JPH07164508A - Drive transmission device of twin-screw extruder - Google Patents

Drive transmission device of twin-screw extruder

Info

Publication number
JPH07164508A
JPH07164508A JP5342583A JP34258393A JPH07164508A JP H07164508 A JPH07164508 A JP H07164508A JP 5342583 A JP5342583 A JP 5342583A JP 34258393 A JP34258393 A JP 34258393A JP H07164508 A JPH07164508 A JP H07164508A
Authority
JP
Japan
Prior art keywords
gear
helical
transmission device
twin
drive transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5342583A
Other languages
Japanese (ja)
Inventor
Tatsuo Yagi
辰夫 八木
Koji Minagawa
耕児 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5342583A priority Critical patent/JPH07164508A/en
Publication of JPH07164508A publication Critical patent/JPH07164508A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/252Drive or actuation means; Transmission means; Screw supporting means
    • B29C48/2522Shaft or screw supports, e.g. bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/252Drive or actuation means; Transmission means; Screw supporting means
    • B29C48/2526Direct drives or gear boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Transmission (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To enable adjustment at a proper time so as to equally transmit driving force to respective systems without requiring labor disassembling or re-assembling a drive transmission device in order to adjust a phase. CONSTITUTION:In the drive transmission device of a twin-screw extruder distributing driving force by gear trains to transmit the same to the screws of the twin-screw type extruder, the gear trains are constituted of a helical gear trains and at least one helical gear 3 of one of the gear trains are provided so as to be movable in an axial direction by a helical gear spline 8 and the fine phase adjusting means 10 of the helical gears 3 is provided. Further, the twist directions (a), (b) of the helical gears 3 and the helical gear spline 8 are mutually reverse and the helical gears 3 are moved on the outer peripheral surface of a shaft 2 by the fine phase adjusting means 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラスチック等の成形を
する二軸押出機に利用される二軸押出機の駆動伝達装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive transmission device for a twin-screw extruder used in a twin-screw extruder for molding plastics and the like.

【0002】[0002]

【従来の技術】第一・第二スクリューと一体となって回
転する第一・第二出力軸に駆動力を伝達する二軸押出機
の駆動伝達装置は、従来より高トルクが要求されてお
り、それを実現する為に、モーターのパワーアップと、
其に伴い、第一・第二出力軸の各々に嵌入されている第
一・第二出力歯車等の歯車噛み合い部分で発生するラジ
アル力の増加に対して軸受を大きくすることや、歯車の
歯幅を拡げ歯当たりを確保すること等が望まれている。
しかし、二軸の軸間距離が、要求される高トルクに対し
て極度に狭い為、軸受を大きくしたり、歯車の歯幅を拡
げたりするのに障害となって、高トルクの駆動力の伝達
を難しくしていた。
2. Description of the Related Art A drive transmission device for a twin-screw extruder that transmits a driving force to first and second output shafts that rotate together with first and second screws is required to have higher torque than before. In order to realize it, power up the motor and
Along with that, increasing the size of the bearing and increasing the gear teeth against the increase in the radial force generated at the gear meshing parts of the first and second output gears, etc., fitted in the first and second output shafts, respectively. It is desired to widen the width and secure tooth contact.
However, since the distance between the two shafts is extremely narrow with respect to the required high torque, it becomes an obstacle to enlarging the bearing and widening the tooth width of the gear, and the driving force of high torque cannot be increased. It was difficult to communicate.

【0003】上記問題を解決するために、特公昭62−
12415号に開示される駆動伝達装置46が知られて
いる。この従来の二軸押出機の駆動伝達装置46につい
て、図7及び図8を参照しつつ説明する。図7は断面図
であり、図8は図7の歯車配置の側面図である。
In order to solve the above problems, Japanese Patent Publication No. 62-
The drive transmission device 46 disclosed in No. 12415 is known. The drive transmission device 46 of the conventional twin-screw extruder will be described with reference to FIGS. 7 and 8. 7 is a sectional view and FIG. 8 is a side view of the gear arrangement of FIG.

【0004】従来の二軸押出機の駆動伝達装置46は、
第一・第二スクリュー41・42と連結されている第一
・第二出力軸31・32と、該第一・第二出力軸にスラ
スト方向にずらされて嵌入されている第一・第二出力歯
車39・40と、該第二出力歯車40に上下より挟むよ
うにして噛合係合している伝達歯車33・34と、該伝
達歯車33・34がそれぞれ一端に嵌入されている上・
下伝達軸35・36と、該上・下伝達軸35・36の他
端にそれぞれ嵌入され前記出力歯車39を上下より挟む
ようにして噛合係合している伝達歯車37・38とを備
えてケーシング43に収められている。そして、駆動源
からの駆動軸30が直接出力歯車40に連結されてい
る。尚、前記出力軸32は出力軸31とのねじりこわさ
の差による位相のずれを補正するように、トーションバ
ーが使用されている。
The drive transmission device 46 of the conventional twin-screw extruder is
First and second output shafts 31 and 32 connected to the first and second screws 41 and 42, and first and second fitted in the first and second output shafts while being offset in the thrust direction. The output gears 39 and 40, the transmission gears 33 and 34 meshingly engaged with the second output gear 40 from above and below, and the transmission gears 33 and 34 are fitted at one ends, respectively.
The casing 43 includes lower transmission shafts 35 and 36, and transmission gears 37 and 38 that are fitted into the other ends of the upper and lower transmission shafts 35 and 36, respectively, and mesh with each other so as to sandwich the output gear 39 from above and below. It is stored in. The drive shaft 30 from the drive source is directly connected to the output gear 40. A torsion bar is used for the output shaft 32 so as to correct a phase shift due to a difference in torsional rigidity between the output shaft 32 and the output shaft 31.

【0005】この時、上・下伝達軸35・36とその両
端の伝達歯車33・37・34・38は、スプラインに
より連結され、ラジアル方向に固定されている。この両
端のスプラインの歯の数は、歯車の位相合わせができる
ように、1つだけ異なったものとなっている。そして、
各伝達歯車33・37・34・38の両脇には軸と共に
伝達歯車をラジアル方向に回転自在に支持する軸受が設
けられている。例えば伝達歯車37では、44・45で
ある。
At this time, the upper and lower transmission shafts 35, 36 and the transmission gears 33, 37, 34, 38 at both ends thereof are connected by a spline and fixed in the radial direction. The number of teeth of the splines at both ends is different by one so that the phases of the gears can be matched. And
Bearings are provided on both sides of each of the transmission gears 33, 37, 34 and 38 to support the transmission gear together with the shaft so as to be rotatable in the radial direction. For example, the transmission gear 37 has 44 and 45.

【0006】この様な構造の従来の二軸押出機の駆動伝
達装置46は、駆動軸30よりの駆動力を出力歯車40
を通して1/2分配し、第二出力軸32に伝えて第二ス
クリューを回転させると共に、更に、伝達歯車33・3
4により駆動力を上下1/4に分配し、上・下伝達軸3
5・36を通して伝達歯車37・38より第一出力歯車
39を上下より挟むようにして、第一出力軸31に伝え
第一スクリューを回転させている。この様に、第一出力
歯車39を上下より挟むようにすると、第一出力歯車の
歯車噛み合い部分で発生するラジアル荷重を相殺するの
で高トルクの駆動力の伝達が可能になる。
The drive transmission device 46 of the conventional twin-screw extruder having such a structure outputs the driving force from the drive shaft 30 to the output gear 40.
Through 1/2 and transmit to the second output shaft 32 to rotate the second screw.
The driving force is distributed to the upper and lower quarters by 4 and the upper and lower transmission shafts 3
The first output gear 39 is sandwiched from above and below by the transmission gears 37 and 38 through 5.36 and is transmitted to the first output shaft 31 to rotate the first screw. In this way, by sandwiching the first output gear 39 from above and below, the radial load generated at the gear meshing portion of the first output gear is canceled, so that high torque driving force can be transmitted.

【0007】ところで、上述の様にして、第一出力歯車
の歯車噛み合い部分で発生するラジアル荷重を相殺する
には、第一出力歯車の歯車噛み合い部分での伝達歯車3
7・38の均等な噛み合いと、伝達歯車33・34によ
る上・下均等な駆動力分配が必要となる。その為、各歯
車の噛み合わせ部分で正確な位相合わせが行わなければ
ならない。その様な位相合わせは伝達歯車33・34・
37・38を上・下伝達軸35・36に組み込み、上・
下伝達軸35・36のそれぞれの一方の伝達歯車の噛み
合いを基準にした場合の他方の伝達歯車の位相のずれを
測定し、この位相のずれが吸収される位置に他方の伝達
歯車を再度組み込むことにより行われる。その為に、上
・下伝達軸35・36の両端のスプラインの歯の数は、
それぞれ1つだけ異なったものとなっているのである。
By the way, as described above, in order to cancel the radial load generated at the gear meshing portion of the first output gear, the transmission gear 3 at the gear meshing portion of the first output gear is canceled.
It is necessary that the gears 7 and 38 are evenly meshed with each other and that the transmission gears 33 and 34 are used to distribute the driving force evenly. Therefore, accurate phase matching must be performed at the meshing parts of each gear. Such phase matching is achieved by the transmission gears 33, 34,
37 and 38 are incorporated into the upper and lower transmission shafts 35 and 36,
The phase shift of the other transmission gear is measured with reference to the meshing of one transmission gear of each of the lower transmission shafts 35 and 36, and the other transmission gear is installed again at a position where this phase shift is absorbed. It is done by Therefore, the number of spline teeth on both ends of the upper and lower transmission shafts 35 and 36 is
Only one is different for each.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、この様
な位相合わせは、二軸押出機の駆動伝達装置組み立て時
に、スプラインと伝達歯車の抜き差しがを必要とされ、
一々伝達歯車を取り出して分解し、再組み立てしなけれ
ばならず大変手間がかかるという問題点を有していた。
However, such phase matching requires insertion / removal of the spline and the transmission gear when assembling the drive transmission device of the twin-screw extruder.
The transmission gear has to be taken out, disassembled, and reassembled, which is very troublesome.

【0009】本発明の二軸押出機の駆動伝達装置は上記
問題に鑑みなされたもので、その目的とするところは、
位相調整の為に駆動伝達装置を分解したり、再組み立て
したり等の手間を要しないで、各系列に等しく駆動力が
伝達されるように適時調整することが可能な二軸押出機
の駆動伝達装置を提供しようとするものである。
The drive transmission device for a twin-screw extruder according to the present invention has been made in view of the above problems.
Drive of a twin-screw extruder that can be adjusted in a timely manner so that the driving force is equally transmitted to each series without the need for disassembling or reassembling the drive transmission device for phase adjustment. It is intended to provide a transmission device.

【0010】[0010]

【課題を解決するための手段】上記目的を解決するため
に、本発明の二軸押出機の駆動伝達装置は、二軸押出機
のスクリュに連結される第一出力軸と第二出力軸とにそ
れぞれ駆動力を伝達する歯車列をハスバ歯車列とし、前
記歯車列の一方における少なくとも1個のハスバ歯車を
ハスバスプラインにより軸に方向に移動可能に設けると
共に該ハスバ歯車の微小位相調整手段を設けているもの
である。
In order to solve the above-mentioned problems, a drive transmission device for a twin-screw extruder according to the present invention comprises a first output shaft and a second output shaft connected to a screw of the twin-screw extruder. A gear train for transmitting the driving force to each of the gear trains is a helical gear train, and at least one helical gear in one of the gear trains is movably provided in the axial direction by a helical spline and fine phase adjusting means of the helical gear is provided. It is what

【0011】又、前記ハスバ歯車と前記ハスバスプライ
ンのねじれ方向が互いに逆であり、前記ハスバ歯車は前
記微小位相調整手段によって軸の外周面上を移動するも
のである。
Further, the helical directions of the helical gear and the helical spline are opposite to each other, and the helical gear moves on the outer peripheral surface of the shaft by the fine phase adjusting means.

【0012】[0012]

【作用】上記手段によると、微小位相調整手段によって
ハスバ歯車がハスバスプラインの捩じれ方向に沿って軸
の外周方向に移動しながら軸方向に移動する。この時の
ハスバ歯車の軸外周面上の移動は、ハスバ歯車とハスバ
スプラインの捩じれの方向が逆であるのでハスバ歯車自
体の捩じれ方向と平行とならない方向への移動であり、
この移動は歯車噛み合い部分での噛み合いのための位相
調整を微小の移動量で確保することを可能にする。
According to the above means, the minute phase adjusting means moves the helical gear in the axial direction while moving in the outer peripheral direction of the shaft along the twisting direction of the helical spline. At this time, the movement on the shaft outer peripheral surface of the helical gear is movement in a direction that is not parallel to the torsional direction of the helical gear itself because the helical directions of the helical gear and the helical spline are opposite.
This movement makes it possible to secure the phase adjustment for meshing at the gear meshing portion with a minute amount of movement.

【0013】[0013]

【実施例】次に、本発明の実施例について図面を参照し
つつ説明する。図1は、本発明実施の二軸押出機の駆動
伝達装置におけるハスバ歯車の微小位相調整手段10を
示す断面図であり、図2は図1の作用図であり、図3は
本発明実施の二軸押出機の駆動伝達装置における他のハ
スバ歯車の微小位相調整手段を示す断面図であり、図4
乃至図6は本発明の一実施例であるとことろの二軸押出
機の駆動伝達装置を示す全体図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a minute phase adjusting means 10 of a helical gear in a drive transmission device for a twin-screw extruder according to the present invention, FIG. 2 is an operation diagram of FIG. 1, and FIG. FIG. 4 is a cross-sectional view showing another fine phase adjusting means of the helical gear in the drive transmission device of the twin-screw extruder.
FIG. 6 is an overall view showing a drive transmission device of a twin-screw extruder according to an embodiment of the present invention.

【0014】図1に基づいて、本発明実施の二軸押出機
の駆動伝達装置におけるハスバ歯車の微小位相調整手段
10の構造を説明する。軸2の外周面上を摺動可能にハ
スバスプライン8によって嵌入されたハスバ歯車3と、
軸2を該ハスバ歯車3と共にラジアル方向に回転自在に
支持する軸受4・5と、前記ハスバ歯車3のスラスト力
負荷側でハスバ歯車3の位置決めをする調整ネジ6と止
めネジ7と、前記ハスバ歯車3を反負荷側から軸受5を
通して間接的に押圧するバネ54とで構成してケーシン
グ1に収める。ここで、前記ハスバ歯車3と前記ハスバ
スプラインの8のねじれ方向は、図1中a及びbで示す
ように、互いに逆であることが肝要である。尚、軸2の
左端側外周には調整ネジ6のネジ部6aと係合するネジ
部2aが設けられており、頂点には止めネジ7と係合す
る穴2bが設けられている。又、ケーシング1には、外
部からの調節ネジ6による位相調節を可能にするための
取り外しのできるキャップ9を取り付けておく。
Referring to FIG. 1, the structure of the minute phase adjusting means 10 of the helical gear in the drive transmission device of the twin screw extruder according to the present invention will be described. A helical gear 3 slidably fitted on the outer peripheral surface of the shaft 2 by a helical spline 8;
Bearings 4 and 5 that rotatably support the shaft 2 together with the helical gear 3 in the radial direction, an adjusting screw 6 and a set screw 7 that position the helical gear 3 on the thrust load side of the helical gear 3, and the helical screw. The gear 3 is configured by a spring 54 that indirectly presses the gear 3 from the anti-load side through the bearing 5, and is housed in the casing 1. Here, it is important that the helical directions of the helical gear 3 and the helical spline 8 are opposite to each other, as indicated by a and b in FIG. A screw portion 2a that engages with the screw portion 6a of the adjusting screw 6 is provided on the outer periphery on the left end side of the shaft 2, and a hole 2b that engages with the set screw 7 is provided at the apex. Further, a detachable cap 9 is attached to the casing 1 in order to enable the phase adjustment by the adjustment screw 6 from the outside.

【0015】上記のように構成されたハスバ歯車の微小
位相調整手段10の位相の調整の仕方を説明する。駆動
伝達装置が組み立てられた後に歯車の位相調整をすると
きは、ケースシング1のキャップ9を取り外し、止めネ
ジ7を緩めて調整ネジ6を軸2のネジ部2aに沿って緩
める方向に回転させる。すると、ハスバ歯車3はバネ5
4の押圧によって、スラスト方向(図中矢印)に移動す
る。この時、ハスバ歯車3はそれ自体の捩じれ方向aと
は逆方向のハスバスプライン8の捩じれ方向bに沿って
軸の外周方向に移動しながら軸方向に移動して歯車噛み
合い部分でのハスバ歯車自体の位相を変化させる。それ
により歯車の位相調節を行い、位置を決めると止めネジ
7により調節ネジ6を軸2に固定して、再び、キャップ
9を閉めて位相調整を完了する。尚、ハスバスプライン
8の噛み合い部分で発生するスラスト力は調整ネジ6を
止めネジ7によって軸2に固定することにより打ち消し
合い軸受4にはかからない。
A method of adjusting the phase of the minute phase adjusting means 10 of the helical gear having the above structure will be described. When the phase of the gear is adjusted after the drive transmission device is assembled, the cap 9 of the casing 1 is removed, the set screw 7 is loosened, and the adjustment screw 6 is rotated in the direction of loosening along the screw portion 2a of the shaft 2. . Then, the helical gear 3 has the spring 5
Pressing 4 moves in the thrust direction (arrow in the figure). At this time, the helical gear 3 moves in the axial direction while moving in the outer peripheral direction of the shaft along the torsional direction b of the helical spline 8 which is opposite to the helical direction a of the helical gear 3 itself, and the helical gear itself at the gear meshing portion. Change the phase of. Thereby, the phase of the gear is adjusted, and when the position is determined, the adjusting screw 6 is fixed to the shaft 2 by the set screw 7, and the cap 9 is closed again to complete the phase adjustment. It should be noted that the thrust force generated at the meshing portion of the hasb spline 8 is not applied to the canceling bearing 4 by fixing the adjusting screw 6 to the shaft 2 with the set screw 7.

【0016】図2により前記位相調整による作用をハス
バ歯車の噛み合いの観点から説明する。図2中の四辺形
はハスバ歯車3及び噛み合い相手のハスバ歯車の歯山を
示しており、斜線が噛み合い相手の歯山である。一点鎖
線は軸2の軸中心を示している。図2(a)は、互いに
ハスバ歯車の溝に歯山が入り噛み合っているところであ
る。組立後に図2(b)二点鎖線に示すように、互いの
ハスバ歯車の位相がかなりずれ噛み合わなくなった場合
に、止めネジ7を緩めて調整ねじ6によって位相を調整
すると、ハスバ歯車3はハスバスプライン8の捩じれ方
向bに沿って軸の外周方向に移動しながら軸方向に移動
する。この時、ハスバスプライン8の捩じれ方向bとハ
スバ歯車3の捩じれ方向aとは逆であるので、歯車の噛
み合いを微小の移動量で確保する。例えば、この場合に
スプラインが軸2の軸中心と平行であると、図2(c)
に示すように、ハスバ歯車3は軸2の軸方向に平行な方
向にしか移動ができず、歯車の噛み合いを確保するため
には軸方向の移動量が増大し、装置全体として大きくな
ってしまう。又、ハスバスプラインの捩じれ方向がハス
バ歯車3の捩じれ方向と同一である場合には、更に軸方
向の移動量が増大して装置全体として大きくなってしま
う。それ故、スプラインはハスバスプライン8で、しか
もその捩じれ方向bはハスバ歯車3の捩じれ方向aと逆
にすることが肝要となる。
The operation of the phase adjustment will be described with reference to FIG. 2 from the viewpoint of meshing of the helical gears. The quadrangle in FIG. 2 shows the tooth flanks of the helical gear 3 and the helical gear of the mating partner, and the diagonal lines are the tooth flanks of the mating partner. The alternate long and short dash line indicates the axis center of the axis 2. FIG. 2A shows where the tooth crests are engaged with each other in the grooves of the helical gears. After the assembly, as shown by the chain double-dashed line in Fig. 2 (b), when the phases of the helical gears are considerably out of mesh with each other, the set screw 7 is loosened and the phase is adjusted by the adjusting screw 6. It moves in the axial direction while moving in the outer peripheral direction of the shaft along the twisting direction b of the spline 8. At this time, since the twisting direction b of the hasb spline 8 and the twisting direction a of the helical gear 3 are opposite to each other, the meshing of the gears is ensured with a minute movement amount. For example, in this case, if the spline is parallel to the axis center of the shaft 2, then FIG.
As shown in FIG. 5, the helical gear 3 can move only in a direction parallel to the axial direction of the shaft 2, and the axial movement amount increases in order to ensure the meshing of the gears, and the entire device becomes large. . Further, when the twisting direction of the hasb spline is the same as the twisting direction of the helical gear 3, the movement amount in the axial direction is further increased, and the entire device is increased. Therefore, it is important that the spline is the hasb spline 8 and that the twisting direction b thereof is opposite to the twisting direction a of the helical gear 3.

【0017】ハスバ歯車の微小位相調整手段としては、
上記に記述したものの他に、図3で示すように、キャッ
プ9の外周とケース1内の内周にネジ部9aを設けて、
キャップ9全体をケース1内をネジ9aによりスライド
する大きなネジとして、軸受4を押圧することにより間
接的にハスバ歯車3を微小移動させる手段もある。
As the minute phase adjusting means of the helical gear,
In addition to those described above, as shown in FIG. 3, a screw portion 9a is provided on the outer circumference of the cap 9 and the inner circumference of the case 1,
There is also a means to indirectly move the helical gear 3 slightly by pressing the bearing 4 by using the entire cap 9 as a large screw that slides in the case 1 with the screw 9a.

【0018】上記のようなハスバ歯車の微小位相調整手
段10を、図7に示されている従来の二軸押出機の駆動
伝達装置46おける伝達歯車33・34の何方か一方
に、又は伝達歯車37・38の何方か一方に設けると、
位相調整の為に駆動伝達装置を分解したり、再組み立て
したり等の手間を要しないで位相合わせができ、各系列
に等しく駆動力が伝達されるように適時調整することが
可能となる。そして、両スクリューの十分な同期が得ら
れる高トルクの駆動力の伝達が可能な二軸押出機の駆動
伝達装置が提供できる。加えて、二軸押出機の駆動伝達
装置の停止時にもバネ54の付勢力が働いているので、
ハスバ歯車3と軸受4・5のガタを規制できる。
The minute phase adjusting means 10 for the helical gear as described above is provided to either one of the transmission gears 33 and 34 in the drive transmission device 46 of the conventional twin-screw extruder shown in FIG. If it is installed on either one of 37 and 38,
Phase adjustment can be performed without the need for disassembling or reassembling the drive transmission device for phase adjustment, and it is possible to perform timely adjustment so that the driving force is equally transmitted to each series. Further, it is possible to provide a drive transmission device of a twin-screw extruder capable of transmitting a high-torque driving force with which both screws can be sufficiently synchronized. In addition, since the biasing force of the spring 54 works even when the drive transmission device of the twin-screw extruder is stopped,
The play of the helical gear 3 and the bearings 4 and 5 can be regulated.

【0019】次に、第一・第二出力軸に嵌入された両方
の出力歯車を上下で挟むように上下分配歯車列で構成さ
れている二軸押出機の駆動伝達装置29に、上記ハスバ
歯車の微小位相調整手段10を用いた一実施例を図4乃
至図6により説明する。図4は駆動系統図であり、図5
は歯車配置の側面図であり、図6は図4のA−A展開図
である。
Next, the above-mentioned helical gears are added to the drive transmission device 29 of the twin-screw extruder which is composed of an upper and lower distribution gear train so as to sandwich both the output gears fitted in the first and second output shafts from above and below. An embodiment using the minute phase adjusting means 10 will be described with reference to FIGS. FIG. 4 is a drive system diagram, and FIG.
Is a side view of the gear arrangement, and FIG. 6 is an AA development view of FIG. 4.

【0020】図4において、この二軸押出機の駆動伝達
装置29は、第一・第二スクリューに連結され第一・第
二出力軸21・22の各々に軸方向にずらされて嵌入さ
れる第一・第二出力歯車23・24と、該第一出力歯車
23を、図5に示すように上下から挟むように配置され
る第一下・第一上歯車25・26と、前記第二出力歯車
24を、図5に示すように上下から挟むように配置され
る第二下・第二上歯車27・28と、これらの第一下・
第一上・第二下・第二上歯車25・26・27・28に
共通駆動源Cからの出力を1/4に等分して分配する減
速歯車機構Bとを有する。
In FIG. 4, the drive transmission device 29 of this twin-screw extruder is connected to the first and second screws and fitted in the first and second output shafts 21 and 22 with axial displacement. The first and second output gears 23 and 24, the first lower and first upper gears 25 and 26 arranged so as to sandwich the first output gear 23 from above and below as shown in FIG. As shown in FIG. 5, a second lower / second upper gear 27/28 arranged so as to sandwich the output gear 24 from above and below, and a first lower / second gear thereof.
The first upper / second lower / second upper gears 25, 26, 27, and 28 have a reduction gear mechanism B that equally divides the output from the common drive source C into quarters and distributes the output.

【0021】この二軸押出機の駆動伝達装置29の減速
歯車機構Bは、第一上・第二上歯車26・28の各々に
噛み合う歯車19・20が嵌入された上中間軸11と、
第一下・第二下歯車25・27の各々に噛み合う歯車1
2・13が嵌入された下中間軸14と、これらの上・下
中間軸11・14の各々に嵌入された上・下入力歯車1
5・16に共通して噛み合う駆動歯車17を有する中央
軸18とを備えている。この時、出力軸21・22のね
じりこわさによる位相のずれを補正するために、図6に
示されているように上・下中間軸11・14での上・下
入力歯車15・16と歯車19・12の距離X1、上・
下入力歯車15・16と歯車20・13の距離X2から
生じるねじりこわさの差が、第一・第二出力軸21・2
2での第一・第二の出力歯車23・24と第一・第二ス
クリュー連結部迄の距離Y1・Y2から生じるねじりこ
わさの差に等しくなるように、歯車20・13を配置す
る。
The reduction gear mechanism B of the drive transmission device 29 of this twin-screw extruder has an upper intermediate shaft 11 into which gears 19 and 20 meshing with the first and second upper gears 26 and 28 are fitted, respectively.
Gear 1 that meshes with each of the first and second lower gears 25 and 27
Lower intermediate shaft 14 into which 2 and 13 are fitted, and upper and lower input gears 1 fitted into these upper and lower intermediate shafts 11 and 14, respectively.
5 and 16 and a central shaft 18 having a drive gear 17 meshing in common. At this time, in order to correct the phase shift due to the torsional stiffness of the output shafts 21 and 22, as shown in FIG. 6, the upper and lower input gears 15 and 16 and the upper and lower intermediate shafts 11 and 14 and the gears 19/12 distance X1, above
The difference in torsional stiffness caused by the distance X2 between the lower input gears 15 and 16 and the gears 20 and 13 is the first and second output shafts 21 and 2.
The gears 20 and 13 are arranged so as to be equal to the difference in torsional stiffness caused by the distances Y1 and Y2 between the first and second output gears 23 and 24 and the first and second screw connecting portions in 2.

【0022】更に、上・下中間軸11・14は、4個の
トーションバー11a・11b・14a・14bで形成
されており、トーションバー11a・14aはそれぞれ
トーションバー14b・11bとスプラインで連結され
ている。
Further, the upper and lower intermediate shafts 11 and 14 are formed of four torsion bars 11a, 11b, 14a and 14b, and the torsion bars 11a and 14a are connected to the torsion bars 14b and 11b by splines, respectively. ing.

【0023】この二軸押出機の駆動伝達装置29におけ
る減速歯車機構Bは、上述の様な構造をしているので、
共通駆動源Cからの駆動力を第一・第二スクリュー共通
の上下系列に、中央軸18で1/2分配した後に、第一
上・第二上及び第一下・第二下系列に、上・下中間軸1
1・14で1/4に分配し、第一・第二出力歯車23・
24と、該第一出力歯車23を図5に示すように第一下
・第一上歯車25・26とで上下から挟むように、第二
出力歯車24を図5に示すように第二下・第二上歯車2
7・28とで上下から挟むように配置して、第一・第二
出力歯車23・24の歯車噛み合い部分で発生するラジ
アル荷重を相殺するようにして高トルクの駆動力の伝達
を可能にし、出力軸1・2のねじりこわさによる位相の
ずれは歯車10・13の位置により、補正するようにし
ている。
Since the reduction gear mechanism B in the drive transmission device 29 of this twin-screw extruder has the structure as described above,
After dividing the driving force from the common drive source C into the upper and lower series common to the first and second screws by the central shaft 18 in half, the first upper and second upper and the first lower and second lower series, Upper / lower intermediate shaft 1
It is divided into 1/4 by 1 ・ 14, and the first and second output gears 23 ・
24 and the first output gear 23 between the first lower and first upper gears 25 and 26 from above and below as shown in FIG. 5, and the second output gear 24 as shown in FIG.・ Second upper gear 2
7 and 28 are arranged so as to be sandwiched from above and below to cancel the radial load generated at the gear meshing portions of the first and second output gears 23 and 24, thereby enabling transmission of high torque driving force, The phase shift due to the torsional stiffness of the output shafts 1 and 2 is corrected by the position of the gears 10 and 13.

【0024】そして、上・下中間軸11・14はトーシ
ョンバー11a・11b・14a・14bで形成されて
おり、第一・第二出力軸21・22のねじりこわさの差
による位相のずれのみならず、歯車の摩耗等により生じ
る歯車の位相のずれをトーションバー自身がねじれるこ
とにより吸収し、歯車の噛み合い部分でのずれをなくし
ている。その結果として、歯車の噛み合い部分での駆動
力の分配を均等にしている。
The upper and lower intermediate shafts 11 and 14 are formed of torsion bars 11a, 11b, 14a and 14b, and if there is only a phase shift due to the difference in torsional stiffness of the first and second output shafts 21 and 22. First, the torsion bar itself twists to absorb the phase shift of the gear caused by wear of the gear and eliminates the shift at the meshing portion of the gear. As a result, the driving force is evenly distributed at the meshing portions of the gears.

【0025】このトーションバーは運転時に生じる位相
のずれを吸収して等配を確保するものであり、組み立て
時に、個々の歯車の加工誤差等から生じる位相差を吸収
するものでない。そこで、更に加えて、本発明のハスバ
歯車の微小位相調整手段10を歯車19・20・13・
12に設けると、位相調整の為に駆動伝達装置を分解し
たり、再組み立てしたり等の手間を要しないで組み立て
時の位相合わせができ、各系列に等しく駆動力が伝達さ
れるように適時調整することが可能となる。
This torsion bar absorbs a phase shift generated during operation to ensure equal distribution, and does not absorb a phase difference caused by machining errors of individual gears during assembly. Therefore, in addition to the above, the fine phase adjusting means 10 for the helical gear of the present invention is added to the gears 19, 20, 13 ,.
If it is provided in No. 12, the phase can be adjusted at the time of assembly without disassembling the drive transmission device for phase adjustment or reassembling, and the driving force can be equally transmitted to each series. It becomes possible to adjust.

【0026】[0026]

【発明の効果】このように本発明の二軸押出機の駆動伝
達装置は、ハスバ歯車の微小位相調整手段により、ハス
バ歯車をハスバスプラインの捩じれ方向に沿って軸の外
周方向に移動させながら軸方向へ移動させて歯車噛み合
い部分での噛み合いを確保するので位相調整の為に駆動
伝達装置全体を分解したり、再組み立てしたり等の手間
を要しないで、各系列に等しく駆動力が伝達されるよう
に適時調整することを可能とする。又、スプラインをハ
スバスプラインとしてその捩じれ方向をハスバ歯車の捩
じれ方向と逆にしたことにより、歯車の位相調整のため
の軸方向移動量が少なくてすみ、駆動伝達装置全体が大
型化することがない。
As described above, in the drive transmission device for a twin-screw extruder according to the present invention, the minute phase adjusting means of the helical gear shifts the helical gear in the outer peripheral direction of the shaft along the torsional direction of the helical spline. The drive force is transmitted equally to each series without disassembling or reassembling the entire drive transmission device to adjust the phase because it ensures the meshing at the gear meshing part by moving in the direction. It is possible to make timely adjustments. In addition, since the spline is a hasb spline and its twisting direction is opposite to the twisting direction of the helical gear, the amount of axial movement for phase adjustment of the gear can be small, and the entire drive transmission device does not become large. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二軸押出機の駆動伝達装置のハスバ歯
車の微小位相調整手段を示す断面図である。
FIG. 1 is a cross-sectional view showing a minute phase adjusting means of a helical gear of a drive transmission device for a twin-screw extruder according to the present invention.

【図2】図1の作用図である。FIG. 2 is an operation diagram of FIG.

【図3】本発明の二軸押出機の駆動伝達装置の他のハス
バ歯車の微小位相調整手段を示す断面図である。
FIG. 3 is a sectional view showing another fine phase adjusting means of a helical gear of the drive transmission device for a twin-screw extruder according to the present invention.

【図4】本発明の二軸押出機の駆動伝達装置の一実施例
を示す駆動系統図である。
FIG. 4 is a drive system diagram showing an embodiment of the drive transmission device of the twin-screw extruder of the present invention.

【図5】図4の歯車配置の側面図である。5 is a side view of the gear arrangement of FIG.

【図6】図4のA−A展開図である。6 is an AA development view of FIG. 4. FIG.

【図7】従来の二軸押出機の駆動伝達装置の断面図であ
る。
FIG. 7 is a cross-sectional view of a drive transmission device of a conventional twin-screw extruder.

【図8】図7の歯車配置の側面図である。8 is a side view of the gear arrangement of FIG. 7.

【符号の説明】 10 ハスバ歯車の微小位相調整手段 1 ケーシング 2 軸 2a ネジ部 2b 穴 3 ハスバ歯車 4 軸受 5 軸受 6 調整ネジ 6a ネジ部 7 止めネジ 8 ハスバスプライン 9 キャップ 54 バネ a、b 捩じれ方向[Explanation of Codes] 10 Micro phase adjusting means for helical gear 1 Casing 2 Shaft 2a Screw portion 2b Hole 3 Hasvar gear 4 Bearing 5 Bearing 6 Adjusting screw 6a Screw portion 7 Set screw 8 Hasbaspline 9 Cap 54 Spring a, b Twisting direction

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 二軸押出機のスクリュに連結される第一
出力軸と第二出力軸に対して駆動力を1/2に分配して
伝達し、前記第一・第二出力軸の少なくとも一方に設け
られた歯車を挟む分配歯車列で更に1/4に分配する二
軸押出機の駆動伝達装置において、前記分配歯車列をハ
スバ歯車列とし、分配歯車列の一方における少なくとも
1個のハスバ歯車をハスバスプラインにより軸方向に移
動可能に設けると共に該ハスバ歯車の微小位相調整手段
を設けていることを特徴とする二軸押出機の駆動伝達装
置。
1. A driving force is distributed in half to be transmitted to a first output shaft and a second output shaft connected to a screw of a twin-screw extruder, and at least one of the first and second output shafts is transmitted. In a drive transmission device of a twin-screw extruder that further distributes a quarter by a distribution gear train sandwiching a gear provided on one side, the distribution gear train is a helical gear train, and at least one helical gear in one of the distribution gear trains is used. A drive transmission device for a twin-screw extruder, characterized in that a gear is provided by a hasp spline so as to be movable in the axial direction, and a minute phase adjusting means for the helical gear is provided.
【請求項2】 二軸押出機のスクリュに連結される第一
出力軸と第二出力軸に第一歯車列と第二歯車列を介して
共通歯車からの駆動力を分配して伝達する二軸押出機の
駆動伝達装置において、前記第一・第二歯車列をハスバ
歯車列とし、第一・第二歯車列の一方における少なくと
も1個のハスバ歯車をハスバスプラインにより軸方向に
移動可能に設けると共に該ハスバ歯車の微小位相調整手
段を設けていることを特徴とする二軸押出機の駆動伝達
装置。
2. A driving force from a common gear is distributed and transmitted to a first output shaft and a second output shaft connected to a screw of a twin-screw extruder via a first gear train and a second gear train. In a drive transmission device for a shaft extruder, the first and second gear trains are helical gear trains, and at least one helical gear in one of the first and second gear trains is provided so as to be movable in the axial direction by a helical spline. A drive transmission device for a twin-screw extruder, which is provided with a minute phase adjusting means for the helical gears.
【請求項3】 前記請求項1又請求項2記載の二軸押出
機の駆動伝達装置において、前記ハスバ歯車と前記ハス
バスプラインのねじれ方向が互いに逆であり、前記ハス
バ歯車は前記微小位相調整手段によって軸の外周面上を
移動することを特徴とする二軸押出機の駆動伝達装置。
3. The drive transmission device for a twin-screw extruder according to claim 1 or 2, wherein the helical directions of the helical gear and the helical bus spline are opposite to each other, and the helical gear has the minute phase adjusting means. A drive transmission device for a twin-screw extruder, wherein the drive transmission device moves on the outer peripheral surface of the shaft.
JP5342583A 1993-12-13 1993-12-13 Drive transmission device of twin-screw extruder Pending JPH07164508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5342583A JPH07164508A (en) 1993-12-13 1993-12-13 Drive transmission device of twin-screw extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5342583A JPH07164508A (en) 1993-12-13 1993-12-13 Drive transmission device of twin-screw extruder

Publications (1)

Publication Number Publication Date
JPH07164508A true JPH07164508A (en) 1995-06-27

Family

ID=18354893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5342583A Pending JPH07164508A (en) 1993-12-13 1993-12-13 Drive transmission device of twin-screw extruder

Country Status (1)

Country Link
JP (1) JPH07164508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298751B1 (en) * 1996-11-07 2001-10-09 Toshiba Kikai Kabushiki Kaisha Drive transmission apparatus for twin-screw extruder
WO2009125514A1 (en) * 2008-04-08 2009-10-15 株式会社モリヤマ Two-shaft extruder
JP2013107220A (en) * 2011-11-17 2013-06-06 Fanuc Ltd Material supply device for injection molding machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298751B1 (en) * 1996-11-07 2001-10-09 Toshiba Kikai Kabushiki Kaisha Drive transmission apparatus for twin-screw extruder
WO2009125514A1 (en) * 2008-04-08 2009-10-15 株式会社モリヤマ Two-shaft extruder
JP2009248486A (en) * 2008-04-08 2009-10-29 Moriyama:Kk Biaxial extruder
CN101998901A (en) * 2008-04-08 2011-03-30 森山有限责任公司 Two-shaft extruder
US8905623B2 (en) 2008-04-08 2014-12-09 Moriyama Company Ltd. Two-shaft extruder with screw blade contact preventing mechanism
KR101527252B1 (en) * 2008-04-08 2015-06-16 가부시키가이샤 모리야마 Two-shaft extruder
JP2013107220A (en) * 2011-11-17 2013-06-06 Fanuc Ltd Material supply device for injection molding machine

Similar Documents

Publication Publication Date Title
US5651750A (en) Dual cavity toroidal type continuously variable transmission
US20090017955A1 (en) Reduction Gear Box
JPH0821489A (en) Gear device
US4679461A (en) Drive device for two-shaft extruding machine
JPH10180843A (en) Driving transmission device of biaxial extruder
JP3056484B1 (en) Outside diameter adjustment device for folding cylinder
JPS6212415B2 (en)
JP4783668B2 (en) Inscribed mesh planetary gear
JPH07117128B2 (en) Hypocycloid speed reducer
US5511874A (en) Drive transmission mechanism for biaxial extruder
JPH07164508A (en) Drive transmission device of twin-screw extruder
JP4056614B2 (en) Parallel shaft gear reducer
JPH08418B2 (en) Drive transmission device for twin screw extruder
JPH084844A (en) Series of geared motor
JP3034630B2 (en) Trochoid tooth type inscribed planetary gear structure
JPH0780234B2 (en) Drive transmission device for twin screw extruder
JP3919350B2 (en) Internal gear swing type intermeshing planetary gear unit
EP1803971A1 (en) Ball transmission unit for a speed converter (variants) and a step-by-step gear box based thereon
JPH07229551A (en) No backlash gear
EP0640193B1 (en) Torque distributing drive
US11187301B2 (en) Mechanical paradox planetary gear mechanism
JP2539907B2 (en) Transmission gear unit for twin-screw extruder
US11780490B2 (en) Gearbox assembly for an electric power steering apparatus
JPH05321985A (en) Driving transmission device for two-shaft extruder
JPH06137409A (en) Controlling transmission device