系統で流通する。両磁気フィルタ32a,32b
の周囲に共通に超電導電磁石34が取り囲んでいる。そ
して、前記両磁気フィルタ32a,32bと超電導電磁
石34との間隙部分に、各磁気フィルタ32a,32b
に対して交互に挿入・抜出自在の可動式の超電導磁気シ
ールド36を設ける。これら装置全体は、超低温状態中
に置かれることになる。
FIG. 3 is a structural explanatory view showing another embodiment of the present invention. In this embodiment, the two magnetic filters 32a, 3a
2b are arranged in tandem. Each magnetic filter 32a, 32b
Is filled with the filter material 30 inside, and the liquid to be treated circulates in a separate system. Both magnetic filters 32a, 32b
A superconducting electroconductive magnet 34 is commonly surrounded by the circumference of. The magnetic filters 32a and 32b are provided in the gap between the magnetic filters 32a and 32b and the superconducting electromagnet 34.
A movable superconducting magnetic shield 36 that can be inserted and removed alternately is provided. The whole of these devices will be placed in a cryogenic state.

【0022】図3においては、超電導磁気シールド36
が上方の磁気フィルタ32aを取り囲む位置に描かれて
おり、下方の磁気フィルタ32bを取り囲む場合を仮想
線で示している。超電導磁気シールド36は上下駆動装
置(図示せず)によって超電導電磁石34内で自由に軸
方向に移動できる。磁気フィルタ32a,32bの構造
は、基本的には図2に示す例と同様であってよく、配管
の引出しの都合上、上方の磁気フィルタ32aは上方か
ら被処理液を導入して上方に清澄液を供給し、下方の磁
気フィルタ32bは下方から被処理液を導入して下方に
清澄液を供給するように構成している。図3に示す状態
では、上方の磁気フィルタ32aが洗浄操作工程にあ
り、下方の磁気フィルタ32bが磁気分離操作工程にあ
る。
In FIG. 3, the superconducting magnetic shield 36 is shown.
Is drawn at a position surrounding the upper magnetic filter 32a, and the case surrounding the lower magnetic filter 32b is shown by an imaginary line. The superconducting magnetic shield 36 can be freely moved in the axial direction within the superconducting electromagnet 34 by a vertical driving device (not shown). The structure of the magnetic filters 32a and 32b may be basically the same as that of the example shown in FIG. 2. For convenience of drawing out the piping, the upper magnetic filter 32a introduces the liquid to be treated from above and clarifies it above. The liquid is supplied, and the lower magnetic filter 32b is configured to introduce the liquid to be treated from below and supply the clarifying liquid to the lower part. In the state shown in FIG. 3, the upper magnetic filter 32a is in the cleaning operation step and the lower magnetic filter 32b is in the magnetic separation operation step.

【0023】この磁気分離装置の運転は次のように行
う。超電導電磁石34は永久電流モードで運転する。超
電導磁気シールド36で覆われていない片方(図3では
下方)の磁気フィルタ32bに被処理液を流通させる。
すると超電導電磁石34で発生している強磁場が磁気フ
ィルタ32bに印加されて励磁され、被処理液に含まれ
ている微小粒子はフィルタ素材30に付着して分離され
る。その間、他方の磁気フィルタ32aは、超電導磁気
シールド36で取り囲まれているため、磁場は印加され
ず、洗浄液を流通させることにより、付着している微小
粒子は除去洗浄され、フィルタが再生する。超電導磁気
シールド36を移動するだけで、この両工程を両磁気フ
ィルタについて交互に行うことができ、磁気分離装置を
効率よく連続して運転することができる。
The operation of this magnetic separator is performed as follows. The superconducting electromagnet 34 operates in the permanent current mode. The liquid to be treated is circulated through one magnetic filter 32b (downward in FIG. 3) that is not covered with the superconducting magnetic shield 36.
Then, the strong magnetic field generated by the superconducting electromagnet 34 is applied to the magnetic filter 32b and excited, and the fine particles contained in the liquid to be treated adhere to the filter material 30 and are separated. Meanwhile, since the other magnetic filter 32a is surrounded by the superconducting magnetic shield 36, the magnetic field is not applied, and the cleaning liquid is circulated to remove and clean the adhered fine particles, and the filter is regenerated. By simply moving the superconducting magnetic shield 36, these two steps can be alternately performed for both magnetic filters, and the magnetic separation device can be efficiently and continuously operated.

