JPH07164294A - Lens centering machine and lens centering method - Google Patents

Lens centering machine and lens centering method

Info

Publication number
JPH07164294A
JPH07164294A JP34176593A JP34176593A JPH07164294A JP H07164294 A JPH07164294 A JP H07164294A JP 34176593 A JP34176593 A JP 34176593A JP 34176593 A JP34176593 A JP 34176593A JP H07164294 A JPH07164294 A JP H07164294A
Authority
JP
Japan
Prior art keywords
lens
shaft
lower bell
processed
eccentricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34176593A
Other languages
Japanese (ja)
Other versions
JP3452618B2 (en
Inventor
Takao Nakajima
隆雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP34176593A priority Critical patent/JP3452618B2/en
Publication of JPH07164294A publication Critical patent/JPH07164294A/en
Application granted granted Critical
Publication of JP3452618B2 publication Critical patent/JP3452618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To provide a lens centering machine and a lens centering method in which a lens to be worked can be corrected in a short time without being influenced by the outer diameter dispersion of the lens with a compact structure. CONSTITUTION:An optical axis eccentric measuring instrument 1 for measuring the eccentricity of a work lens 3 is provided above an upper bell shaft 4, and the optical axis eccentric measuring instrument 1 is connected to an arithmetic device 6. The arithmetic device 6 is connected to a motor driver 7. A shaft rotating motor 5 and a table driving motor 9 for moving a moving table 10 having a grinding wheel 8 mounted thereon are connected to the motor driver 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被加工レンズの光学中
心軸に合わせて被加工レンズの外周部を所定寸法に研削
加工するレンズ芯取機およびレンズ芯取方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens centering machine and a lens centering method for grinding an outer peripheral portion of a lens to be processed into a predetermined size in accordance with an optical center axis of the lens to be processed.

【0002】[0002]

【従来の技術】従来、光学レンズの芯取り精度(レンズ
上下面のR中心を結んだ光軸に対するレンズ外周円の中
心軸のズレ度)は0.005mmから0.010mmが
必要とされている。しかしながら、現在の主力である上
下ベル軸の挟み込みによるベルクランプ方式では、被加
工レンズのZ値によっては充分に芯合わせのできないも
のがあった。
2. Description of the Related Art Conventionally, the centering accuracy of an optical lens (deviation of the central axis of the lens outer circumference circle from the optical axis connecting the R centers of the upper and lower surfaces of the lens) is required to be 0.005 mm to 0.010 mm. . However, in the bell clamp method, which is the current main force, in which the upper and lower bell shafts are sandwiched, there is a case where the centering cannot be sufficiently performed depending on the Z value of the lens to be processed.

【0003】そこで、上記欠点を解決すべく、例えば特
開昭60−259365号公報記載の発明が提案されて
いる。上記発明は、図6に示す様に、中空な下軸(ベル
軸)71の軸線上を通るレーザーの光路72を有するレ
ーザー光源73と、下軸71上の被検レンズ74および
中空な上軸(ベル軸)75を通るレーザーの光路72上
に配置されたレーザーの光点の位置を出力する光点位置
検出器76と、該光点位置検出器76に接続され、検出
結果を演算処理して被検レンズ74位置の補正方向およ
び補正量を出力する演算表示装置77と、該演算表示装
置77に接続され、補正方向指令値および補正量指令値
を受けて被検レンズ74位置を補正する半径方向の補正
装置78および回転方向の補正装置79からなる芯合わ
せ装置とを設けたレンズ芯合わせを自動的に行うことの
できる芯取り機である。
Therefore, in order to solve the above-mentioned drawbacks, for example, the invention described in JP-A-60-259365 has been proposed. As shown in FIG. 6, the above invention is directed to a laser light source 73 having a laser optical path 72 passing on the axis of a hollow lower shaft (bell shaft) 71, a lens 74 to be inspected on the lower shaft 71, and a hollow upper shaft. A light spot position detector 76 for outputting the position of the light spot of the laser arranged on the optical path 72 of the laser passing through the (bell axis) 75, and a light spot position detector 76 connected to the light spot position detector 76 for processing the detection result. The calculation display device 77 for outputting the correction direction and the correction amount of the position of the lens 74 to be inspected, and the calculation display device 77 are connected to receive the correction direction command value and the correction amount command value to correct the position of the lens 74 to be inspected. A centering device that is capable of automatically performing lens centering provided with a centering device including a radial direction correction device 78 and a rotation direction correction device 79.

【0004】上記構成の装置は、下軸71上の被検レン
ズ74の回転方向および量を補正して下軸71の軸心と
合致させた後、上軸75が下降して被検レンズ74を保
持する。次に、砥石軸80が横に移動して被検レンズ7
4の光軸と上下軸71,75の回転軸(=レーザーの光
路72)とを合致させたまま被検レンズ74の外周を加
工する。
In the apparatus having the above structure, the rotational direction and amount of the lens 74 to be inspected on the lower shaft 71 are corrected to match the axial center of the lower shaft 71, and then the upper shaft 75 is lowered to make the lens 74 to be inspected. Hold. Next, the grindstone shaft 80 moves laterally to move the lens 7 under test.
The outer circumference of the lens 74 to be inspected is processed while the optical axis of 4 and the rotation axes of the vertical axes 71 and 75 (= the optical path 72 of the laser) are aligned.

【0005】[0005]

【発明が解決しようとする課題】しかるに、前記従来技
術においてはベル軸上にて補正し、かつ加工するために
以下の様な欠点がある。すなわち、補正装置でベル軸上
のレンズのコバ面を押すため、補正値どおりにレンズが
動かない可能性がある(レンズのみですべってしま
う)。また、芯取り加工前のレンズのために、レンズ外
径にはバラツキがあり、補正装置の送り量が光軸のズレ
量だけでは決められない。従って、補正に時間がかかる
(レンズ加工前の外径を知らなければならない)。
However, the above-mentioned prior art has the following drawbacks in that the correction and processing are performed on the bell axis. In other words, because the compensator pushes the edge surface of the lens on the bell axis, the lens may not move according to the compensation value (only the lens slips). Further, since the lens is not centered, the outer diameter of the lens varies, and the feed amount of the correction device cannot be determined only by the shift amount of the optical axis. Therefore, correction takes time (the outer diameter before lens processing must be known).

【0006】さらに、補正して軸心を合致させても、加
工のために上軸(ベル軸)が下降してクランプする際、
再びレンズ光軸がズレてしまう可能性がある。また、芯
取り加工のスペースに補正装置が設けられているため、
構成が複雑となり、かつ加工時に飛散する研削液により
メンテナンス上非常に不利な構成となってしまう。
Further, even if the axes are aligned after being corrected, when the upper shaft (bell shaft) is lowered and clamped for machining,
There is a possibility that the optical axis of the lens will shift again. In addition, because a correction device is provided in the centering space,
The structure becomes complicated, and the grinding liquid scattered during processing causes a very disadvantageous structure for maintenance.

【0007】因って、本発明は前記従来技術における欠
点に鑑みて開発されたもので、コンパクトな構成で、か
つ被加工レンズの外径のバラツキに影響されることなく
短い時間で補正ができるレンズ芯取機およびレンズ芯取
り方法の提供を目的とする。
Therefore, the present invention was developed in view of the above-mentioned drawbacks of the prior art, and it is possible to perform correction in a short time with a compact structure and without being affected by the variation in the outer diameter of the lens to be processed. A lens centering machine and a lens centering method are provided.

【0008】[0008]

【課題を解決するための手段および作用】本発明は、被
加工レンズを挟持する回転可能な中空の固定下ベル軸
と、該下ベル軸の同一軸線上に設けられた上下かつ回転
可能な中空の上ベル軸と、光源と、該光源よりの光線を
前記上下ベル軸の中空を通して被加工レンズに反射また
は透過させることにより偏芯を測定する偏芯測定器と、
該偏芯測定器に接続された演算装置と、前記下ベル軸を
回転駆動する回転駆動装置と、前記上下ベル軸と平行な
砥石軸に取り付けられた回転する砥石と、前記上下ベル
軸と砥石軸との軸間距離を変化させる移動駆動装置と、
前記演算装置の補正値に応答して前記回転駆動装置を制
御する回転制御装置と、前記上下ベル軸の回転に同期し
つつ演算装置の補正値に応答して前記移動駆動装置を制
御する移動制御装置とから構成したものである。
SUMMARY OF THE INVENTION The present invention is directed to a rotatable lower fixed bell shaft for holding a lens to be processed, and a vertically rotatable hollow provided on the same axis of the lower bell shaft. An upper bell axis, a light source, and an eccentricity measuring device for measuring an eccentricity by reflecting or transmitting a light beam from the light source to the lens to be processed through the hollows of the upper and lower bell axes,
An arithmetic device connected to the eccentricity measuring device, a rotary drive device for rotationally driving the lower bell shaft, a rotating grindstone attached to a grindstone shaft parallel to the upper and lower bell shafts, the upper and lower bell shafts and grindstones. A movement drive device that changes the distance between the axis and the axis,
A rotation control device that controls the rotary drive device in response to a correction value of the arithmetic device, and a movement control that controls the mobile drive device in response to the correction value of the arithmetic device while synchronizing with the rotation of the upper and lower bell shafts. It is composed of a device.

【0009】また、被加工レンズの芯取りを行うにあた
り、挟持された被加工レンズの光学中心軸とベル軸の回
転軸との偏芯量を測定し、該偏芯量から算出した補正値
に基づいて被加工レンズの回転量と同期させつつ砥石軸
を制御しながら移動させ、被加工レンズの光学中心軸に
対して同心円状の砥石加工面を形成する方法である。
When centering the lens to be processed, the amount of eccentricity between the optical center axis of the lens to be clamped and the rotation axis of the bell shaft is measured, and a correction value calculated from the amount of eccentricity is measured. Based on this method, the grindstone axis is controlled and moved in synchronism with the rotation amount of the lens to be processed to form a grindstone processing surface concentric with the optical center axis of the lens to be processed.

【0010】図1は本発明を示す概念図である。軸回転
モーター5により回転位置決め自在な中空の下ベル軸3
と、下ベル軸3と対向して上方に位置し、回転および上
下動自在な中空の上ベル軸4と、該上ベル軸4の中央に
レーザー光を通してワークレンズ2上面の反射光によ
り、ワークレンズ2の上下ベル軸3,4への中心に対す
る偏芯を測定する偏芯測定器1と、該偏芯測定器1から
のデータを演算して補正の回転方向および量を算出する
演算装置6と、ワークレンズ2の側面に設けられて高速
回転する砥石8と、該砥石8を保持し、上下ベル軸3,
4の軸方向に対して垂直方向に移動自在な移動テーブル
10と、該移動テーブル10を駆動するテーブル駆動モ
ーター9と、演算装置6の演算結果に基づいてテーブル
駆動モーター9および軸回転モーター5を駆動するとと
もに、下ベル軸3の回転に同期させて砥石8の移動およ
び位置決めを行うモータードライバー7とから構成され
ている。
FIG. 1 is a conceptual diagram showing the present invention. A hollow lower bell shaft 3 that can be rotationally positioned by a shaft rotation motor 5.
And a hollow upper bell shaft 4 which is located above the lower bell shaft 3 and is rotatable and movable up and down, and laser light is passed through the center of the upper bell shaft 4 to reflect the light reflected from the upper surface of the work lens 2. An eccentricity measuring device 1 for measuring the eccentricity of the lens 2 with respect to the center of the upper and lower bell axes 3, 4, and a calculation device 6 for calculating data from the eccentricity measuring device 1 to calculate a rotation direction and amount of correction. And a grindstone 8 which is provided on the side surface of the work lens 2 and rotates at a high speed, and the grindstone 8 which is held by the upper and lower bell shafts 3.
4, a movable table 10 that is movable in the direction perpendicular to the axial direction, a table drive motor 9 that drives the movable table 10, and a table drive motor 9 and a shaft rotation motor 5 based on the calculation result of the calculation device 6. It is composed of a motor driver 7 which is driven and moves and positions the grindstone 8 in synchronization with the rotation of the lower bell shaft 3.

【0011】以下、本発明の作用を図1および図2a,
bを用いて説明する。前述した様に、上下ベル軸3,4
にクランプされたワークレンズ2はその球面の形状(Z
値)により上下ベル軸3,4の中心に精度良く芯出しさ
れる物もあるが、球面Rが大きいものやメニスカスなも
の等は上下ベル軸3,4に対して偏芯を持ったままクラ
ンプされてしまう(図2aおよびb参照)。
The operation of the present invention will be described below with reference to FIGS.
This will be described using b. As mentioned above, the upper and lower bell shafts 3, 4
The work lens 2 clamped at is the spherical shape (Z
Depending on the value), there are things that are accurately centered on the centers of the upper and lower bell shafts 3, 4, but those with a large spherical surface R, meniscus, etc. are clamped with eccentricity with respect to the upper and lower bell shafts 3, 4. (See FIGS. 2a and b).

【0012】そこで、上下ベル軸3,4の中心に対する
ワークレンズ2の偏芯量を測定器1および演算装置6を
使用して得た数値データの方向および量に基づき、上下
ベル軸3,4の回転に同期させ、砥石8と上下ベル軸
3,4との距離をワークレンズ2の光学中心軸11を中
心として同心円(図2a,bに示す破線)を描くように
移動変化させることで、光学中心軸11に対して精度の
良い芯取り加工を行う。
Therefore, the eccentricity of the work lens 2 with respect to the center of the upper and lower bell shafts 3, 4 is determined based on the direction and amount of numerical data obtained by using the measuring device 1 and the arithmetic unit 6. In synchronism with the rotation of, the distance between the grindstone 8 and the upper and lower bell shafts 3, 4 is moved and changed so as to draw a concentric circle (broken lines shown in FIGS. 2a and 2b) about the optical center axis 11 of the work lens 2, Accurate centering is performed on the optical center axis 11.

【0013】[0013]

【実施例1】図3および図4は本実施例で用いる装置を
示し、図3は概略構成図、図4は変形例を示す部分断面
図である。3は円周部側面にベアリング14を具備して
回転自在に保持された中空形状の下ベル軸で、この下ベ
ル軸3の下端部にはギヤ15を介して下ベル軸3を回転
かつ位置制御自在に行える軸回転モーター5が接続され
ている。下ベル軸3の上方には上下動かつ回転自在な中
空形状の上ベル軸4が設置されており、ワークレンス2
を加圧クランプしてある程度の芯出しが行える構成にな
っている。なお、上下ベル軸3,4の軸芯は高精度に位
置出しがされており、上下ベル軸3,4どうしの軸ズレ
は1〜2μm程度になっている。
Embodiment 1 FIGS. 3 and 4 show an apparatus used in this embodiment, FIG. 3 is a schematic configuration diagram, and FIG. 4 is a partial sectional view showing a modified example. Reference numeral 3 denotes a hollow lower bell shaft that is rotatably held by a bearing 14 on a side surface of a circumferential portion. The lower bell shaft 3 is rotated and positioned by a gear 15 at a lower end portion of the lower bell shaft 3. A shaft rotation motor 5 that can be controlled freely is connected. A hollow upper bell shaft 4 that is vertically movable and rotatable is installed above the lower bell shaft 3.
It is configured so that it can be pressure-clamped and centered to some extent. The axial centers of the upper and lower bell shafts 3 and 4 are accurately positioned, and the axial deviation between the upper and lower bell shafts 3 and 4 is about 1 to 2 μm.

【0014】次に、上下ベル軸3,4の軸芯に対して垂
直方向かつワークレンズ2の側方位置に、ワークレンズ
2の外周を研削すべく、モーター(図示省略)により高
速回転する砥石8が設けられている。この砥石8は上下
ベル軸3,4の軸芯に対して垂直方向に駆動および位置
決めが自在となる様に移動テーブル10へ取り付けられ
ている。なお、移動テーブル10は、ガイドレール16
と、ガイドレール16と平行に設けられた送りネジ17
と、送りネジ17に直結されて砥石8の送り量を制御で
きるテーブル駆動モーター9とを具備している。
Next, a grindstone which is rotated at a high speed by a motor (not shown) in order to grind the outer periphery of the work lens 2 at a position perpendicular to the axis of the upper and lower bell shafts 3 and 4 and laterally of the work lens 2. 8 are provided. The grindstone 8 is attached to a moving table 10 so that it can be driven and positioned in a direction perpendicular to the axis of the upper and lower bell shafts 3, 4. In addition, the moving table 10 includes a guide rail 16
And a feed screw 17 provided in parallel with the guide rail 16.
And a table drive motor 9 that is directly connected to the feed screw 17 and can control the feed amount of the grindstone 8.

【0015】前記上ベル軸4の上方には、レーザー光を
下方に照射して上ベル軸4の中空を通し、ワークレンズ
2の上面に当てるレーザー光源18と、ワークレンズ2
の上面にて反射したレーザー光をハーフミラー13によ
り直角に曲げて受光するポジションセンサー12とを具
備した光軸偏芯測定器1が設置されている。光軸偏芯測
定器1はベルクランプされたワークレンズ2のレンズ光
学中心軸11と上下ベル軸3,4の回転中心とのズレ量
を計測する。なお、前記レーザー光の光軸も上下ベル軸
3,4に精度良く合致すべく調整されている。
Above the upper bell shaft 4, a laser light source 18 which irradiates a laser beam downward to pass through the hollow of the upper bell shaft 4 and strikes the upper surface of the work lens 2, and a work lens 2
An optical axis eccentricity measuring device 1 is installed, which includes a position sensor 12 that receives a laser beam reflected by the upper surface of the laser light by bending it at a right angle by a half mirror 13. The optical axis eccentricity measuring device 1 measures the amount of deviation between the lens optical center axis 11 of the bell-clamped work lens 2 and the center of rotation of the upper and lower bell axes 3, 4. The optical axis of the laser light is also adjusted so as to accurately match the upper and lower bell axes 3 and 4.

【0016】次に、ポジションセンサー12により得ら
れた変位量の出力は、軸回転モーター5より得られる下
ベル軸3回転方向位置データ出力と合わせて演算装置6
によりワークレンズ2の光学中心軸のズレ量と方向とに
算出される。モータードライバー7は演算装置6の算出
結果を受け、軸回転モーター5とテーブル駆動モーター
9とへ補正命令を出力する。
Next, the output of the displacement amount obtained by the position sensor 12 is combined with the output of the position data of the lower bell shaft 3 in the rotation direction obtained by the shaft rotation motor 5, and the arithmetic unit 6 is operated.
Thus, the amount of deviation and the direction of the optical center axis of the work lens 2 are calculated. The motor driver 7 receives the calculation result of the arithmetic unit 6 and outputs a correction command to the shaft rotation motor 5 and the table drive motor 9.

【0017】以上の構成から成る装置を用いてのレンズ
芯取り方法は、まず加工対象であるワークレンズ2が機
械もしくは人手により下ベル軸3の上端に搬送されて載
置される。次に、上ベル軸4が下降してワークレンズ2
の上面に当接し、かつ適度な加圧によりワークレンズ2
をクランプする。その時、ワークレンズ2はクランプさ
れることにより上下ベル軸3,4の端面に沿ってスライ
ドし、ワークレンズ2のレンズ光学中心軸11は上下ベ
ル軸3,4の軸芯に比較的近い位置までよる(このよる
程度は前記Z値により決まってしまう)。
In the lens centering method using the apparatus having the above-described structure, first, the work lens 2 to be processed is mechanically or manually transferred to and mounted on the upper end of the lower bell shaft 3. Next, the upper bell shaft 4 descends and the work lens 2
Work lens 2 by contacting the upper surface of
Clamp. At that time, the work lens 2 is slid along the end surfaces of the upper and lower bell shafts 3 and 4 by being clamped, and the lens optical central axis 11 of the work lens 2 is relatively close to the axis of the upper and lower bell shafts 3 and 4. (The degree of this depends on the Z value).

【0018】次に、ワークレンズ2はクランプされたま
ま駆動回転モーター5の駆動により上下ベル軸3,4と
ともに回転する。この回転と同時に、光軸偏芯測定器1
からワークレンズ2の上面に照射されて反射したレーザ
ー光により、上下ベル軸3,4に対するワークレンズ2
のレンズ光学中心軸11の偏芯量がポジションセンサー
12で得られる。ポジションセンサー12で得られた入
力と、軸回転モーター5より得られる下ベル軸3の回転
角度データとに基づき、演算装置6はレンズ光学中心軸
11の偏芯の方向データと量データとを算出する。
Next, the work lens 2 is rotated while being clamped by the drive rotary motor 5 together with the upper and lower bell shafts 3, 4. At the same time as this rotation, the optical axis eccentricity measuring device 1
The laser light emitted from the upper surface of the work lens 2 to the work lens 2 and reflected by the work lens 2 with respect to the upper and lower bell axes 3 and 4
The position sensor 12 obtains the amount of eccentricity of the lens optical center axis 11 of. Based on the input obtained by the position sensor 12 and the rotation angle data of the lower bell shaft 3 obtained by the shaft rotation motor 5, the arithmetic unit 6 calculates the direction data and the amount data of the eccentricity of the lens optical center axis 11. To do.

【0019】続いて、レンズ光学中心軸11の偏芯方向
および量のデータに基づいてモータードライバー7はテ
ーブル駆動モーター9と軸回転モーター5とに送りと回
転の移動量の出力データを送る。移動量のデータにより
上下ベル軸3,4の回転(ワークレンズの回転)に同期
させ、上下ベル軸3,4の軸芯に対して垂直方向に砥石
8が取り付けられた移動テーブル10を駆動する。これ
により、上下ベル軸3,4の一回転でワークレンズ2の
外周面が加工できる。この時、砥石8の送り量(研削
量)を少なくし、上下ベル軸3,4を複数回転させて加
工しても良い。
Subsequently, the motor driver 7 sends the output data of the movement amount of rotation and rotation to the table drive motor 9 and the shaft rotation motor 5 based on the data of the eccentricity direction and the amount of the lens optical central axis 11. The moving table 10 having the grindstone 8 attached thereto is driven in a direction perpendicular to the axis of the upper and lower bell shafts 3 and 4 in synchronization with the rotation of the upper and lower bell shafts 3 and 4 (rotation of the work lens) based on the movement amount data. . Thereby, the outer peripheral surface of the work lens 2 can be processed by one rotation of the upper and lower bell shafts 3 and 4. At this time, the feed amount (grinding amount) of the grindstone 8 may be reduced and the upper and lower bell shafts 3 and 4 may be rotated a plurality of times for processing.

【0020】上記同期とは、通常の芯取り加工において
は砥石がスライドしてワークレンズ外周面に当接し、加
工シロまで食い込んだ位置で位置決めされ、上下ベル軸
が回転することで上下ベル軸の回転中心に対して同心円
状にワークレンズの外周を加工する。これに対し、本実
施例では上下ベル軸3,4の回転に対して砥石8が移動
(図3中、左右方向)することで、上下ベル軸3,4の
回転中心より偏芯しているワークレンズ2のレンズ光学
中心軸11の中心に対して同心円状に加工を行うもので
ある。
In the normal centering process, the above-mentioned synchronization means that the grindstone slides to come into contact with the outer peripheral surface of the work lens, and is positioned at a position where it bites into the processing slot, and the upper and lower bell shafts rotate to move the upper and lower bell shafts. The outer circumference of the work lens is processed concentrically with respect to the center of rotation. On the other hand, in the present embodiment, the grindstone 8 moves (left and right in FIG. 3) with respect to the rotation of the upper and lower bell shafts 3 and 4 so that it is eccentric from the center of rotation of the upper and lower bell shafts 3 and 4. The work lens 2 is processed concentrically with respect to the center of the lens optical center axis 11.

【0021】本実施例によれば、従来の全んどのNCタ
イプの芯取り機に偏芯測定器および演算装置を付加する
ことができ、シンプルな構成でかつ安価に目的を達成で
きる。また、加工エリアに特別な物が無くメンテナンス
が有利である。
According to this embodiment, an eccentricity measuring device and a computing device can be added to most of the conventional NC type centering machines, and the object can be achieved with a simple structure and at low cost. In addition, there is no special thing in the processing area, and maintenance is advantageous.

【0022】尚、本実施例ではワークレンズ2の上面に
て反射したレーザー光を受光して偏芯量を測定したが、
本発明はこれに限定するものではなく、図4に示す如
く、上方からはレーザー光源18より出射されるレーザ
ー光のみとし、下方にポジションセンサー12を配して
の透過光線でも充分に偏芯量を測定することができる。
In this embodiment, the laser beam reflected by the upper surface of the work lens 2 is received to measure the eccentricity.
The present invention is not limited to this, and as shown in FIG. 4, only the laser light emitted from the laser light source 18 is provided from above, and the transmitted light obtained by arranging the position sensor 12 below is sufficiently eccentric. Can be measured.

【0023】[0023]

【実施例2】図5は本実施例で用いる装置の概略構成図
である。本実施例では、前記実施例1と同様な構成部分
に同一番号を付してその説明を省略する。本実施例は、
偏芯測定器1,ワークレンズ2,上下ベル軸3,4,軸
回転モーター5,ベアリング14およびギヤ15を全て
一つの移動テーブル21の側面に配設した。移動テーブ
ル21は上下ベル軸3,4の軸芯に対して垂直方向に移
動かつ位置決め自在となるように、ガイドレール22お
よび送りネジ23と、送りネジ23に連結したテーブル
駆動モーター24とを具備している。また、砥石8は逆
に別の構造体へ固定されており、回転駆動モーター(図
示省略)により高速回転のみする様になっている。
[Embodiment 2] FIG. 5 is a schematic configuration diagram of an apparatus used in this embodiment. In this embodiment, the same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. In this example,
The eccentricity measuring device 1, the work lens 2, the upper and lower bell shafts 3, 4, the shaft rotation motor 5, the bearing 14 and the gear 15 are all arranged on the side surface of one moving table 21. The movable table 21 is provided with a guide rail 22 and a feed screw 23, and a table drive motor 24 connected to the feed screw 23 so as to be movable and positionable in the vertical direction with respect to the axis centers of the upper and lower bell shafts 3, 4. is doing. On the contrary, the grindstone 8 is fixed to another structure, and is rotated only at a high speed by a rotary drive motor (not shown).

【0024】以上の構成から成る装置を用いてのレンズ
芯取り方法は、前記実施例1と同様な作用にてワークレ
ンズ2の偏芯の方向および量をデータとして得る。その
後、上下ベル軸3,4の回転に同期してテーブル駆動モ
ーター24を駆動し、移動テーブル21を移動(図5
中、左右方向)する。砥石8と上下ベル軸3,4との相
対的な位置制御は前記実施例1と同様である。
The lens centering method using the apparatus having the above structure obtains the direction and amount of decentering of the work lens 2 as data by the same operation as in the first embodiment. Then, the table drive motor 24 is driven in synchronization with the rotation of the upper and lower bell shafts 3 and 4 to move the moving table 21 (see FIG.
Middle, left and right). The relative position control between the grindstone 8 and the upper and lower bell shafts 3, 4 is the same as that in the first embodiment.

【0025】本実施例によれば、高速回転する砥石は移
動させずに固定とし、ゆっくり回転する上下ベル軸まわ
りの構成を移動させるので、不要な振動やヒビによる送
り誤差等を防ぐことができ、高精度な芯取りレンズを得
ることができる。
According to this embodiment, since the grindstone rotating at a high speed is fixed without moving and the structure around the vertically rotating upper and lower bell shafts is moved, unnecessary vibration and feed error due to cracks can be prevented. A highly accurate centering lens can be obtained.

【0026】[0026]

【発明の効果】以上説明した様に、本発明に係るレンズ
芯取機およびレンズ芯取り方法によれば、クランプした
状態での偏芯を計測し、そのままメカニカルな動作制御
のみで、偏芯を除去した状態で加工を行うことにより、
補正値どおりにレンズを加工できる。また、レンズ光学
中心軸のズレのみを基準として補正加工するので、コバ
面を押圧してレンズ光学中心軸の調整をする必要がない
ために加工が短時間ですむ。さらに、クランプしたまま
測定および加工をするので、レンズがズレない。また、
従来のNCタイプの芯取り機に偏芯測定器および演算装
置のみを付加する構成で実現でき、簡素かつメンテナン
ス上も有利である。
As described above, according to the lens centering machine and the lens centering method of the present invention, the eccentricity is measured in a clamped state, and the eccentricity can be measured by only mechanical operation control. By processing in the removed state,
The lens can be processed according to the correction value. In addition, since the correction processing is performed using only the deviation of the lens optical central axis as a reference, it is not necessary to press the edge surface to adjust the lens optical central axis, and thus the processing can be performed in a short time. Furthermore, since the measurement and processing are performed with the lens clamped, the lens does not shift. Also,
It can be realized by a configuration in which only an eccentricity measuring device and a computing device are added to a conventional NC type centering machine, which is simple and advantageous in terms of maintenance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を示す概念図である。FIG. 1 is a conceptual diagram showing the present invention.

【図2】aおよびbは本発明を示す部分平面図および部
分断面図である。
2A and 2B are a partial plan view and a partial sectional view showing the present invention.

【図3】実施例1を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing a first embodiment.

【図4】実施例1の変形例を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing a modified example of the first embodiment.

【図5】実施例2を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a second embodiment.

【図6】従来例を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 光軸偏芯測定器 2 ワークレンズ 3 下ベル軸 4 上ベル軸 5 軸回転モーター 6 演算装置 7 モータードラバー 8 砥石 9 テーブル駆動モーター 10 移動テーブル 1 Optical axis eccentricity measuring device 2 Work lens 3 Lower bell shaft 4 Upper bell shaft 5 Axis rotation motor 6 Arithmetic device 7 Motor driver 8 Grinding stone 9 Table drive motor 10 Moving table

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被加工レンズを挟持する回転可能な中空
の固定下ベル軸と、該下ベル軸の同一軸線上に設けられ
た上下かつ回転可能な中空の上ベル軸と、光源と、該光
源よりの光線を前記上下ベル軸の中空を通して被加工レ
ンズに反射または透過させることにより偏芯を測定する
偏芯測定器と、該偏芯測定器に接続された演算装置と、
前記下ベル軸を回転駆動する回転駆動装置と、前記上下
ベル軸と平行な砥石軸に取り付けられた回転する砥石
と、前記上下ベル軸と砥石軸との軸間距離を変化させる
移動駆動装置と、前記演算装置の補正値に応答して前記
回転駆動装置を制御する回転制御装置と、前記上下ベル
軸の回転に同期しつつ演算装置の補正値に応答して前記
移動駆動装置を制御する移動制御装置とから構成したこ
とを特徴とするレンズ芯取機。
1. A rotatable fixed lower bell shaft for sandwiching a lens to be processed, an upper and lower hollow upper bell shaft provided on the same axis of the lower bell shaft, and a light source, An eccentricity measuring device for measuring eccentricity by reflecting or transmitting a light beam from a light source through the hollow of the upper and lower bell shafts to the lens to be processed, and an arithmetic unit connected to the eccentricity measuring device,
A rotary drive device that rotationally drives the lower bell shaft, a rotating grindstone attached to a grindstone shaft that is parallel to the upper and lower bell shafts, and a movement drive device that changes an axial distance between the upper and lower bell shafts and the grindstone shaft. A rotation control device that controls the rotary drive device in response to a correction value of the arithmetic device; and a movement that controls the movement drive device in response to the correction value of the arithmetic device while synchronizing with the rotation of the upper and lower bell shafts. A lens centering machine comprising a control device.
【請求項2】 被加工レンズの芯取りを行うにあたり、
挟持された被加工レンズの光学中心軸とベル軸の回転軸
との偏芯量を測定し、該偏芯量から算出した補正値に基
づいて被加工レンズの回転量と同期させつつ砥石軸を制
御しながら移動させ、被加工レンズの光学中心軸に対し
て同心円状の砥石加工面を形成することを特徴とするレ
ンズ芯取り方法。
2. When centering a lens to be processed,
The amount of eccentricity between the optical center axis of the sandwiched lens to be processed and the rotation axis of the bell shaft is measured, and the grindstone axis is synchronized with the amount of rotation of the lens to be processed based on the correction value calculated from the amount of eccentricity. A method for centering a lens, characterized in that a grindstone processing surface that is concentric with respect to an optical center axis of a lens to be processed is formed while being controlled.
JP34176593A 1993-12-10 1993-12-10 Lens centering machine and lens centering method Expired - Fee Related JP3452618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34176593A JP3452618B2 (en) 1993-12-10 1993-12-10 Lens centering machine and lens centering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34176593A JP3452618B2 (en) 1993-12-10 1993-12-10 Lens centering machine and lens centering method

Publications (2)

Publication Number Publication Date
JPH07164294A true JPH07164294A (en) 1995-06-27
JP3452618B2 JP3452618B2 (en) 2003-09-29

Family

ID=18348594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34176593A Expired - Fee Related JP3452618B2 (en) 1993-12-10 1993-12-10 Lens centering machine and lens centering method

Country Status (1)

Country Link
JP (1) JP3452618B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11198013A (en) * 1998-01-09 1999-07-27 Olympus Optical Co Ltd Centering and edging machine
JP2000153436A (en) * 1998-11-17 2000-06-06 Olympus Optical Co Ltd Lens centering machine
JP2000176810A (en) * 1998-12-08 2000-06-27 Olympus Optical Co Ltd Lens-centering and edging method and centering and edging machine, and centering device using these method and machine
CN110539226A (en) * 2019-08-20 2019-12-06 扬州辰亚光学科技有限公司 Chamfering tool for optical part research and development
CN112238160A (en) * 2019-07-16 2021-01-19 武汉优光科技有限责任公司 Device and method for modulating tangent circle hollow retroreflector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11198013A (en) * 1998-01-09 1999-07-27 Olympus Optical Co Ltd Centering and edging machine
JP2000153436A (en) * 1998-11-17 2000-06-06 Olympus Optical Co Ltd Lens centering machine
JP2000176810A (en) * 1998-12-08 2000-06-27 Olympus Optical Co Ltd Lens-centering and edging method and centering and edging machine, and centering device using these method and machine
CN112238160A (en) * 2019-07-16 2021-01-19 武汉优光科技有限责任公司 Device and method for modulating tangent circle hollow retroreflector
CN110539226A (en) * 2019-08-20 2019-12-06 扬州辰亚光学科技有限公司 Chamfering tool for optical part research and development

Also Published As

Publication number Publication date
JP3452618B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
JP3598534B2 (en) Aspherical surface processing equipment
US6065338A (en) Machine for machining workpieces
CN106643466B (en) Bridge cylindricity measuring instrument and working method thereof
JP3452618B2 (en) Lens centering machine and lens centering method
JP6187742B2 (en) Eyeglass lens processing equipment
JPH04233403A (en) Inspecting apparatus for rotating symmetrical workpiece
JP3819141B2 (en) Polishing equipment
JPS63501938A (en) Zero position adjustment method for cylindrical grinder and device for implementing the method
JP5591025B2 (en) Centering method and centering device, lens centering method, lens centering device, frame cutting method and frame cutting device
JPH01277731A (en) Method and apparatus for measuring eccentricity of waveguide buried in cylindrical connector pin
JP3371166B2 (en) Centering equipment for glass master
JP2019015704A (en) Cam profile measurement device
JP3920446B2 (en) Shape measuring device
JP6187743B2 (en) Eyeglass lens processing equipment
JPS61156022A (en) Automatic spectacle lens grinder
JP2000186976A (en) Eccentricity measuring method and eccentricity measuring device for optical lens
JP2005219183A (en) Lens centering and edging method and its machining device
JPS60259365A (en) Lens centering device
JPH01169334A (en) Dynamic balancer
JPH0323302B2 (en)
JP2002131603A (en) Centering working machine for lens frame
JP3333245B2 (en) Lens alignment machine and lens alignment method
JP2000237956A (en) Machining device
JP3483803B2 (en) Lens shape measuring machine
JPH1026523A (en) Diameter measuring method, diameter working and measuring method and instrument, and work centering device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees