JPH0716470A - Nitrogen oxide reduction catalyst, its production and method for removing nitrogen oxide - Google Patents

Nitrogen oxide reduction catalyst, its production and method for removing nitrogen oxide

Info

Publication number
JPH0716470A
JPH0716470A JP5144822A JP14482293A JPH0716470A JP H0716470 A JPH0716470 A JP H0716470A JP 5144822 A JP5144822 A JP 5144822A JP 14482293 A JP14482293 A JP 14482293A JP H0716470 A JPH0716470 A JP H0716470A
Authority
JP
Japan
Prior art keywords
component
catalyst
nitrogen oxide
basic structure
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5144822A
Other languages
Japanese (ja)
Inventor
Keiji Hashimoto
圭司 橋本
Koji Mishima
弘次 三嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Research and Development Co Ltd
Osaka City
Original Assignee
Takuma Research and Development Co Ltd
Osaka City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Research and Development Co Ltd, Osaka City filed Critical Takuma Research and Development Co Ltd
Priority to JP5144822A priority Critical patent/JPH0716470A/en
Publication of JPH0716470A publication Critical patent/JPH0716470A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain an NOx reduction catalyst not causing the blocking of the pores in the catalyst or the trouble of a device and ensuring a small NH3 loss by highly dispersing a high activity catalyst such as vanadium in a carrier such as mordenite and coating the surface of the resulting basic structure part of a catalyst with a specified low activity catalyst. CONSTITUTION:The basic structure part of a catalyst is formed by mixing 10-90 pts.wt. mordenite (component A) having >10 molar ratio of SiO2 to Al2O3 as a carrier with 10-90 pts.wt. one or more kinds of compds. (component B) selected among TiO2, silica, kaolinite and diatomaceous earth as a binder for the carrier and incorporating 1-10 pts.wt. one or more kinds of elements (component D) selected among V, W, H<+>, Fe, Ni and Cr each having catalytic action. One or more kinds of elements (component D) selected among H<+>, Zn, Ba and Ca are introduced into the component A by ion exchange and this component A is carried on the basic structure part so as to coat the component C having high catalytic action. Moderate catalytic activity is imparted to the resulting catalyst and the oxidation of SO2 is inhibited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒素酸化物(NOX
の還元用触媒とその製造方法、ならびにその触媒を用い
て排ガス中の窒素酸化物を除去する方法に関する。
FIELD OF THE INVENTION The present invention relates to nitrogen oxides (NO x ).
And a method for producing the same, and a method for removing nitrogen oxides in exhaust gas using the catalyst.

【0002】[0002]

【従来の技術】従来、排ガス中の窒素酸化物を除去する
方法は、種々提案されているが、実用化されているの
は、主に、アンモニアを還元剤とする乾式接触還元分解
法(SCR法)である。触媒には、バナジウム、銅、
鉄、クロムなどの酸化物や硫酸塩をチタニア、シリカな
どの担体に担持させて使用している。これらの触媒につ
いては、例えば、特開昭50−51966号公報や特開
昭52−122293号公報に記載されている。
2. Description of the Related Art Conventionally, various methods for removing nitrogen oxides in exhaust gas have been proposed, but the method which has been put into practical use is mainly a dry catalytic reduction cracking method (SCR) using ammonia as a reducing agent. Law). The catalyst is vanadium, copper,
An oxide such as iron or chromium or a sulfate is used by being supported on a carrier such as titania or silica. These catalysts are described, for example, in JP-A-50-51966 and JP-A-52-122293.

【0003】[0003]

【発明が解決しようとする課題】ところで、窒素酸化物
を含む排ガスには、しばしば二酸化いおう(SO2 )が
含まれているが、このような排ガスには触媒として、V
2 5 /TiO2 が好適である。しかし、V2 5 /T
iO2 のような強い酸化活性能を有する触媒下では、S
2 が三酸化いおう(SO3 )に酸化され。生成したS
3 は、還元剤として添加したアンモニアや共存する水
と反応して、硫酸水素アンモニウム(NH4 HSO4
や硫酸アンモニウム((NH4)2 SO4 )を生成する。
これらの物質は、低温領域において触媒の細孔を閉塞
し、さらには、熱交換器などに付着して腐食や閉塞など
の障害を発生させる。一方、高温領域でV2 5 触媒を
用いると、NH3 が酸化され、そのロスが大きくなる。
また、V2 5 触媒は、排ガス中に含まれる揮発性の金
属酸化物やセレン、テルル、タリウム、砒素などによっ
て劣化されやすく、高価でもある。本発明は、排ガス中
にSO2 が存在していても、触媒細孔を閉塞したり、装
置の障害を引き起こしたり、NH3 のロスを増大するこ
とのない触媒の開発と窒素酸化物の除去方法とを課題と
して完成されたものである。
Exhaust gas containing nitrogen oxides often contains sulfur dioxide (SO 2 ), and such exhaust gas contains V 2 as a catalyst.
2 O 5 / TiO 2 is preferred. However, V 2 O 5 / T
Under a catalyst having a strong oxidizing activity such as iO 2 , S
O 2 is oxidized to sulfur trioxide (SO 3 ). Generated S
O 3 reacts with ammonia added as a reducing agent and coexisting water to form ammonium hydrogen sulfate (NH 4 HSO 4 ).
Generating a or ammonium sulfate ((NH4) 2 SO 4) .
These substances block the pores of the catalyst in the low temperature region, and further adhere to a heat exchanger or the like to cause problems such as corrosion and blockage. On the other hand, when the V 2 O 5 catalyst is used in the high temperature region, NH 3 is oxidized and its loss becomes large.
Further, the V 2 O 5 catalyst is easily deteriorated by volatile metal oxides, selenium, tellurium, thallium, arsenic, etc. contained in the exhaust gas, and is expensive. The present invention is directed to the development of a catalyst and removal of nitrogen oxides that do not clog the catalyst pores, cause equipment damage, or increase the loss of NH 3 even if SO 2 is present in the exhaust gas. It was completed with a method and a subject.

【0004】[0004]

【課題を解決するための手段】本発明は、前記の目的を
達成するために、混合された状態にあるAl2 3 に対
するSiO2 のモル比が少なくとも10を超えているモ
ルデナイト(以下、A成分という)10〜90重量部
と、TiO2 、シリカ、カオリナイト、およびけいそう
土の中から選ばれた一種以上の化合物(以下、B成分と
いう)10〜90重量部、および前記のB成分の部分に
おけるよりも、A成分の部分に多量に存在せしめた、バ
ナジウム、タングステン、プロトン、鉄、ニッケル、お
よびクロムの中から選ばれた一種以上の元素(以下、C
成分という)1〜10重量部、からなる触媒の基礎構造
部分の表面に、プロトン、亜鉛、バリウムおよびカルシ
ウムの中から選ばれた一種以上の元素(以下、D成分と
いう)をイオン交換で導入したA成分を担持している、
ことを特徴とする、窒素酸化物還元触媒を提供する。こ
こにC成分は、バナジウムがとくに好ましい。
In order to achieve the above-mentioned object, the present invention provides a mordenite (hereinafter referred to as A) in which a molar ratio of SiO 2 to Al 2 O 3 in a mixed state is at least 10 or more. 10 to 90 parts by weight, one or more compounds selected from among TiO 2 , silica, kaolinite, and diatomaceous earth (hereinafter referred to as B component), and B component described above. More than one part, the one or more elements selected from vanadium, tungsten, protons, iron, nickel, and chromium (hereinafter, C
1 to 10 parts by weight of the basic structure of the catalyst, which is composed of 1 to 10 parts by weight, is ion-exchanged with one or more elements selected from protons, zinc, barium and calcium (hereinafter referred to as component D). Carrying A component,
A nitrogen oxide reduction catalyst is provided. Vanadium is particularly preferable as the C component.

【0005】この窒素酸化物還元触媒は、前記のC成分
をA成分に担持させ、B成分と混合して成形し、得られ
た成形物を焼成して触媒の基礎構造部分を得た後、得ら
れた触媒の基礎構造部分の表面に、D成分を導入したA
成分を担持させ、焼成して製造することができる。C成
分をA成分に担持させ、および/またはD成分をA成分
に導入する方法に、イオン交換法を用いることが好まし
い。また、アンモニヤを添加した窒素酸化物を含む被処
理ガスを、上記の触媒に150〜600℃で接触せしめ
ることによって、被処理ガス中の窒素酸化物を除去する
ことができる。
In this nitrogen oxide reduction catalyst, the C component is supported on the A component, mixed with the B component and molded, and the molded product obtained is calcined to obtain a basic structure portion of the catalyst. A in which the D component was introduced on the surface of the basic structure portion of the obtained catalyst
It can manufacture by making a component carry and baking. The ion exchange method is preferably used for the method of loading the C component on the A component and / or introducing the D component on the A component. Further, the nitrogen oxide in the gas to be treated can be removed by bringing the gas to be treated containing the nitrogen oxide to which the ammonia is added into contact with the above catalyst at 150 to 600 ° C.

【0006】[0006]

【作用と実施態様例】本発明の窒素酸化物還元触媒およ
びその製造方法、ならびに窒素酸化物除去方法につい
て、実施態様例をあげながら、具体的に説明する。本発
明の窒素酸化物還元触媒は、高活性触媒であるバナジウ
ムなどの触媒活性成分を細かく均一に分散、すなわち高
分散させて触媒の基礎構造部分とし、基礎構造部分の表
面を低活性触媒で覆うものである。
Actions and Examples of Embodiments The nitrogen oxide reduction catalyst of the present invention, a method for producing the same, and a method for removing nitrogen oxides will be specifically described with reference to embodiments. The nitrogen oxide reduction catalyst of the present invention finely and evenly disperses a catalytically active component such as vanadium, which is a highly active catalyst, that is, highly dispersed into a basic structure part of the catalyst, and the surface of the basic structure part is covered with a low activity catalyst. It is a thing.

【0007】まず、本発明の窒素酸化物還元触媒の基礎
構造部分では、主に触媒の担体の作用を持たせる物質
に、Al2 3 に対するSiO2 のモル比が少なくとも
10を超えているモルデナイト(A成分)、主に担体の
バインダーとしての作用を持たせる物質に、TiO2
シリカ、カオリナイト、およびけいそう土の中から選ば
れた一種以上の化合物(B成分)を使用する。A成分中
のAl2 3 に対するSiO2 のモル比は、10〜10
0の範囲が好ましい。100を超えるとイオン交換基の
比率が低下し、活性成分の担持量が減少し、10よりも
少ないと耐酸性、耐熱水性が低下するので、ともに好ま
しくない。前記のB成分の中では、TiO 2 を好ましく
用いることができる。A成分とB成分との混合物に触媒
作用を有するバナジウム、タングステン、プロトン、
鉄、ニッケル、およびクロムの中から選ばれた一種以上
の元素(C成分)を担持させる。A成分:B成分:C成
分は重量基準で10〜90:10〜90:1〜10が適
当である。
First, the basics of the nitrogen oxide reduction catalyst of the present invention
In the structural part, substances that mainly act as catalyst carriers
, Al2O3Against SiO2The molar ratio of at least
More than 10 mordenite (A component), mainly of carrier
TiO is added to the substance that acts as a binder.2,
Choose from silica, kaolinite, and diatomaceous earth
One or more compounds (component B) are used. In A component
Al2O3Against SiO2The molar ratio of 10 to 10
A range of 0 is preferred. If it exceeds 100, the ion-exchange group
The ratio decreases, the amount of the active ingredient carried decreases, and
If it is too small, the acid resistance and hot water resistance will decrease, so both are preferred.
Not good. Among the above B components, TiO 2Preferably
Can be used. Catalyst for mixture of A and B components
Vanadium, tungsten, protons, which act
One or more selected from iron, nickel, and chromium
Element (C component) is supported. A component: B component: C composition
10 to 90:10 to 90: 1 to 10 are suitable for the weight.
It is right.

【0008】この触媒の基礎構造部分に、プロトン、亜
鉛、バリウムおよびカルシウムの中から選ばれた一種以
上の元素(D成分)を導入したA成分(以下、D付加A
成分という)を担持させる。A成分とB成分の合計に対
するD付加A成分の重量比率は、使用条件により選択す
ることができるが、通常は1/3〜1/50程度であ
る。D付加A成分は、弱い触媒活性を有し、基礎構造部
分に存在する強い触媒作用を有するC成分を覆うことに
よって、本発明の窒素酸化物還元触媒に、適度の触媒活
性を付与する作用を有すると考えられる。
Component A (hereinafter referred to as D-added A) in which one or more elements (D component) selected from proton, zinc, barium and calcium are introduced into the basic structural portion of this catalyst.
Called component). The weight ratio of the D-added A component to the total of the A component and the B component can be selected depending on the use conditions, but is usually about 1/3 to 1/50. The D-added A component has a weak catalytic activity, and by covering the C component having a strong catalytic action existing in the basic structure portion, it has an action of imparting an appropriate catalytic activity to the nitrogen oxide reduction catalyst of the present invention. Considered to have.

【0009】本発明の窒素酸化物還元触媒製造方法の好
ましい実施態様について説明する。まず、前記の触媒作
用を有するC成分を担体であるA成分に担持させ、主に
バインダとしてのB成分と混合して成形し、得られた成
形物を乾燥、または乾燥、焼成などして触媒の基礎構造
部分を製造する。C成分をA成分に担持させる手段に
は、イオン交換を利用する方法、たんなる含浸付着によ
る方法などがあげられるが、なかでも、イオン交換によ
って、主にA成分上に担持させるのが好ましい。触媒活
性点を高分散することができるからである。具体的に
は、例えば、市販の合成モルデナイト、すなわちA成分
を水溶液中、無機酸類を用いイオン交換して一旦プロト
ン型のモルデナイトにし、ろ過、洗浄、乾燥する。得ら
れたプロトン型のモルデナイトを、適当なC成分のアル
カリ塩の溶液中でイオン交換し、ろ過、洗浄、乾燥し
て、C成分を担持したA成分を得る。得られたC成分を
担持したA成分に、B成分と水とを加えて混練する。必
要に応じてCMC(のり剤)などを添加することができ
る。この混練物を押出機などを用いて望ましい形状に成
形する。形状としては、粒状、ハニカム状など使用目的
に応じて選択することができる。得られた成形物を乾燥
および/または焼成して触媒の基礎構造部分とする。焼
成する場合の温度は、あまり高くない方が好ましく、通
常、600℃をこえないようにする。
A preferred embodiment of the method for producing a nitrogen oxide reduction catalyst of the present invention will be described. First, the C component having the above-mentioned catalytic action is supported on the A component which is a carrier, and is mainly mixed with the B component as a binder to be molded, and the obtained molded product is dried, or dried, baked, etc. Manufacture the basic structural part of. Examples of the means for supporting the C component on the A component include a method using ion exchange and a method by simply impregnating and adhering. Among them, it is preferable to support the C component mainly on the A component by ion exchange. This is because the catalyst active sites can be highly dispersed. Specifically, for example, commercially available synthetic mordenite, that is, component A is ion-exchanged with an inorganic acid in an aqueous solution to once convert into a proton-type mordenite, which is then filtered, washed, and dried. The obtained proton-type mordenite is ion-exchanged in a solution of an appropriate alkali salt of the C component, filtered, washed, and dried to obtain the A component carrying the C component. To the obtained component A carrying the component C, the component B and water are added and kneaded. CMC (glue agent) and the like can be added if necessary. This kneaded product is molded into a desired shape using an extruder or the like. The shape can be selected according to the purpose of use, such as granular or honeycomb. The molded product obtained is dried and / or calcined to form the basic structure part of the catalyst. The firing temperature is preferably not too high, and usually does not exceed 600 ° C.

【0010】得られた触媒の基礎構造部分の表面に、D
付加A成分を担持させ、焼成する。D成分をA成分に導
入してD付加A成分を得るには、前記のイオン交換法が
好ましく用いられる。得られたD付加A成分は、例えば
水中にCMCなどの適当なバインダとともに懸濁させ、
その中に基礎構造部分を浸漬してD付加A成分を基礎構
造部分の表面に付着させ、引き上げて乾燥し、必要に応
じて焼成する。焼成温度は、あまり高くない方が好まし
く、通常は600℃をこえないようにする。このように
して、本発明の窒素酸化物還元触媒を製造することがで
きる。
On the surface of the basic structure portion of the obtained catalyst, D
The additional A component is supported and baked. In order to obtain the D-added A component by introducing the D component into the A component, the above ion exchange method is preferably used. The obtained D-added A component is suspended in, for example, water with a suitable binder such as CMC,
The basic structure portion is dipped therein to allow the D-added A component to adhere to the surface of the basic structure portion, pulled up, dried, and fired if necessary. The firing temperature is preferably not too high, and usually does not exceed 600 ° C. In this way, the nitrogen oxide reduction catalyst of the present invention can be manufactured.

【0011】本発明の窒素酸化物還元触媒を用い、空気
を含む被処理ガス中の窒素酸化物を除去するには、被処
理ガス中に含まれる窒素酸化物、いおう酸化物、触媒毒
となる金属酸化物や砒素化合物などの濃度に応じた適当
な処理条件を決め、実施することができる。一般的に
は、反応層の入口において、被処理ガス中に含まれてい
る窒素酸化物1モルに対しほぼ等モルのアンモニヤを添
加する。しかし、アンモニヤの添加量は、残存許容窒素
酸化物濃度や、他の含有成分、温度などを勘案し、自由
に決めることができる。反応温度は、通常、150〜6
00℃、好ましくは200〜500℃である。触媒容積
に対する空間速度は、通常、30,000hr-1をこえ
ない範囲、好ましくは1,000〜15,000hr-1
で接触せしめるとよい。装置の形状は、固定床式、充填
塔式、流動層式、移動床式などを採用することができ
る。
In order to remove nitrogen oxides in the gas to be treated containing air using the nitrogen oxide reduction catalyst of the present invention, nitrogen oxides, sulfur oxides and catalyst poisons contained in the gas to be treated become Appropriate processing conditions depending on the concentration of the metal oxide or arsenic compound can be determined and implemented. Generally, at the inlet of the reaction layer, approximately equimolar amount of ammonia is added to 1 mol of nitrogen oxide contained in the gas to be treated. However, the amount of ammonia added can be freely determined in consideration of the remaining allowable nitrogen oxide concentration, other contained components, temperature and the like. The reaction temperature is usually 150 to 6
The temperature is 00 ° C, preferably 200 to 500 ° C. Space velocity relative to the catalyst volume is generally in the range not exceeding 30,000Hr -1, preferably 1,000~15,000Hr -1
It is good to make contact with. The shape of the device may be a fixed bed type, a packed tower type, a fluidized bed type, a moving bed type, or the like.

【0012】[0012]

【実施例】本発明の窒素酸化物還元触媒を製造し、窒素
酸化物の除去実験をおこない、市販の窒素酸化物還元触
媒と比較したので説明する。
EXAMPLE A nitrogen oxide reduction catalyst of the present invention was produced, a nitrogen oxide removal experiment was conducted, and comparison was made with a commercially available nitrogen oxide reduction catalyst.

【0013】実施例 1 SiO2 /Al2 3 =14.5(モル基準)の合成モ
ルデナイトの10gを200mlの1N硝酸溶液に混合
し、95℃で12時間攪拌した後、ろ過し、蒸留水で洗
浄し、100℃で乾燥して、プロトン型のモルデナイト
を得た。得られたプロトン型モルデナイトの10gを、
1重量%シュウ酸水溶液のメタバナジン酸アンモニウム
1モル溶液200mlに混合し、95℃で12時間攪拌
した後、ろ過し、蒸留水で洗浄し、100℃で乾燥し
て、V2 5 を1重量%を担持するバナジウム型モルデ
ナイトを得た。得られたバナジウム型モルデナイトの1
00重量部に対してアナターゼ型のTiO2 を10重量
部加え、さらに、CMC系のバインダーを添加して十分
に混練した。この混練物を、押出機を用いてハニカム状
に成形して乾燥した後、350℃で3時間焼成し、本発
明の触媒に使用する基礎構造部分を得た。この基礎構造
部分は、全体としては端面が36mm×36mm、長さ
100mmの角柱状で、被処理ガスの通路として軸方向
に4mm×4mmの角孔が1mm厚さの壁面をはさみ、
全面に碁盤の目状に貫通していた。
Example 1 Synthesis of SiO 2 / Al 2 O 3 = 14.5 (on a molar basis) 10 g of mordenite was mixed with 200 ml of 1N nitric acid solution, stirred at 95 ° C. for 12 hours, filtered, and distilled water. And dried at 100 ° C. to obtain a proton-type mordenite. 10 g of the obtained proton-type mordenite,
1% by weight aqueous solution of oxalic acid in 200 ml of 1 mol solution of ammonium metavanadate, stirred for 12 hours at 95 ° C., filtered, washed with distilled water and dried at 100 ° C. to obtain 1 wt% of V 2 O 5. % Vanadium-type mordenite was obtained. 1 of the obtained vanadium-type mordenite
10 parts by weight of anatase-type TiO 2 was added to 100 parts by weight, and a CMC-based binder was further added, and the mixture was sufficiently kneaded. The kneaded product was molded into a honeycomb shape using an extruder, dried, and then calcined at 350 ° C. for 3 hours to obtain a basic structure portion used for the catalyst of the present invention. The basic structure portion is a prismatic column having an end surface of 36 mm × 36 mm and a length of 100 mm as a whole, and a square hole of 4 mm × 4 mm is axially inserted as a passage for a gas to be processed with a wall surface having a thickness of 1 mm,
It penetrated the entire surface in a grid pattern.

【0014】次に、上記と同様にして得たプロトン型モ
ルデナイト粉末5gを、CMC系のバインダーの水溶液
に混合した懸濁液に、前記の基礎構造部分を浸漬し、引
き上げて乾燥後、350℃で3時間焼成し、本発明の窒
素酸化物還元触媒を製造した。この触媒には、基礎構造
部分に対し約5重量%のプロトン型モルデナイトが担持
されていた。
Next, 5 g of the proton-type mordenite powder obtained in the same manner as described above is immersed in a suspension prepared by mixing it with an aqueous solution of a CMC-based binder. It was calcined for 3 hours to produce the nitrogen oxide reduction catalyst of the present invention. This catalyst had about 5% by weight of proton type mordenite supported on the basic structural portion.

【0015】製造した還元触媒を用い、窒素酸化物、二
酸化いおうなどを含む被処理ガスアンモニアを添加し
て、窒素酸化物の除去実験を行った。内壁が40mm×
40mm、長さ400mmの筒型の電気炉中に、この窒
素酸化物還元触媒を4個直列に並べ、触媒外にガスが流
れないようにセラミックウールを充填した。被処理ガス
の組成は、NO:1000ppm、NH3 :1000p
pm、SO2 :100ppm、As2 3 :10pp
m、H2 O:4%、O2 :10%、He:残、であっ
た。被処理ガスは触媒の入口側で予熱した。
A nitrogen oxide removal experiment was conducted by using the produced reduction catalyst and adding ammonia to be treated gas containing nitrogen oxides, sulfur dioxide and the like. The inner wall is 40mm x
In a cylindrical electric furnace having a length of 40 mm and a length of 400 mm, four of the nitrogen oxide reduction catalysts were arranged in series and filled with ceramic wool so that gas did not flow outside the catalyst. The composition of the gas to be processed is NO: 1000 ppm, NH 3 : 1000 p
pm, SO 2 : 100 ppm, As 2 O 3 : 10 pp
m, H 2 O: 4%, O 2 : 10%, He: balance. The gas to be treated was preheated on the inlet side of the catalyst.

【0016】窒素酸化物の除去実験は、処理温度を20
0〜500℃の範囲に変えて行った。触媒のかさ容積に
対する通過ガス量、すなわち空間速度は、3000(h
-1)にした。窒素酸化物の除去率は、ガス入口および
出口の窒素酸化物濃度をケミルミ式NOx 分析計を用い
て測定し、(1)式で求めた。測定は、実験の開始直後
と連続500時間処理後に行った。
The nitrogen oxide removal experiment was conducted at a treatment temperature of 20.
The temperature was changed to a range of 0 to 500 ° C. The amount of passing gas with respect to the bulk volume of the catalyst, that is, the space velocity is 3000 (h
r −1 ). The nitrogen oxide removal rate was determined by the equation (1) by measuring the nitrogen oxide concentration at the gas inlet and the gas outlet using a Chemilumi type NO x analyzer. The measurement was performed immediately after the start of the experiment and after 500 hours of continuous treatment.

【0017】 NOx 除去率(%) =1−{(出口NOx 濃度)/(入口NOx 濃度)}×100 (1) 測定結果を表1に示す。NO x removal rate (%) = 1 − {(outlet NO x concentration) / (inlet NO x concentration)} × 100 (1) Table 1 shows the measurement results.

【0018】比較例 1 市販されているV2 5 /TiO2 のモル比が10/9
0のバナジウム系ハニカム状窒素酸化物還元触媒を用
い、実施例1と同じ条件で、実施例1に用いたのと同じ
組成の被処理ガスを処理した。結果を表1に示す。
Comparative Example 1 A commercially available V 2 O 5 / TiO 2 molar ratio is 10/9.
Using the vanadium-based honeycomb-shaped nitrogen oxide reduction catalyst of 0, the gas to be treated having the same composition as used in Example 1 was treated under the same conditions as in Example 1. The results are shown in Table 1.

【0019】[0019]

【表1】 NOx 除去率(%) 処理温度 開始直後 500hr後 開始直後 500hr後 (℃) 実施例 1 実施例 2 200 98.3 95.0 88.6 84.2 300 100.0 97.2 95.0 94.4 400 100.0 97.0 94.5 93.7 500 95.2 93.1 89.2 87.1 実施例 3 実施例 4 200 82.0 81.5 89.4 87.0 300 89.8 88.0 98.5 97.0 400 99.3 99.3 100.0 100.0 500 92.5 92.0 100.0 97.5 比較例 1 200 52.4 40.3 300 54.9 44.8 400 56.6 44.6 500 25.6 25.1 実施例 2 実施例1と同様にして製造したバナジウム型モルデナイ
ト100重量部に、3号水ガラスと硫酸とを原料とし、
公知の方法で製造したSiO2 10重量部を加え、有機
系のバインダを添加して十分に混練した。この混練物
を、実施例1と同様の方法で成形し、得られた成形物を
120℃で乾燥して、実施例1におけるのと同じ形状の
基礎構造部分を得た。この基礎構造部分に、実施例1と
同じ方法で製造したプロトン型モルデナイト粉末を実施
例1と同様にどぶ漬けして付着させ、120℃で乾燥
後、350℃で3時間焼成し、本発明の窒素酸化物還元
触媒を製造した。この触媒には、基礎構造部分に対し約
5重量%のプロトン型モルデナイトが担持されていた。
この触媒を用い、実施例1と同じ条件と測定方法で窒素
酸化物除去実験を行った。結果を表1に示す。
Table 1 NO x removal rate (%) Treatment temperature Immediately after starting 500 hours After starting immediately after starting 500 hours (° C.) Example 1 Example 2 200 98.3 95.0 88.6 84.2 300 100.0 97.2 95.0 94.4 400 100.0 97.0 94.5 93.7 500 95.2 93.1 89.2 87.1 Example 3 Example 4 200 82.0 81.5 89.4 87. 0 300 89.8 88.0 98.5 97.0 400 99.3 99.3 100.0 100.0 500 92.5 92.0 100.0 97.5 Comparative Example 1 200 52.4 40.3 300 54.9 44.8 400 56.6 44.6 500 25.6 25.1 Example 2 No. 3 water glass and sulfuric acid were added to 100 parts by weight of vanadium-type mordenite produced in the same manner as in Example 1. age ,
10 parts by weight of SiO 2 produced by a known method was added, an organic binder was added, and the mixture was sufficiently kneaded. This kneaded product was molded in the same manner as in Example 1, and the obtained molded product was dried at 120 ° C. to obtain a basic structure part having the same shape as in Example 1. Proton-type mordenite powder produced by the same method as in Example 1 was dipped in the same manner as in Example 1 to adhere to the basic structure portion, dried at 120 ° C., and then calcined at 350 ° C. for 3 hours to obtain the present invention. A nitrogen oxide reduction catalyst was produced. This catalyst had about 5% by weight of proton type mordenite supported on the basic structural portion.
Using this catalyst, a nitrogen oxide removal experiment was conducted under the same conditions and measurement methods as in Example 1. The results are shown in Table 1.

【0020】実施例 3 実施例1と同様にして製造したプロトン型モルデナイト
100重量部に、75重量部のパラタングステン酸アン
モニウム5重量%水溶液を加えて十分に混練した。さら
に、プロトン型モルデナイト100重量部に対してアナ
ターゼ型のTiO2 を20重量部を加え、有機系のバイ
ンダーを添加して十分に混練した。この混練物を、実施
例1と同様の方法で成形し、焼成して実施例1における
のと同じ形状の基礎構造部分を得た。この基礎構造部分
には、約3重量%のWO3 が担持されていた。この基礎
構造部分に、実施例1と同じ方法で製造したプロトン型
モルデナイト粉末を実施例1と同様にどぶ漬けして付着
させ、120℃で乾燥後、350℃で3時間焼成し、本
発明の窒素酸化物還元触媒を製造した。この触媒には、
基礎構造部分に対し約5重量%のプロトン型モルデナイ
トが担持されていた。この触媒を用い、実施例1と同じ
条件と測定方法で窒素酸化物除去実験を行った。結果を
表1に示す。
Example 3 To 100 parts by weight of the proton-type mordenite produced in the same manner as in Example 1, 75 parts by weight of a 5% by weight aqueous solution of ammonium paratungstate was added and kneaded sufficiently. Further, 20 parts by weight of anatase-type TiO 2 was added to 100 parts by weight of proton-type mordenite, and an organic binder was added and kneaded sufficiently. This kneaded product was molded by the same method as in Example 1 and fired to obtain a basic structure portion having the same shape as in Example 1. About 3% by weight of WO 3 was supported on this substructure. Proton-type mordenite powder produced by the same method as in Example 1 was dipped in the same manner as in Example 1 to adhere to the basic structure portion, dried at 120 ° C., and then calcined at 350 ° C. for 3 hours to obtain the present invention. A nitrogen oxide reduction catalyst was produced. This catalyst has
About 5% by weight of proton-type mordenite was supported on the basic structural portion. Using this catalyst, a nitrogen oxide removal experiment was conducted under the same conditions and measurement methods as in Example 1. The results are shown in Table 1.

【0021】実施例 4 実施例1と同様にして製造したプロトン型モルデナイト
100重量部を、2.4重量%硝酸亜鉛(Zn(N
3 2 ・6H2 O)水溶液2000mlのに懸濁さ
せ、95℃、12時間保持してイオン交換した。固形物
をろ別し、350℃で3時間焼成して、2.19重量%
のZnOを担持するZn型モルデナイトを得た。得られ
たZn型モルデナイトと水、バインダと混合し、実施例
1で製造したのと同じ基礎構造部分をどぶ漬けしてZn
型モルデナイトを付着させ、乾燥後、350℃で3時間
焼成し、本発明の窒素酸化物還元触媒を製造した。この
触媒には、基礎構造部分に対し約5重量%のZn型モル
デナイトが担持されていた。この触媒を用い、実施例1
と同じ条件と測定方法で窒素酸化物除去実験を行った。
結果を表1に示す。
Example 4 100 parts by weight of the proton-type mordenite produced in the same manner as in Example 1 was added to 2.4% by weight of zinc nitrate (Zn (N
O 3) 2 · 6H 2 O ) are suspended in an aqueous solution 2000 ml, 95 ° C., and ion-exchanged and held for 12 hours. The solid matter is filtered off and calcined at 350 ° C. for 3 hours to give 2.19% by weight.
Zn-type mordenite supporting ZnO was obtained. The obtained Zn-type mordenite was mixed with water and a binder, and the same basic structure portion as that produced in Example 1 was dipped in Zn.
Form mordenite was adhered, dried, and calcined at 350 ° C. for 3 hours to produce the nitrogen oxide reduction catalyst of the present invention. This catalyst supported about 5% by weight of Zn-type mordenite with respect to the basic structural portion. Using this catalyst, Example 1
A nitrogen oxide removal experiment was conducted under the same conditions and measurement methods as described above.
The results are shown in Table 1.

【0022】実施例 5 次に、実施例1、実施例4および比較例1で製造した各
触媒を用いて二酸化いおうの酸化能を測定し、比較し
た。被処理ガスには、NH3 が添加されていない他は同
じ組成の被処理ガスを用いた。触媒の容積に対する被処
理ガスの空間速度を3000hr-1とし、200〜50
0℃の範囲で被処理ガスを接触させ、触媒層の入口と出
口のSO2 濃度を測定し、その差からSO2 の転化率を
算出した。その結果を表2に示す。
Example 5 Next, the oxidizing ability of sulfur dioxide was measured using the catalysts produced in Example 1, Example 4 and Comparative Example 1 and compared. As the gas to be processed, a gas to be processed having the same composition was used except that NH 3 was not added. The space velocity of the gas to be treated with respect to the volume of the catalyst is 3000 hr −1, and 200 to 50
The gas to be treated was brought into contact in the range of 0 ° C., the SO 2 concentration at the inlet and the outlet of the catalyst layer was measured, and the conversion rate of SO 2 was calculated from the difference. The results are shown in Table 2.

【0023】[0023]

【表2】 SO2 転化率(%) 処理温度/触媒 実施例1 実施例4 比較例1 (℃) 200 0 0 15 300 5 3 21 400 5 7 25 500 10 7 45 以上の実験結果から、本発明の窒素酸化物還元触媒は、
類似する市販の窒素酸化物還元触媒に比較し、窒素酸化
物除去率が極めて高く、しかも、高温での性能にすぐれ
ていることが判る。高温性能が高いことは、アンモニア
の酸化が防止された効果であると解釈される。また、二
酸化いおうの転化率は既存の触媒に比較して低く、高温
においてもさほど高くないので、高温領域でも有利に使
用することができることが判る。
Table 2 SO 2 conversion (%) Treatment temperature / catalyst Example 1 Example 4 Comparative example 1 (° C) 200 0 0 15 300 300 5 3 21 400 400 5 7 25 500 500 7 4 From the above experimental results, The nitrogen oxide reduction catalyst of the invention is
It can be seen that the nitrogen oxide removal rate is extremely high and the performance at high temperatures is excellent as compared with similar commercially available nitrogen oxide reduction catalysts. The high temperature performance is interpreted as the effect of preventing the oxidation of ammonia. Further, since the conversion rate of sulfur dioxide is lower than that of the existing catalyst and is not so high even at high temperature, it can be seen that it can be advantageously used even in a high temperature region.

【0024】[0024]

【発明の効果】本発明の窒素酸化物還元触媒は、主たる
触媒活性成分(C成分)が高分散されているので、高価
なC成分の使用量が少なくて済み、経済的である。ま
た、C成分が低活性成分で適度に覆われ、モルデナイト
(A成分)との相乗効果によって、二酸化いおうの酸化
が抑制され、触媒毒による触媒の劣化も防止される。従
って、硫酸水素アンモニウムや硫酸アンモニウムの生成
が減少し、これらの化合物によって発生していたトラブ
ルが解消され、アンモニアの使用量が減少する。高温で
のアンモニアの酸化が抑制されるので、触媒の使用温度
範囲が拡大する。
INDUSTRIAL APPLICABILITY The nitrogen oxide reduction catalyst of the present invention is economical because the main catalytically active component (C component) is highly dispersed and the amount of expensive C component used is small. Further, the C component is appropriately covered with the low active component, and the synergistic effect with the mordenite (A component) suppresses the oxidation of sulfur dioxide and also prevents the catalyst from being deteriorated due to the catalyst poison. Therefore, the production of ammonium hydrogensulfate or ammonium sulfate is reduced, the troubles caused by these compounds are eliminated, and the amount of ammonia used is reduced. Since the oxidation of ammonia at high temperature is suppressed, the operating temperature range of the catalyst is expanded.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】混合された状態にあるAl2 3 に対する
SiO2 のモル比が少なくとも10を超えているモルデ
ナイト(A成分)10〜90重量部と、 TiO2 、シリカ、カオリナイト、およびけいそう土の
中から選ばれた一種以上の化合物(B成分)10〜90
重量部、および前記のB成分の部分におけるよりも、A
成分の部分に多量に存在せしめた、バナジウム、タング
ステン、プロトン、鉄、ニッケル、およびクロムの中か
ら選ばれた一種以上の元素(C成分)1〜10重量部、
からなる触媒の基礎構造部分の表面に、 プロトン、亜鉛、バリウムおよびカルシウムの中から選
ばれた一種以上の元素(D成分)をイオン交換で導入し
たA成分を担持している、ことを特徴とする、窒素酸化
物還元触媒。
1. A mordenite (component (A)) 10 to 90 parts by weight of SiO 2 molar ratio is greater than at least 10 with respect to Al 2 O 3 in the mixed state, TiO 2, silica, kaolinite, and silicic Sodium, one or more compounds (B component) selected from 10 to 90
Than in the parts by weight and in the portion of component B above
1 to 10 parts by weight of one or more elements (component C) selected from vanadium, tungsten, protons, iron, nickel, and chromium, which are made to exist in large amounts in the component part.
On the surface of the basic structure part of the catalyst consisting of, a component A into which one or more elements (D component) selected from protons, zinc, barium and calcium are introduced by ion exchange is carried. Nitrogen oxide reduction catalyst.
【請求項2】前記のC成分がバナジウムであることを特
徴とする、請求項1に記載の窒素酸化物還元触媒。
2. The nitrogen oxide reduction catalyst according to claim 1, wherein the C component is vanadium.
【請求項3】前記のC成分をA成分に担持させ、B成分
と混合して成形し、得られた成形物を乾燥または焼成し
て触媒の基礎構造部分を得た後、得られた触媒の基礎構
造部分の表面に、D成分を導入したA成分を担持させ、
焼成することを特徴とする、窒素酸化物還元触媒製造方
法。
3. The catalyst obtained by carrying the above-mentioned C component on the A component, mixing with the B component and molding, and drying or calcining the obtained molded product to obtain a basic structure portion of the catalyst. On the surface of the basic structure part of the
A method for producing a nitrogen oxide reduction catalyst, which comprises calcination.
【請求項4】前記のC成分をA成分に担持させ、および
/またはD成分をA成分に導入する方法に、イオン交換
法を用いることを特徴とする、請求項3に記載の窒素酸
化物還元触媒製造方法。
4. The nitrogen oxide according to claim 3, wherein an ion exchange method is used for the method of loading the C component on the A component and / or introducing the D component on the A component. Reduction catalyst manufacturing method.
【請求項5】請求項1に記載の触媒に、アンモニヤを添
加した窒素酸化物被処理ガスを150〜600℃で接触
せしめることを特徴とする、窒素酸化物除去方法。
5. A method for removing nitrogen oxides, characterized in that the catalyst according to claim 1 is brought into contact with a nitrogen oxide-treated gas to which ammonia has been added at 150 to 600 ° C.
JP5144822A 1993-06-16 1993-06-16 Nitrogen oxide reduction catalyst, its production and method for removing nitrogen oxide Pending JPH0716470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5144822A JPH0716470A (en) 1993-06-16 1993-06-16 Nitrogen oxide reduction catalyst, its production and method for removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5144822A JPH0716470A (en) 1993-06-16 1993-06-16 Nitrogen oxide reduction catalyst, its production and method for removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH0716470A true JPH0716470A (en) 1995-01-20

Family

ID=15371265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5144822A Pending JPH0716470A (en) 1993-06-16 1993-06-16 Nitrogen oxide reduction catalyst, its production and method for removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH0716470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107754757A (en) * 2017-10-16 2018-03-06 北京工业大学 A kind of nanometer Fe3O4Composite of modified diatomite and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107754757A (en) * 2017-10-16 2018-03-06 北京工业大学 A kind of nanometer Fe3O4Composite of modified diatomite and preparation method thereof
CN107754757B (en) * 2017-10-16 2020-08-18 北京工业大学 Nano Fe3O4Composite material for modifying diatomite and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2151229C (en) Ammonia decomposition catalysts
CA2675129A1 (en) High temperature ammonia scr catalyst and method of using the catalyst
JP2009538735A (en) Ammonia SCR catalyst and method of using the catalyst
CZ20011396A3 (en) Reduction process of nitrogen oxides and catalyst for use in this process
US11300029B2 (en) SCR catalyst device containing vanadium oxide and molecular sieve containing iron
GB2026336A (en) Plate-shaped denitrating catalysts
KR101308496B1 (en) Methods of manufacturing a honeycomb catalyst
US5037792A (en) Catalyst for the selective reduction of nitrogen oxides and process for the preparation of the catalyst
US11229901B2 (en) SCR catalyst device containing vanadium oxide and molecular sieve containing iron
US9527071B2 (en) SCR catalyst and method of preparation thereof
JPH0242536B2 (en)
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JPS6257382B2 (en)
JPS62298451A (en) Selective catalytic reduction catalyst
JP4798908B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JPS5935027A (en) Preparation of calcined titanium oxide and catalyst
JPH0716470A (en) Nitrogen oxide reduction catalyst, its production and method for removing nitrogen oxide
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JPS6372342A (en) Catalyst for removing nitrogen oxide
JPH01111443A (en) Nitrogen oxide removing catalyst
JPS59213442A (en) Preparation of denitration catalyst
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JPH0596165A (en) Denitrating catalyst inhibiting oxyidation of sulfur dioxide and its production
JPS6013750B2 (en) Catalyst for removing nitrogen oxides and its manufacturing method