【0024】超電導磁気シールドを用いて磁気フィルタ
を洗浄する際の問題点は、磁気シールドを磁場内へ挿入
するときの電磁力である。解析結果によれば、電磁石の
中心と磁気シールドの中心とが一致していると磁気シー
ルドには力は働かない(磁気シールドの内部応力として
のみ働く)。しかし、磁気シールドの位置が変わり、磁
気シールド両端の半径方向磁場成分に差ができると、そ
れに伴って応力が発生する。その力は、磁気シールド両
端の半径方向磁場成分の差が最も大きくなる場所、即ち
電磁石端部で最大となる。上記第2の実施例では、超電
導電磁石34によって均一磁場が形成され、その内部で
超電導磁気シールド36が移動するだけであるため、殆
ど駆動力が要らないシステムを構築できることになる。
A problem in cleaning the magnetic filter using the superconducting magnetic shield is the electromagnetic force when the magnetic shield is inserted into the magnetic field. According to the analysis result, if the center of the electromagnet and the center of the magnetic shield are coincident with each other, no force works on the magnetic shield (only works as internal stress of the magnetic shield). However, if the position of the magnetic shield changes and there is a difference in the magnetic field components in the radial direction at both ends of the magnetic shield, stress is generated accordingly. The force becomes maximum at the place where the difference between the radial magnetic field components at both ends of the magnetic shield becomes the largest, that is, at the end of the electromagnet. In the second embodiment, a uniform magnetic field is formed by the superconducting electromagnet 34, and the superconducting magnetic shield 36 only moves inside the superconducting magnet 34. Therefore, a system requiring almost no driving force can be constructed.

【0025】図4は本発明を再処理工程液の清澄化に適
用した全体システム概念図である。ここでは配管系の説
明を簡略化するため、磁気分離装置としては単一の磁気
フィルタ12と超電導電磁石14を備えた図1に示すタ
イプを使用した例を描いている。図示の状態は、超電導
磁気シールド16を引き抜いて磁気分離操作を行ってい
る工程を表している。超電導磁気シールド16は駆動装
置40によって保持され且つ上下動自在であって、洗浄
操作工程では仮想線で示す位置まで降下することにな
る。
FIG. 4 is a conceptual diagram of the entire system in which the present invention is applied to the clarification of the reprocessing step liquid. Here, in order to simplify the description of the piping system, an example using the type shown in FIG. 1 equipped with a single magnetic filter 12 and a superconducting electromagnet 14 is drawn as the magnetic separation device. The state shown in the drawing represents a process in which the superconducting magnetic shield 16 is pulled out and a magnetic separation operation is performed. The superconducting magnetic shield 16 is held by the drive unit 40 and can move up and down, and in the cleaning operation step, it descends to a position indicated by an imaginary line.

【0026】システムの大部分は遮蔽壁42で仕切られ
た図面左手側のレッド区域(高放射能区域)に設置さ
れ、遠隔保守が行われる。配管や配線は遮蔽壁42を貫
通し、その他の機器は図面右手側のアンバー区域、グリ
ーン区域、屋外又は別棟などに設置される。レッド区域
内の各機器は、中央計測制御盤44及び制御機器マグネ
ット46で制御され、超電導電磁石14や超電導磁気シ
ールド16は、液体窒素タンク48、ヘリウムガスタン
ク49、圧縮機50、冷凍機51などからなる超低温冷
却系統によって超電導状態まで冷却される。各液の流れ
は流量計FIで計測され、圧力は圧力計PGで計測され
る。
Most of the system is installed in a red area (high-radioactive area) on the left side of the drawing, which is partitioned by a shield wall 42, and remote maintenance is performed. Pipes and wirings penetrate the shielding wall 42, and other devices are installed in the amber area, green area, outdoors or a separate building on the right side of the drawing. Each device in the red area is controlled by the central measurement control panel 44 and the control device magnet 46, and the superconducting electromagnet 14 and the superconducting magnetic shield 16 are supplied from the liquid nitrogen tank 48, the helium gas tank 49, the compressor 50, the refrigerator 51, etc. Is cooled to the superconducting state by the ultra low temperature cooling system. The flow of each liquid is measured by the flow meter FI, and the pressure is measured by the pressure gauge PG.

【0027】磁気分離操作工程では、再処理工程液が原
液移送ポンプ52から弁53を通って磁気フィルタ12
に導入され、そこで含まれている微小粒子は、超電導電
磁石14による強力な磁場が印加されたフィルタ素材1
0に付着して分離され、清澄液が弁54を通って流出
し、次の工程(抽出工程)へ送られる。この磁気分離操
作工程では、洗浄水の通る弁55,56は閉の状態とな
っている。次に洗浄操作工程では、再処理工程液が通っ
ていた弁53,54を閉じ、駆動装置40によって超電
導磁気シールド16を降下させる。これによって磁気フ
ィルタ16には超電導電磁石14による磁場は印加され
なくなる。その状態で洗浄水を供給する。洗浄水は弁5
7を通って予めタンク58に溜められており、ポンプ5
9によって弁55を通って磁気フィルタ16に上方から
供給される。その洗浄水によってフィルタ素材10に付
着していた微小粒子は洗い出され、水と共に弁56を通
って排出される。この洗浄操作によってフィルタ素材1
0は完全に再生される。
In the magnetic separation operation step, the reprocessing step liquid flows from the stock solution transfer pump 52 through the valve 53 to the magnetic filter 12.
The microparticles introduced into and contained in the filter material 1 to which a strong magnetic field from the superconducting electromagnet 14 is applied.
The clarified liquid flows out through the valve 54 to be separated and attached to 0, and is sent to the next step (extraction step). In this magnetic separation operation step, the valves 55 and 56 through which the wash water passes are closed. Next, in the cleaning operation step, the valves 53 and 54 through which the reprocessing step liquid has passed are closed, and the drive unit 40 lowers the superconducting magnetic shield 16. As a result, the magnetic field generated by the superconducting electromagnet 14 is not applied to the magnetic filter 16. In that state, wash water is supplied. Wash water is valve 5
It is stored in the tank 58 in advance through 7 and the pump 5
9 is supplied to the magnetic filter 16 from above through the valve 55. The washing water wash outs the fine particles adhering to the filter material 10 and discharges them together with the water through the valve 56. Filter material 1 by this washing operation
0 is completely regenerated.

【0028】使用済核燃料の再処理工程液中の微小粒子
(不溶解残渣)には、主に白金族元素が多く含まれてい
る。そのため本発明の装置によって、それら有用金属の
効率的な回収も可能となる。
The fine particles (insoluble residue) in the reprocessing step liquid of the spent nuclear fuel mainly contain a large amount of platinum group elements. Therefore, the device of the present invention enables efficient recovery of these useful metals.

【0029】[0029]

【発明の効果】本発明は上記のように、超電導磁気シー
ルドを磁気フィルタと超電導電磁石との間隙部分に対し
て挿入・抜出自在としたことにより、配管などの接続さ
れている磁気フィルタは固定したままでよく、励磁・消
磁のために超電導電磁石のコイル電流をオン・オフする
必要も無くなり、高速での励磁・消磁の切り換え操作が
可能となるため、超電導電磁石での交流損失を低減で
き、冷媒質の液体ヘリウムの使用量を削減できる。特に
2台の磁気フィルタを縦列配置して超電導磁気シールド
で交互に覆う構成では、磁気分離操作と洗浄操作を同時
に行うことができ、連続運転が可能となり運転効率が高
まるし、超電導磁気シールドを移動する際に力が殆ど要
らず、永久電流モードでの運転がより完璧なものとな
る。
As described above, according to the present invention, since the superconducting magnetic shield can be inserted into and removed from the gap between the magnetic filter and the superconducting electromagnet, the magnetic filter connected to the pipe or the like is fixed. It is not necessary to turn on / off the coil current of the superconducting electromagnet for excitation / demagnetization, and switching operation of excitation / demagnetization can be performed at high speed, so AC loss in the superconducting electromagnet can be reduced. The amount of liquid helium, which is a refrigerant, can be reduced. In particular, in a configuration in which two magnetic filters are arranged in tandem and alternately covered with a superconducting magnetic shield, magnetic separation operation and cleaning operation can be performed at the same time, continuous operation becomes possible, operation efficiency is improved, and the superconducting magnetic shield is moved. It requires less force to operate and makes the operation in permanent current mode more complete.

【0030】本発明は基本的に超電導磁気分離法を採用
しているため、高放射性の再処理工程液の清澄化に適用
した場合でも、磁気分離法の特徴を全て備えている。従
来方法(パルスフィルタ法や遠心清澄法)に比べて、超
微粒子を高効率で回収除去できることから、その後の抽
出工程で第3相が形成されず、抽出効率は向上する。更
に本発明では洗浄後のフィルタ素材の劣化が殆ど生じな
いことから、パルスフィルタ法のような高レベル廃棄物
は発生せず、廃棄物量が低減し、保守も簡略化される。
Since the present invention basically adopts the superconducting magnetic separation method, it has all the features of the magnetic separation method even when applied to the clarification of the highly radioactive reprocessing step liquid. Since ultrafine particles can be collected and removed with high efficiency as compared with the conventional method (pulse filter method or centrifugal clarification method), the third phase is not formed in the subsequent extraction step, and the extraction efficiency is improved. Further, according to the present invention, since the filter material after cleaning hardly deteriorates, high-level waste unlike the pulse filter method does not occur, the amount of waste is reduced, and maintenance is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超電導磁気分離装置の一例を示す概念
図。
FIG. 1 is a conceptual diagram showing an example of a superconducting magnetic separation device of the present invention.

【図2】その磁気フィルタの一例を示す構造説明図。FIG. 2 is a structural explanatory view showing an example of the magnetic filter.

【図3】本発明の超電導磁気分離装置の他の例を示す概
念図。
FIG. 3 is a conceptual diagram showing another example of the superconducting magnetic separation device of the present invention.

【図4】図1の超電導磁気分離装置を用いた全体システ
ムの概念図。
FIG. 4 is a conceptual diagram of an overall system using the superconducting magnetic separation device of FIG.

【符号の説明】[Explanation of symbols]

10 フィルタ素材 12 磁気フィルタ 14 超電導電磁石 16 超電導磁気シールド 10 Filter Material 12 Magnetic Filter 14 Superconducting Conductive Magnet 16 Superconducting Magnetic Shield

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 健司 茨城県つくば市梅園1−1−4 電子技術 総合研究所内 (72)発明者 見目 善弘 東京都港区三田1丁目4番28号 日本電気 環境エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Kenji Ohara Kenji Ohara 1-1-4 Umezono, Tsukuba-shi, Ibaraki Electronic Technology Research Laboratory (72) Appearance Yoshihiro Yoshida 1-chome Mita 4-28, NEC Environmental Engineering Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内部にフィルタ素材が充填されている磁
気フィルタと、該磁気フィルタの周囲に配置される超電
導電磁石とを備えた装置において、前記磁気フィルタと
超電導電磁石との間隙部分に対して挿入・抜出自在の超
電導磁気シールドを設けることを特徴とする超電導磁気
分離装置。
1. A device comprising a magnetic filter having a filter material filled therein, and a superconducting electromagnet disposed around the magnetic filter, the device being inserted into a gap between the magnetic filter and the superconducting electromagnet. -A superconducting magnetic separation device characterized by being provided with a superconducting magnetic shield that can be pulled out freely.
【請求項2】 内部にフィルタ素材が充填されている磁
気フィルタと、該磁気フィルタの周囲に配置される超電
導電磁石とを備えた装置において、別系統の2台の磁気
フィルタを縦列配置し、両磁気フィルタの周囲に共通に
超電導電磁石を配置し、前記両磁気フィルタと超電導電
磁石との間隙部分に、各磁気フィルタに対して交互に挿
入・抜出自在の超電導磁気シールドを設けることを特徴
とする超電導磁気分離装置。
2. An apparatus comprising a magnetic filter having a filter material filled therein, and a superconducting electromagnet arranged around the magnetic filter, wherein two magnetic filters of different systems are arranged in tandem. A superconducting electromagnet is commonly arranged around the magnetic filters, and a superconducting magnetic shield that can be alternately inserted into and withdrawn from each magnetic filter is provided in a gap between the magnetic filters and the superconducting electromagnet. Superconducting magnetic separator.
【請求項3】 被処理液が使用済核燃料の再処理工程液
であり、磁気フィルタは、その内部に充填されるフィル
タ素材がガドリニウム細線の表面に金被覆を施した素材
であって、被処理液が流れるフィルタ格納容器は未臨界
形状が確保され、超電導電磁石は耐放射線性を有する材
料で製作されている請求項1又は2記載の超電導磁気分
離装置。
3. The liquid to be treated is a spent nuclear fuel reprocessing process liquid, and the magnetic filter is a material in which the filter material to be filled therein is a gadolinium thin wire coated with gold on the surface thereof. The superconducting magnetic separator according to claim 1 or 2, wherein the filter storage container through which the liquid flows has a subcritical shape, and the superconducting electromagnet is made of a material having radiation resistance.
【請求項4】 請求項2記載の超電導磁気分離装置を使
用し、超電導電磁石は永久電流モードで運転し、超電導
磁気シールドで覆われていない片方の磁気フィルタに被
処理液を流通させて微小粒子を付着分離し、超電導磁気
シールドで覆われている他方の磁気フィルタに洗浄液を
流通させて付着している微小粒子を除去洗浄し、この工
程を両磁気フィルタについて交互に行う超電導磁気分離
装置の運転方法。
4. The superconducting magnetic separator according to claim 2, wherein the superconducting electromagnet is operated in a permanent current mode, and the liquid to be treated is circulated through one magnetic filter not covered with the superconducting magnetic shield. To remove the fine particles that have adhered to the other magnetic filter that is covered with the superconducting magnetic shield by flowing a cleaning liquid to the other magnetic filter, and perform this process alternately for both magnetic filters. Method.
JP4148604A 1992-05-15 1992-05-15 Superconducting magnetic separator and operating method thereof Expired - Fee Related JPH0716569B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4148604A JPH0716569B2 (en) 1992-05-15 1992-05-15 Superconducting magnetic separator and operating method thereof
FR9305629A FR2691080B1 (en) 1992-05-15 1993-05-11 Magnetic separator with superconduction in particular for reprocessing of a nuclear fuel and method of implementation.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4148604A JPH0716569B2 (en) 1992-05-15 1992-05-15 Superconducting magnetic separator and operating method thereof

Publications (2)

Publication Number Publication Date
JPH0623213A JPH0623213A (en) 1994-02-01
JPH0716569B2 true JPH0716569B2 (en) 1995-03-01

Family

ID=15456493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4148604A Expired - Fee Related JPH0716569B2 (en) 1992-05-15 1992-05-15 Superconducting magnetic separator and operating method thereof

Country Status (2)

Country Link
JP (1) JPH0716569B2 (en)
FR (1) FR2691080B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2482001A (en) * 2010-07-14 2012-01-18 Balvinder Singh Nagi Fluid filter
CN108993347A (en) * 2018-09-12 2018-12-14 华南理工大学 A kind of high magnetic steel hydrothermal reaction kettle and its application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004539A (en) * 1989-10-12 1991-04-02 J. M. Huber Corporation Superconducting magnetic separator

Also Published As

Publication number Publication date
JPH0623213A (en) 1994-02-01
FR2691080A1 (en) 1993-11-19
FR2691080B1 (en) 1995-02-03

Similar Documents

Publication Publication Date Title
US3503504A (en) Superconductive magnetic separator
JPH0716569B2 (en) Superconducting magnetic separator and operating method thereof
CN105734310A (en) Plutonium purification and concentration method utilizing dioxime imide as reduction and reextraction agent
Zhu et al. Recent development of high gradient superconducting magnetic separator for kaolin in China
KR20060096179A (en) Method and device for removing magnetic foreign objects from liquid
Diev et al. High temperature superconducting magnetic system for high gradient magnetic separator
JP2010232432A (en) Magnetic field generator and method for using the same
Nishijima et al. Applicability of superconducting magnet to high gradient magnetic separator
He et al. Enrichment of valuable elements from vanadium slag using superconducting HGMS technology
Fuchino et al. Development of superconducting high gradient magnetic separation system for medical protein separation
US4755302A (en) Method and apparatus for matrix magnetic separation
Yan et al. Laboratory test of an industrial superconducting magnetic separator for kaolin clay purification
CN217569138U (en) Miniature extraction element of magnetism microballon
KR20130140008A (en) Device and method for replacing an irradiated fuel assembly with a new fuel assembly in the vessel of a nuclear reactor, and nuclear reactor including such a device
US6032881A (en) Process to remove radioactive elements present in bulk low-grade waste
CN2354939Y (en) Multi-pole electromagnetically treating apparatus
Gillet et al. Technology of superconducting magnetic separation in mineral and environmental processing
Ning et al. Physical design of high gradient superconducting magnetic separation magnet for kaolin
Rey et al. Design and fabrication of an HTS reciprocating magnetic separator
Good et al. The magnetic separation of mineral slurries by a cryogenic magnet system
Kong et al. Application of electromagnetic fields to improve the removal rate of radioactive corrosion products
GB1572722A (en) Magnetic separator
RU2360740C1 (en) High gradient magnetic filter
Ozawa et al. Uranium Extraction from Sea Water with Composite Adsorbents,(III) Magnetic Properties of Composite Hydrous Titanium (IV)-Iron (II) Oxides and their Magnetic Separation
Poirier et al. Investigating Suspension of MST Slurries in a Pilot-Scale waste Tank

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees