JPH0716425B2 - Transesterification method for fats and oils - Google Patents

Transesterification method for fats and oils

Info

Publication number
JPH0716425B2
JPH0716425B2 JP62123543A JP12354387A JPH0716425B2 JP H0716425 B2 JPH0716425 B2 JP H0716425B2 JP 62123543 A JP62123543 A JP 62123543A JP 12354387 A JP12354387 A JP 12354387A JP H0716425 B2 JPH0716425 B2 JP H0716425B2
Authority
JP
Japan
Prior art keywords
reaction
lipase
fats
oils
transesterification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62123543A
Other languages
Japanese (ja)
Other versions
JPS63287492A (en
Inventor
和広 中村
佳卓 廣田
秀季 横道
義治 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP62123543A priority Critical patent/JPH0716425B2/en
Publication of JPS63287492A publication Critical patent/JPS63287492A/en
Publication of JPH0716425B2 publication Critical patent/JPH0716425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリパーゼ(脂質分解酵素)を用いる油脂類のエ
ステル交換反応方法に関する。更に詳しくは、十分なエ
ステル合成活性を有するリパーゼ又はリパーゼを含有す
る酵素製剤を用いて油脂と脂肪酸又は脂肪酸エステルと
のエステル交換反応、油脂相互のエステル交換反応、油
脂とアルコール類とのエステル交換反応などを行う方法
に関するものである。
TECHNICAL FIELD The present invention relates to a method for transesterification of fats and oils using a lipase (lipolytic enzyme). More specifically, a transesterification reaction between fats and oils and fatty acids or fatty acid esters, a transesterification reaction between fats and oils, a transesterification reaction between fats and oils and alcohols, using a lipase or an enzyme preparation containing lipase having sufficient ester synthesis activity It is about how to do etc.

油脂類のエステル交換反応は、マーガリン、ショートニ
ング等の食用加工油脂の製造において、水素添加と並ぶ
重要な加工技術である。
The transesterification reaction of oils and fats is an important processing technology along with hydrogenation in the production of edible oils and fats such as margarine and shortening.

〔従来の技術〕[Conventional technology]

油脂類のエステル交換反応は、従来より化学的な方法に
より行われてきた。即ちアルカリ金属、アルカリ金属ア
ルコラート、アルカリ金属水酸化物等のアルカル性物質
や、各種金属塩類を触媒として用いる方法により行われ
きた。しかしながら、この方法においては、油脂中の脂
肪酸の配置に関しては、無差別分布の法則に従った再配
列が起こるため、得られる油脂に結合する脂肪酸の配置
の位置については特異性が全く認められない。即ち、従
来の化学的方法ではグリセリドの結合脂肪酸の位置につ
いて非選択的である。この性質は、通常のマーガリン、
ショートニング等の食用加工油脂の製造を目的とする場
合に於いては、油脂の物理的性質を改良できる効果をも
たらすことがある。
The transesterification reaction of fats and oils has been conventionally performed by a chemical method. That is, it has been carried out by a method using an alcal substance such as an alkali metal, an alkali metal alcoholate or an alkali metal hydroxide, or various metal salts as a catalyst. However, in this method, regarding the arrangement of fatty acids in oils and fats, rearrangement occurs according to the law of indiscriminate distribution, so that no specificity is observed in the position of the arrangement of fatty acids bound to the obtained oils and fats. . That is, conventional chemical methods are non-selective with respect to the position of bound fatty acids in glycerides. This property is normal margarine,
In the case of producing an edible processed oil / fat such as shortening, it may bring about an effect of improving physical properties of the oil / fat.

しかしながら、特有のグリセリド組成を有する油脂の製
造を目的とする場合には、こうした従来の非選択的な方
法ではなし得なかった。ここでいう特有のグリセリド組
成とは、例えば天然のカカオ脂のように、大部分のグリ
セリドが対称構造を有する様な場合である。最近こうし
た油脂の製造を意図する場合に、従来の非選択的な化学
的方法にかえて、油脂のエステル交換反応を位置選択的
に行わしめる方法が開発されてきている。
However, such conventional non-selective methods cannot be used for the purpose of producing fats and oils having a unique glyceride composition. The unique glyceride composition as used herein is a case where most glycerides have a symmetrical structure, such as natural cacao butter. Recently, in the case of intending to produce such fats and oils, a method for regioselectively carrying out the transesterification reaction of fats and oils has been developed instead of the conventional non-selective chemical method.

即ち、本来油脂を加水分解する酵素であるリパーゼを用
いて油脂のエステル交換を位置選択的に行わしめようと
するものである(特開昭52−104506号公報)。この方法
に従えば、リパーゼを活性化させるため、反応系中に水
分が存在する事を必須の条件としている。この水分量
は、0.2〜1.0%と少量ではあるが、リパーゼ本来の性質
により、油脂の加水分解が必然的に起こり、ジグリセリ
ドの副成による交換脂の収率の低下を避けることが出来
ない。
That is, it is intended to carry out regioselective transesterification of fats and oils using lipase, which is an enzyme that originally hydrolyzes fats and oils (JP-A-52-104506). According to this method, the presence of water in the reaction system is an essential condition for activating the lipase. Although this water content is as small as 0.2 to 1.0%, due to the inherent property of lipase, hydrolysis of oils and fats inevitably occurs, and the yield of exchanged fats due to by-product diglyceride cannot be avoided.

更に、副生成物の生成を低減させる目的で、水分含量を
0.1%以下に低下させて反応させる試みも提案されてい
るが、水分量の低下は実質的に反応速度の低下をきた
し、実用上は得策ではない(特開昭55−71797号公
報)。
In addition, the water content is reduced to reduce the production of by-products.
Attempts have been made to reduce the amount of water to 0.1% or less for the reaction, but the reduction of the water content substantially lowers the reaction rate, which is not practical in practice (Japanese Patent Laid-Open No. 55-71797).

更にエステル交換速度を増大させる方法として、反応工
程を分解との合成の二段階に分けて行う方法の提案もあ
るが(特開昭60−19495号公報、特開昭60−203196号公
報)、反応の制御、特に分解工程の制御に難点がある。
該方法では、ジグリセリドに着目した点は興味あるが、
分解工程でジグリセリドを選択的に作る事は技術的に困
難を要し、モノグリセリド、グリセリンへの分解を生じ
ると同時に、未分解のトリグリセリドがなお多く残存す
る。更に、ジグリセリドの非酵素的転移により生ずる1,
3−ジグリセリドの存在により、第二段の合成工程での
目的とするエステル交換物の収量の低下が避けられな
い。また第二段の合成反応速度は通常のエステル交換速
度に比して十分であるとは言えない。こうした観点から
工程操作の複雑化は避けられないものと判断される。
Further, as a method for increasing the transesterification rate, there is also a proposal of a method in which the reaction step is divided into two steps of decomposition and synthesis (JP-A-60-19495, JP-A-60-203196), There are difficulties in controlling the reaction, especially in the decomposition process.
In the method, it is interesting to focus on diglyceride,
It is technically difficult to selectively produce diglyceride in the decomposition step, and while decomposition to monoglyceride and glycerin occurs, a large amount of undecomposed triglyceride remains. In addition, 1, resulting from the non-enzymatic transfer of diglycerides,
The presence of 3-diglyceride inevitably reduces the yield of the desired transesterification product in the second synthetic step. Further, the second-stage synthetic reaction rate is not sufficient as compared with the usual transesterification rate. From this point of view, it is inevitable that the process operation becomes complicated.

以上の様に、リパーゼによる油脂類のエステル交換反応
は、前述の化学的な方法に比べ特徴的且つ有利な点を持
つ反面、未だ解決せねばならない多くの問題点があり、
工業的に実施するためには、これらを解決する必要があ
る。
As described above, the transesterification reaction of fats and oils with lipase has a characteristic and advantageous point as compared with the above-mentioned chemical method, but on the other hand, there are many problems to be solved,
In order to carry out industrially, it is necessary to solve these.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

産業上の経済的な面からみると、こうした反応を触媒す
るために必要な酵素の価格は未だに非常に高価であり、
該反応の工業化に当たっては、使用する酵素の量を低減
するか或いは回収して繰り返し使用することが前提とな
る。かかる実状にあって、酵素量の低減の試みは実質的
に反応速度の低下をきたし、反応装置の巨大化及び生産
効率の低下をきたすものであり、また回収再使用にあた
っては、酵素の経時的な劣化は避けることが出来ず、一
定重量の酵素から生産可能なエステル交換物の量はおの
ずと限界がある。
From an industrial economic perspective, the price of the enzyme needed to catalyze these reactions is still very high,
In industrialization of the reaction, it is premised that the amount of the enzyme used is reduced or recovered and repeatedly used. Under such circumstances, an attempt to reduce the amount of the enzyme causes a substantial decrease in the reaction rate, resulting in enormous reaction equipment and a decrease in production efficiency. Deterioration is unavoidable, and the amount of transesterification product that can be produced from a given weight of enzyme is naturally limited.

このように、従来の技術では実質的な面での反応速度、
及び経済的な面での酵素の耐久性の両立を計ったものは
未だ認められない。
As described above, in the conventional technique, the reaction speed in a substantial aspect,
And, it is not recognized that the enzyme has both durability in terms of economy.

〔問題点を解決するための手段〕[Means for solving problems]

かかる実状において、本発明者らは、油脂の加水分解を
抑制し、エステル交換のみを効率よく且つ経済的に行わ
しめる方法について鋭意検討し、上記問題点を解決する
目的で、リパーゼ又はリパーゼを含有する酵素製剤(以
後、リパーゼ剤と略称する)によるエステル交換方法
と、リパーゼの持つ特徴について種々検討した結果、リ
パーゼ剤の有効な使用方法を見い出し本発明の完成に至
った。
In such an actual situation, the present inventors diligently studied a method of suppressing the hydrolysis of fats and oils, and efficiently and economically performing only transesterification, and in order to solve the above problems, a lipase or a lipase was contained. As a result of various studies on the method of transesterification using the enzyme preparation (hereinafter, abbreviated as lipase agent) and the characteristics of lipase, an effective method of using the lipase agent was found, and the present invention was completed.

即ち、本発明は、リパーゼ又はリパーゼを含有する酵素
製剤を用いて油脂と脂肪酸又は脂肪酸エステルとのエス
テル交換反応、油脂相互のエステル交換反応、又は油脂
とアルコール類とのエステル交換反応を行うに際して、
リパーゼ又はリパーゼを含有する酵素製剤を、分解活性
として500〜20,000unit/反応基質重量(g)及び合成活
性として0.05unit以上/反応基質重量(g)となるよう
に濃度調整してエステル交換反応を行うことを特徴とす
る、油脂類のエステル交換反応方法に関するものであ
る。
That is, the present invention, when performing the transesterification reaction of fats and oils and fatty acids or fatty acid esters using a lipase or enzyme preparation containing lipase, transesterification reaction of fats and oils, or transesterification reaction of fats and alcohols,
The transesterification reaction is performed by adjusting the concentration of lipase or an enzyme preparation containing lipase so that the decomposition activity is 500 to 20,000 units / reactive substrate weight (g) and the synthetic activity is 0.05 unit or more / reactive substrate weight (g). The present invention relates to a method for transesterification of fats and oils, which is characterized in that it is carried out.

即ち、本発明は、油脂と脂肪酸又は脂肪酸エステルのエ
ステル交換反応、又は油脂相互のエステル交換反応、又
は油脂とアルコール類とのエステル交換反応を、高濃度
のリパーゼ剤の存在下で行う方法に関するものである。
That is, the present invention relates to a method for performing a transesterification reaction of fats and oils with fatty acids or fatty acid esters, or a transesterification reaction of fats and oils with each other, or a transesterification reaction of fats and oils with alcohols in the presence of a high-concentration lipase agent. Is.

リパーゼが加水分解のみならず逆反応である合成反応を
も触媒することは、岩井、辻坂等の先駆的研究により明
らかとなっている(M.Iwai,Y.Tsujisaka,J.Fukumoto,J.
Gen.Appl.Microbiol.,10,13(1964)参照)。本発明者
らはこの実験事実をもとに油脂類のエステル交換反応に
ついて酵素化学及び反応工学の立場から解析を行った結
果、ジグリセリドと酵素の複合体が反応に関与してお
り、エステル交換速度が次式で表されることを見い出し
た。
It has been revealed by pioneering research by Iwai, Tsujisaka, etc. that lipase catalyzes not only hydrolysis but also a synthetic reaction which is a reverse reaction (M. Iwai, Y. Tsujisaka, J. Fukumoto, J.
Gen. Appl. Microbiol., 10, 13 (1964)). The present inventors analyzed the transesterification reaction of oils and fats based on this experimental fact from the viewpoint of enzyme chemistry and reaction engineering. As a result, the complex of diglyceride and enzyme was involved in the reaction, and the transesterification rate was It has been found that is expressed by the following equation.

V=k〔E・DG〕〔FA〕 ここkは総括反応速度定数、〔FA〕は脂肪酸濃度、〔E
・DG〕はジグリセリド・酵素複合体濃度を表す。kは反
応系内の水分と酵素濃度に大きく依存するが、水分量の
増加のみでは遊離のジグリセリドの増加のみを助長する
結果となり、実質的なエステル交換反応速度の増加は認
められないばかりでなく、複雑な脱水工程を伴うことが
必要となる。一方、酵素濃度の増加は反応系内の遊離の
ジグリセリドの増加を抑制し、上記の速度式から明らか
なようにエステル交換反応速度の増加を可能ならしめ
る。更に驚くべきことに、反応系内の酵素濃度を増加さ
せることにより、機構は明らかではないが、酵素相互の
安定化作用が発現すると考えられ、酵素の経時的な劣化
によるエステル交換活性の低下を大幅に改善できること
が明らかとなった。
V = k [E · DG] [FA] where k is the overall reaction rate constant, [FA] is the fatty acid concentration, and [E]
・ DG] represents the concentration of diglyceride / enzyme complex. k greatly depends on the water content and the enzyme concentration in the reaction system, but an increase in the water content only promotes an increase in free diglyceride, and not only a substantial increase in the transesterification reaction rate is not observed. However, it is necessary to involve a complicated dehydration process. On the other hand, the increase of the enzyme concentration suppresses the increase of free diglyceride in the reaction system, and enables the increase of the transesterification reaction rate as is clear from the above rate equation. Even more surprisingly, the mechanism is not clear by increasing the enzyme concentration in the reaction system, but it is considered that the mutual stabilizing action of the enzymes is expressed, and the decrease of the transesterification activity due to the deterioration of the enzyme over time is suppressed. It became clear that it could be greatly improved.

更に本発明者らは各種酵素のエステル交換速度が異なる
ことに着目し、ジグリセリドからトリグリセリドを合成
する酵素活性について測定方法を開発し試験した結果、
分解活性に比してトリグリセリド合成活性が著しく高い
ものがよりエステル交換性速度が大きいという事実を見
い出した。
Furthermore, the present inventors have focused on the fact that the transesterification rates of various enzymes are different, and as a result of developing and testing a measuring method for the enzyme activity of synthesizing triglyceride from diglyceride,
It was found that those having a significantly higher triglyceride synthesis activity than the decomposition activity had a higher transesterification rate.

本発明者らは、このように知見に基づいて更に詳細に研
究を進めた結果、本発明を完成したのである。
The present inventors have completed the present invention as a result of further detailed research based on these findings.

本発明の方法によれば、複雑な反応工程を要することな
く一段の反応により大幅な時間の短縮が可能となり、且
つ基質の化水分解による目的成分の収率低下をきたすこ
となく、更にリパーゼ剤(リパーゼ又はリパーゼを含有
する酵素製剤)のエステル交換活性の低下を抑制し、リ
パーゼ剤の回収使用回数を増大させる事ができる。
According to the method of the present invention, it is possible to significantly reduce the time by one-step reaction without requiring a complicated reaction step, and without causing a decrease in the yield of the target component due to decomposition of the substrate by water, and a further lipase agent. It is possible to suppress a decrease in transesterification activity of (lipase or an enzyme preparation containing lipase) and increase the number of times of collecting and using the lipase agent.

本発明で用いるリパーゼ剤としては市販のリパーゼのま
までもよく、特開昭60−251891号公報記載の活性化リパ
ーゼ製剤、或いは必要に応じて各種担体に保持された固
定化リパーゼ製剤の何れも用いる事ができるが、好まし
くは分解活性に対する合成活性の比が1×10-4以上のも
のを用いるのが良い。また必要以上のリパーゼ剤の存在
は、反応系のスラリー濃度の増加により作業性を損なう
ため好ましくない。適切な酵素濃度としては、合成活性
として0.05unit以上/反応基質重量(g)及び分解活性
として500〜20,000unit/反応基質重量(g)と、就中、
1,000〜10,000unit/反応基質重量(g)が好ましい。
As the lipase agent used in the present invention, commercially available lipase may be used as it is, and any of the activated lipase preparations described in JP-A-60-251891 or an immobilized lipase preparation retained on various carriers as necessary is used. However, it is preferable to use one having a ratio of synthetic activity to decomposition activity of 1 × 10 −4 or more. Further, the presence of an excessive amount of lipase agent is not preferable because the workability is impaired due to an increase in the slurry concentration of the reaction system. An appropriate enzyme concentration is 0.05 unit or more as synthetic activity / reactive substrate weight (g) and 500-20,000 unit as reactive activity / reactive substrate weight (g).
1,000 to 10,000 units / reaction substrate weight (g) is preferable.

エステル交換反応にあたりリパーゼ剤を活性化するた
め、反応系内の水分量を反応基質1重量部に対して0.00
5〜0.2重量部、好ましくは0.01〜0.1重量部とすること
が望ましい。
In order to activate the lipase agent in the transesterification reaction, the water content in the reaction system should be 0.00 based on 1 part by weight of the reaction substrate.
It is desirable that the amount is 5 to 0.2 parts by weight, preferably 0.01 to 0.1 parts by weight.

リパーゼ剤の分解性については、福本らの方法(J.Gen.
Appl.Microbiol.,98,353(1963)に従い、オリーブ油乳
化液5mlと0.1Mリン酸緩衝液4mlに、所定量の酵素(リパ
ーゼ剤)を加え37℃にて30分間反応した時に生成する脂
肪酸の量をオレイン酸として1μmol/minに相当するも
のを1unitとした。また合成活性とは、下記参考例1及
び参考例2に記載の方法に従い、オリーブ油より分解精
製によって得た高純度ジグリセリドア0.9gとオレイン0.
1gとを4mlのn−ヘキサンに溶解させ、分解活性として6
00unitの酵素を加え、40℃にて1時間反応した時に生成
するトリグリセリドの量をトリオレインとして1μmol/
Hrに相当するものを1unitとした。
Regarding the degradability of lipase agents, the method of Fukumoto et al. (J. Gen.
According to Appl. Microbiol., 98, 353 (1963), add a predetermined amount of enzyme (lipase agent) to 5 ml of olive oil emulsion and 4 ml of 0.1M phosphate buffer and measure the amount of fatty acid produced when reacting at 37 ° C for 30 minutes. One unit of oleic acid corresponding to 1 μmol / min was used. In addition, the synthetic activity means 0.9 g of high-purity diglyceride obtained by decomposing and purifying olive oil according to the method described in Reference Example 1 and Reference Example 2 and olein.
Dissolve 1 g and 4 ml of n-hexane to obtain 6 as decomposition activity.
The amount of triglyceride produced when reacting at 40 ° C for 1 hour with the addition of 00 unit of enzyme was 1 μmol / triolein.
The one equivalent to Hr was set as 1 unit.

また本発明に用いるリパーゼ剤用のリパーゼとしては、
位置特異性に優れたリゾプス(Rhizopus)属、アスペル
ギルス(Aspergillus)属、ムコール(Mucor)属、脂肪
酸特異性を有するジオトリケム(Geotrichum)属、位置
特異性を全く示さないキャンジダ(Candida)属等の微
生物起源のリパーゼ及び膵臓リパーゼ等の動物起源のリ
パーゼ等が挙げられる。
Further, as the lipase for the lipase agent used in the present invention,
Microorganisms such as Rhizopus genus, Aspergillus genus, Mucor genus, Geotrichum genus having fatty acid specificity, and Candida genus having no position specificity, which have excellent position specificity Examples include lipases of animal origin and lipases of animal origin such as pancreatic lipase.

必要に応じてリパーゼと共に公知の担体を用いることが
出来る。担体としては、セライト、ケイソウ土、カオリ
ナイト、シリカゲル、パーライト、ガラス繊維、モレキ
ュリーシーブ、活性炭、炭酸カルシウム等のエステル交
換反応系に不溶性の無機担体、及び、セルロースパウダ
ー、イオン交換樹脂、キトサン等の有機高分子のような
リパーゼ活性に悪影響を与えないものであれば何れも使
用出来る。また、担体の形状としては、粉末状、顆粒
状、繊維状、スポンジ状等種々有るが、その何れでも使
用できる。
If necessary, a known carrier can be used together with the lipase. As the carrier, Celite, diatomaceous earth, kaolinite, silica gel, perlite, glass fiber, molecular sieve, activated carbon, inorganic carriers insoluble in transesterification reaction system such as calcium carbonate, and cellulose powder, ion exchange resin, chitosan, etc. Any organic polymer such as the above organic polymers can be used as long as it does not adversely affect the lipase activity. Further, the carrier may have various shapes such as powder, granules, fibers and sponge, and any of them may be used.

本発明で用いる油脂としては、一般的な植物性油脂、動
物性油脂もしくは加工油脂、あるいは、これらの混合油
脂が挙げられる。これらの例としては、大豆油、綿実
油、菜種油、コーン油、サフラワー油、ひまわり油、ヤ
シ油、牛脂、ラード、魚油等が挙げられる。更にエステ
ル交換反応でカカオバター代用脂の製造を目的とする場
合は、グリセリドの2位のオレイン酸を多量に含有する
油脂、例えば、パーム油、オリーグ油、高オレイン酸ひ
まわり油、高オレイン酸サフラワー油、椿油、さざんか
油、サル脂、シア脂、イリッペ脂、コクム脂、モーラ
脂、フルワラ脂、ボルネオタロー脂、マンゴー核油、又
はこれらの分別油脂を用いることができる。
Examples of the fats and oils used in the present invention include general vegetable fats and oils, animal fats and oils or processed fats and oils, or mixed fats and oils thereof. Examples of these include soybean oil, cottonseed oil, rapeseed oil, corn oil, safflower oil, sunflower oil, coconut oil, beef tallow, lard, fish oil and the like. Further, in the case of producing a cocoa butter substitute fat by a transesterification reaction, fats and oils containing a large amount of oleic acid at the 2-position of the glyceride, such as palm oil, oleic oil, high oleic sunflower oil, high oleic acid succinate, etc. Flower oil, camellia oil, azalea oil, monkey butter, shea butter, illipe butter, kokum butter, mola butter, fulwalla butter, borneo tallow butter, mango kernel oil, or fractionated oils or fats thereof can be used.

エステル交換は油脂と脂肪酸、油脂と脂肪酸エステル、
油脂と油脂、又は油脂とアルコール類を反応させる事に
よって行われる。脂肪酸としては、炭素数2〜24の直鎖
で通常自然界に存在するもの、例としては酢酸、カプリ
ル酸、パルミチン酸、ステアリン酸等の飽和脂肪酸ある
いはオレイン酸、リノール酸、エイコサペンタエン酸等
の不飽和脂肪酸等も用いることができる。
Transesterification is performed by using fats and oils, fatty acids and fatty acid esters,
It is performed by reacting fats and oils or fats and alcohols. As the fatty acid, a straight chain having 2 to 24 carbon atoms and usually existing in nature, for example, a saturated fatty acid such as acetic acid, caprylic acid, palmitic acid, and stearic acid, or an unsaturated acid such as oleic acid, linoleic acid, and eicosapentaenoic acid is used. Saturated fatty acids and the like can also be used.

脂肪酸エステルとしては、前記脂肪酸(炭素数2〜24の
直鎖脂肪酸)と炭素数1〜6の直鎖飽和一価アルコール
のエステル化物が用いられる。例えば、パルミチン酸メ
チル、パルミチン酸エチル、ステアリン酸メチル、ステ
アリン酸エチルなどを使用することができる。
As the fatty acid ester, an esterified product of the above fatty acid (linear fatty acid having 2 to 24 carbon atoms) and linear saturated monohydric alcohol having 1 to 6 carbon atoms is used. For example, methyl palmitate, ethyl palmitate, methyl stearate, ethyl stearate and the like can be used.

アルコール類としては、炭素数1〜24の直鎖脂肪族一価
アルコールを使用することが出来る。
As the alcohol, a linear aliphatic monohydric alcohol having 1 to 24 carbon atoms can be used.

本発明のエステル交換反応は、必要に応じてリパーゼに
対して不活性な溶剤中にて実施する事ができる。好まし
い溶剤としては、n−ヘキサン、石油エーテル、石油ベ
ンジン等が挙げられる。溶剤の好適な使用量は、例えば
脂肪酸1重量部に対して1〜10重量部程度である。本発
明における反応温度は通常の酵素反応と同様に20〜70℃
で行うことができる。また必要に応じて反応系内の余剰
の水分を乾燥窒素等の不活性ガスを吹き込むことによっ
て反応系外に排除することも副生成物の低減には効果的
である。
The transesterification reaction of the present invention can be carried out in a solvent inert to lipase, if necessary. Preferred solvents include n-hexane, petroleum ether, petroleum benzine and the like. A suitable amount of the solvent used is, for example, about 1 to 10 parts by weight with respect to 1 part by weight of the fatty acid. The reaction temperature in the present invention is 20 to 70 ° C. as in the usual enzyme reaction.
Can be done at. It is also effective in reducing the by-products that the excess water in the reaction system is blown out of the reaction system by blowing an inert gas such as dry nitrogen, if necessary.

エステル交換反応を終了した反応混合物から、脂肪酸、
少量のモノグリセリド、ジグリセリド等の部分エステル
及び未反応のアルコール等を液−液抽出、アルカリ中
和、又は真空もしくは分子蒸留等、従来の分離精製手段
を単独又はこれらを適宜組み合わせて使用することによ
り容易に除去可能であり、かくして精製されたエステル
交換物を得ることができる。
From the reaction mixture that has completed the transesterification reaction, fatty acid,
Easy to use small amount of monoglyceride, partial ester such as diglyceride, unreacted alcohol, etc. by liquid-liquid extraction, alkali neutralization, vacuum or molecular distillation, etc. using conventional separation and purification means alone or in appropriate combination. It is possible to obtain a purified transesterification product.

〔発明の効果〕〔The invention's effect〕

本発明の方法は、リパーゼの持つ合成活性を十分に発揮
させる為のものであり、リパーゼの合成活性が、酵素濃
度に比例することを有効に活用したものである。本発明
のように反応基質に対しては酵素濃度が十分高い場合に
は、従来副反応である加水分解を促進する水分が反応系
中に多量に存在しても、何等の副生物の増加を見ること
なく著しい反応速度の増加がみられる。また、初期速度
ばかりでなくエステル交換反応の平衡に到達するまでの
時間(終期速度)が予期した以上に短絡されるという効
果がみられる。
The method of the present invention is for fully exhibiting the synthetic activity of lipase, and effectively utilizes that the synthetic activity of lipase is proportional to the enzyme concentration. When the enzyme concentration is sufficiently high with respect to the reaction substrate as in the present invention, even if a large amount of water that promotes hydrolysis, which is a conventional side reaction, is present in the reaction system, any by-products will increase. A noticeable increase in the reaction rate is seen without looking. In addition, not only the initial velocity but also the time required to reach the equilibrium of the transesterification reaction (final velocity) is short-circuited more than expected.

更に本発明の持つ最も大きな効果は、反応系内のリパー
ゼ剤濃度の十分高くすることによって、酵素相互の安定
化効果が発現し、その結果、経時的な酵素活性の低下が
少なくなり、反応後に回収されたリパーゼ剤の効果的再
使用が可能となり、工業的な規模での実施において酵素
重量あたりの生産性を著しく向上させ、もって経済性を
改良しうる点である。
Furthermore, the greatest effect of the present invention is that by sufficiently increasing the concentration of the lipase agent in the reaction system, the mutual stabilizing effect of the enzymes is expressed, and as a result, the decrease in the enzyme activity over time decreases, and after the reaction, This is the point that the recovered lipase agent can be effectively reused, the productivity per enzyme weight can be remarkably improved and the economical efficiency can be improved in the practice on an industrial scale.

更に本発明は、位置選択的なリパーゼ剤を用いることに
より、例えば安価なパーム油から高価なカカオ代用脂を
効果的に製造することができる。
Furthermore, the present invention can effectively produce an expensive cocoa substitute fat from, for example, inexpensive palm oil by using a regioselective lipase agent.

〔実施例〕〔Example〕

以下に、参考例、実施例、比較例等を挙げ、本発明を更
に詳細に説明する。これらの例中の%、部は、すべて重
量基準である。
Hereinafter, the present invention will be described in more detail with reference to Reference Examples, Examples, Comparative Examples, and the like. All percentages and parts in these examples are by weight.

参考例1(1,2−ジグリセリドの調製) オリーブ油500gと市販酵素1〔大阪細菌研究所製、オリ
パーゼ4S(リゾプス・ジャポニカス起源の菌体内酵
素);分解活性1,500unit/g〕20gと水1,500mlとを混合
し40℃にて3時間撹拌することによりオリーブ油加水分
解物を得た。
Reference Example 1 (Preparation of 1,2-diglyceride) Olive oil 500 g and commercially available enzyme 1 [Olipase 4S (intracellular enzyme of Rhizopus japonicas origin) manufactured by Osaka Bacterial Research Institute; decomposition activity 1,500 unit / g] 20 g and water 1,500 Olive oil hydrolyzate was obtained by mixing with ml and stirring at 40 ° C. for 3 hours.

この加水分解物をジエチルエーテル500mlにて3回抽出
を繰り返し、常法により脱水、溶剤留去の後トリグリセ
リド、ジグリセリド、脂肪酸から成る混合物を得た。イ
アトロスキャン(IATROSCAN)TH−10によるシンクログ
ラフィー法(M.Tanaka et.al.,Lipids vol 15(10),87
2(1980)等参照)によりトリグリセリド、1,2−ジグリ
セリド、1,3−ジグリセリド、脂肪酸等の分析を行っ
た。このとき0.3%硼酸処理シリカゲルロッドを用い、
展開溶剤としてはクロロホルム:アセトン=96:4を用い
た。この時の分析結果は表−1に示した。
This hydrolyzate was repeatedly extracted three times with 500 ml of diethyl ether, dehydrated and distilled off by a conventional method to obtain a mixture of triglyceride, diglyceride and fatty acid. Iatroscan TH-10 synchrography method (M. Tanaka et.al., Lipids vol 15 (10), 87
2 (1980), etc.) to analyze triglycerides, 1,2-diglycerides, 1,3-diglycerides, fatty acids and the like. At this time, use a silica gel rod treated with 0.3% boric acid,
Chloroform: acetone = 96: 4 was used as the developing solvent. The analysis results at this time are shown in Table 1.

ここで得た油分の50gを取り、シリカゲル(Merck社Sili
ca gel 60、200−400Mesh)200gを充填したカラムクロ
マトグラフィーによりn−ヘキサン:ジエチルエーテル
=9:1及び8:2、各1,000mlにより分離し、後の区分に粗
ジグリセリドを得た。得られた粗ジグリセリドの組成は
表−2に示した。
Take 50 g of the oil obtained here and add silica gel (Merck Sili
Ca gel 60, 200-400 mesh) 200 g of column chromatography was used to separate n-hexane: diethyl ether = 9: 1 and 8: 2 (1,000 ml each) to obtain crude diglyceride in the subsequent section. The composition of the obtained crude diglyceride is shown in Table 2.

この粗ジグリセリドを予め硼酸処理をしたフロリジルを
用いたカラムクロマトグラフィーによって精製した。得
られた1,2−ジグリセリドの組成は、表−3に示した。
The crude diglyceride was purified by column chromatography using Florisil which had been previously treated with boric acid. The composition of the obtained 1,2-diglyceride is shown in Table-3.

参考例2(合成活性の測定) 参考例1で得たジグリセリド(表−3の高純度ジグリセ
リド)に対して、ジグリセリド:脂肪酸の比が9:1とな
るようにオレイン酸を混合し、該混合物1gを4mlのn−
ヘキサンに溶解させものに対して市販酵素1、市販酵素
2又は調製酵素の分解活性としてそれぞれ600unit相当
加え、40℃にて反応させた時に生成するトリグリセリド
の量をイアトロスキャンにより定量した。各酵素につい
て1時間反応後に生成するトリグリセリドをトリオレイ
ンとした生成量(μmol)を求め、分解の逆反応である
合成反応の活性として1μmol/Hrを、合成活性1unitと
した。
Reference Example 2 (Measurement of synthetic activity) The diglyceride (high-purity diglyceride in Table 3) obtained in Reference Example 1 was mixed with oleic acid so that the ratio of diglyceride: fatty acid was 9: 1, and the mixture was mixed. 1g to 4ml n-
600 units of each of the commercially available enzyme 1, the commercially available enzyme 2 or the prepared enzyme was added to the product dissolved in hexane as a degrading activity, and the amount of triglyceride produced when reacted at 40 ° C. was quantified by an iatroscan. For each enzyme, the amount of production (μmol) of triglyceride produced after reaction for 1 hour was determined, and 1 μmol / Hr as the activity of the synthetic reaction, which is the reverse reaction of decomposition, was defined as 1 unit of synthetic activity.

それぞれの合成活性及び活性比(分解活性に対する合成
活性の比)は表−4に示した。
The respective synthetic activities and activity ratios (ratio of synthetic activity to decomposition activity) are shown in Table 4.

尚、表−4中の市販リパーゼ1は大阪細菌研究所製のオ
リパーゼ4S(リゾプス・ジャポニカス起源の菌体内酵
素)であり、市販リパーゼ2は田辺製薬製のタリパーゼ
(リゾプス・デレマー起源の菌対外酵素)であり、調製
酵素は下記実施例1に示す通りに、市販リパーゼ2を処
理して調製したリパーゼ剤である。
The commercially available lipase 1 in Table 4 is the lipase 4S (intracellular enzyme derived from Rhizopus japonicas) manufactured by Osaka Bacterial Research Institute, and the commercially available lipase 2 is Talipase manufactured by Tanabe Seiyaku Co., Ltd. Enzyme), and the prepared enzyme is a lipase agent prepared by treating commercially available lipase 2 as shown in Example 1 below.

実施例1 パーム油を溶剤分別して得た中融点部(沃素価32.5)10
0部と市販のステアリン酸(ルナックS−90、ステアリ
ン酸純度95%、花王株式会社製)90部を、40℃にて250
部のn−ヘキサンに溶解させた。該溶液に本出願人によ
る出願に係わる特開昭60−251891号公報記載の方法に従
い市販リパーゼ2〔田辺製薬製、タリパーズ(リゾプス
・デレマー起源の菌対外酵素)、分解活性4800unit/g、
合成活性0.42unit/g〕を処理して得た調製酵素(分解活
性2,500unit/g、合成活性1.20unit/g、分解活性に対す
る合成活性の比4.8×10-4)を50部加え、24時間反応を
行った。この時の分解活性は油脂に対して1,250unit/油
脂重量(g)(以下同じ基準による)(合成活性として
は0.60unit/油脂重量(g))に相当する。またこの時
の反応系内の水分含量は油脂1部に対し0.023部とし
た。
Example 1 Medium melting point portion (iodine value 32.5) obtained by solvent fractionation of palm oil 10
250 parts of 0 parts and commercially available stearic acid (Lunack S-90, 95% stearic acid purity, manufactured by Kao Corporation) at 40 ° C.
Part of n-hexane. According to the method described in Japanese Patent Application Laid-Open No. 60-251891 related to the application by the present applicant, a commercially available lipase 2 [Talipase (Tanabe Seiyaku Co., Ltd., bacterium external enzyme derived from Rhizopus delemer)], decomposition activity 4800 unit / g, was added to the solution.
Synthetic activity 0.42 unit / g] was added and 50 parts of the prepared enzyme (decomposition activity 2,500 unit / g, synthetic activity 1.20 unit / g, ratio of synthetic activity to decomposition activity 4.8 × 10 −4 ) was added for 24 hours. The reaction was carried out. The decomposition activity at this time is equivalent to 1,250 units / weight of oil / fat (g) (hereinafter, based on the same standard) (0.60 unit / weight of oil / fat (g) as synthetic activity). The water content in the reaction system at this time was 0.023 parts per 1 part of oil and fat.

反応終了後に生成物を回収し、シリカゲルカラムクロマ
トグラフィーによりトリグリセリド画分を分取し(展開
溶剤,n−ヘキサン:エチルエーテル=90:10)。分取し
トリグリセリド画分は基準油脂分析試験法の方法に従い
メチルエステルとしてガスクロマトグラフィーによりア
ルキル基組成の分析を行った。
After the reaction was completed, the product was recovered, and the triglyceride fraction was separated by silica gel column chromatography (developing solvent, n-hexane: ethyl ether = 90: 10). The fractionated triglyceride fraction was analyzed for its alkyl group composition by gas chromatography as a methyl ester according to the standard oil and fat analysis test method.

反応によってトリグリセリド中に取り込まれたステアリ
ン酸の量から、次式で表される平衡値を100%とした時
の反応率を算出したエステル交換反応の進行度を調べ
た。この時の反応率は96.3%となり、十分に反応が行わ
れた結果を示していた。
Based on the amount of stearic acid incorporated in the triglyceride by the reaction, the progress of the transesterification reaction was calculated by calculating the reaction rate when the equilibrium value represented by the following formula was 100%. The reaction rate at this time was 96.3%, showing the result that the reaction was sufficiently performed.

反応率%(t時間後)=100×(St−So)/(S∞−So) 上の式において、 St;時間tにおける油脂中のステアリン酸含量 So;反応前の原料油脂中のステアリン酸含量 S∞;1,3ランダム平衡時のステアリン酸含量 を意味する。Reaction rate% (after t hours) = 100 × (St−So) / (S∞−So) In the above formula, St; Stearic acid content in oil / fat at time t So; Stearic acid in raw oil / fat before reaction Content S ∞; 1,3 means the content of stearic acid at random equilibrium.

実施例2 実施例1において反応終了後の酵素を回収し、実施例1
中に記した原料を新たに加えて繰り返し反応させた。こ
の時の反応時間は各回とも24時間で一定とした。
Example 2 In Example 1, the enzyme after the completion of the reaction was recovered,
The raw materials described inside were newly added and the reaction was repeated. The reaction time at this time was constant at 24 hours for each time.

繰り返し10回目迄は何等の活性の低下は認められなかっ
た(反応率100%)。更に繰り返し作用を続けたとこ
ろ、14回目で反応率83%となった。
No decrease in activity was observed up to the 10th repetition (reaction rate 100%). When the action was further repeated, the reaction rate became 83% at the 14th time.

実施例3 パーム油中融点部(沃素価31.5、ジクリセリド含量1.6
%)100部と市販ステアリン酸(ルナックS−90、ステ
アリン酸純度95%、花王株式会社製)90部を40℃にて25
0部のn−ヘキサンに溶解させた。該溶液に市販リバー
ゼ1(大阪細菌研究所製オリパーゼ4S、分解活性1,500u
nit/g、合成活性1.40unit/g、分解活性に対する合成活
性の比9.333×10-4)を40部加え20時間反応させた。こ
の時の合成活性は0.56unit/油脂重量(g)(分解活性
としては600unit/油脂重量(g))に相当した。またこ
の時の反応系内の水分含量は油脂1部に対して0.0214部
とした。
Example 3 Palm oil mid-melting point (iodine value: 31.5, diglyceride content: 1.6)
%) 100 parts and commercially available stearic acid (Lunac S-90, stearic acid purity 95%, manufactured by Kao Corporation) 90 parts at 40 ° C.
It was dissolved in 0 part of n-hexane. Commercially available revertase 1 (Olipase 4S manufactured by Osaka Bacterial Research Institute, decomposition activity 1,500u) was added to the solution.
40 parts of nit / g, synthetic activity 1.40 unit / g, ratio of synthetic activity to decomposition activity 9.333 × 10 −4 ) were added and reacted for 20 hours. The synthetic activity at this time corresponded to 0.56 unit / weight of fat (g) (as decomposition activity 600 unit / weight of fat (g)). The water content in the reaction system at this time was 0.0214 parts to 1 part of oil and fat.

20時間反応後に生成物を回収し、一部は実施例1と同様
な処理を行って得た油脂のステアリン酸含量より反応率
を求めたところ、反応の平衡値100%に到達していた。
更に別の一部をフロリジルカラムクロマトグラフィー
(展開溶剤,n−ヘキサン:ジエチルエーテル=5:5)に
より脂肪酸を除去し、副生するジグリセリド含量を逆相
高速液体クロマトグラフィー(固定相=日立ゲル3057、
日立化成工業株式会社製ODSシリカ、溶離液=アセト
ン:アセトニトリル=5:5)により分析した結果、ジグ
リセリドの増加は4.7%にとどまった。
When the reaction rate was determined from the stearic acid content of the oil and fat obtained by carrying out the same treatment as in Example 1 after recovering the product after reacting for 20 hours, a reaction equilibrium value of 100% was reached.
A further portion was removed by Florisil column chromatography (developing solvent, n-hexane: diethyl ether = 5: 5) to remove the fatty acid, and the diglyceride content produced as a by-product was analyzed by reversed-phase high performance liquid chromatography (stationary phase = Hitachi Gel 3057). ,
As a result of analysis by Hitachi Chemical Co., Ltd. ODS silica, eluent = acetone: acetonitrile = 5: 5), the increase in diglyceride was only 4.7%.

実施例4 実施例3と同様にして市販リパーゼ1の使用量を80部
(合成活性1.02unit/油脂重量(g))、160部(合成活
性2.04unit/油脂重量(g))、320部(合成活性4.08un
it/油脂重量(g))として同様の反応を行った結果、
合成活性unitとして十分な0.2unit以上/油脂重量
(g)を用いた場合には、酵素濃度の比例関係から予期
される以上の短時間の内に反応が平衡に到達することが
認められた。
Example 4 In the same manner as in Example 3, the amount of commercially available lipase 1 used was 80 parts (synthetic activity 1.02 unit / weight of fat (g)), 160 parts (synthetic activity 2.04 unit / weight of fat (g)), 320 parts ( Synthetic activity 4.08un
The same reaction was performed as it / fat weight (g)),
When 0.2 unit or more / fat weight (g), which is sufficient as the synthetic activity unit, was used, it was confirmed that the reaction reached equilibrium within a shorter time than expected from the proportional relationship of the enzyme concentration.

実施例5 実施例3において反応終了後の酵素を回収し、実施例3
中に記した原料を新たに加えて繰り返し反応させた。こ
の時の反応時間は各回とも20時間で一定とした。
Example 5 The enzyme after completion of the reaction in Example 3 was recovered,
The raw materials described inside were newly added and the reaction was repeated. The reaction time at this time was constant at 20 hours for each time.

繰り返し11回目迄は何等の活性の低下は認められなかっ
た(反応率100%)。更に繰り返し使用を続けたとこ
ろ、16回目で反応率85%となった。
No decrease in activity was observed up to the 11th repetition (reaction rate 100%). After further repeated use, the reaction rate became 85% at the 16th time.

実施例6 実施例4で市販リパーゼ1の使用量を160部とした場合
を、実施例5と同様に酵素を回収し、新たに原料と共に
繰り返し反応させた。この時の反応時間は4時間で一定
とした。
Example 6 When the amount of commercial lipase 1 used in Example 4 was set to 160 parts, the enzyme was recovered in the same manner as in Example 5 and repeatedly reacted with the new raw material. The reaction time at this time was constant at 4 hours.

繰り返し80回目迄は何等の活性の低下は認められなかっ
た(反応率100%)。更に繰り返しを続けたところ、120
回目で反応率85%となった。
No decrease in activity was observed up to the 80th repetition (reaction rate 100%). Repeatedly, 120
The reaction rate was 85% at the first time.

比較例1 実施例1において調製酵素の量を10部とした以外は同様
の操作を行った。この時の分解活性は250unit/油脂重量
(g)(合成活性としては0.12unit/油脂重量(g))
であった。またこの時の反応系内の水分含量は油脂1部
に対して0.0048部とした。24時間反応後の反応率は33.6
%にすぎなかった。更に反応を72時間迄継続させること
により反応率は95.8%となったが、実施例5と同様に酵
素を回収し繰り返し72時間反応させたところ3回目で反
応率65%まで低下してしまった。
Comparative Example 1 The same operation as in Example 1 was performed except that the amount of the prepared enzyme was changed to 10 parts. The decomposition activity at this time is 250 unit / weight of fat (g) (as synthetic activity, 0.12 unit / weight of fat (g))
Met. The water content in the reaction system at this time was 0.0048 parts to 1 part of oil and fat. The reaction rate after reacting for 24 hours is 33.6.
It was only%. When the reaction was continued for 72 hours, the reaction rate became 95.8%, but when the enzyme was recovered and repeatedly reacted for 72 hours as in Example 5, the reaction rate dropped to 65% at the third time. .

比較例2 実施例3において市販リパーゼ1の添加量を10部とした
以外は実施例3と同様の操作を行った。この時の合成活
性は0.14unit/油脂重量(g)(分解活性としては150un
it/油脂重量(g))に相当した。また反応系内の水分
含量は油脂に対して0.55%とした。反応時間は96時間
で、反応率99.7%となった。
Comparative Example 2 The same operation as in Example 3 was performed except that the addition amount of the commercially available lipase 1 was changed to 10 parts in Example 3. The synthetic activity at this time is 0.14 unit / weight of fat (g) (150un as decomposition activity)
Equivalent to it / fat weight (g)). The water content in the reaction system was 0.55% with respect to the fat and oil. The reaction time was 96 hours, and the reaction rate was 99.7%.

実施例5と同様に酵素を回収し、新たな原料と共に繰り
返し反応させた。この時の反応時間は96時間で一定とし
た。繰り返し4回目に反応率の急激の低下がみられた
(反応率55%)。
The enzyme was recovered in the same manner as in Example 5 and repeatedly reacted with a new raw material. The reaction time at this time was constant at 96 hours. A rapid decrease in the reaction rate was observed at the fourth repetition (reaction rate 55%).

以上の結果、分解活性として500unit以上/油脂重量
(g)の酵素濃度の十分高い系では、酵素の繰り返し使
用時の活性低下が少なくなり、酵素単位重量あたりのエ
ステル交換物の生産性が向上することが認められた。ま
た合成活性比が十分高いリパーゼ及び又はリパーゼ剤
を、基質とする油脂に対して合成活性として0.2unit以
上/油脂重量(g)の十分な量使用した系では、短時間
で反応が平衡に到達する事が認められた。
As a result, in a system having a sufficiently high enzyme concentration of 500 units or more per weight of fat (g) as a decomposition activity, the activity decrease during repeated use of the enzyme is reduced, and the productivity of transesterified product per unit weight of the enzyme is improved. Was confirmed. In addition, the reaction reached equilibrium in a short time in a system in which a lipase and / or a lipase agent with a sufficiently high synthetic activity ratio was used in a sufficient amount of 0.2 unit or more / fat weight (g) as synthetic activity with respect to the oil or fat as a substrate. It was approved to do.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−203196(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-203196 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リパーゼ又はリパーゼを含有する酵素製剤
を用いて油脂と脂肪酸又は脂肪酸エステルとのエステル
交換反応、油脂相互のエステル交換反応、又は油脂とア
ルコール類とのエステル交換反応を行うに際して、リパ
ーゼ又はリパーゼを含有する酵素製剤を、分解活性とし
て500〜20,000unit/反応基質重量(g)及び合成活性と
して0.05unit以上/反応基質重量(g)となるように濃
度調整してエステル交換反応を行うことを特徴とする、
油脂類のエステル交換反応方法。
1. A lipase for performing a transesterification reaction between a fat and oil and a fatty acid or a fatty acid ester, a transesterification reaction between fats and oils, or a transesterification reaction between a fat and oils and alcohols using a lipase or an enzyme preparation containing a lipase. Alternatively, the enzyme preparation containing lipase is subjected to transesterification by adjusting the concentration such that the decomposition activity is 500 to 20,000 unit / reactive substrate weight (g) and the synthetic activity is 0.05 unit or more / reactive substrate weight (g). Characterized by that
Transesterification method for fats and oils.
【請求項2】分解活性に対する合成活性の比が1×10-4
以上である特許請求の範囲第1項記載の油脂類のエステ
ル交換反応方法。
2. The ratio of synthetic activity to degrading activity is 1 × 10 -4.
The method for transesterifying oils and fats according to claim 1, which is as described above.
【請求項3】リパーゼ又はリパーゼを含有する酵素薬剤
を活性化するため反応系内の水分量を、反応基質1重量
部に対して0.005〜0.2重量部とする特許請求の範囲第1
項又は第2項記載の油脂類のエステル交換反応方法。
3. The amount of water in the reaction system for activating the lipase or the lipase-containing enzyme drug is 0.005 to 0.2 part by weight per 1 part by weight of the reaction substrate.
Item 4. The method for transesterification of fats and oils according to Item 2.
【請求項4】リパーゼ又はリパーゼを含有する酵素薬剤
をエステル交換反応後に繰り返し使用する特許請求の範
囲第1,2又は3項記載の油脂類のエステル交換反応方
法。
4. The method for transesterification of fats and oils according to claim 1, 2 or 3, wherein lipase or an enzyme drug containing lipase is repeatedly used after the transesterification reaction.
JP62123543A 1987-05-20 1987-05-20 Transesterification method for fats and oils Expired - Lifetime JPH0716425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62123543A JPH0716425B2 (en) 1987-05-20 1987-05-20 Transesterification method for fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123543A JPH0716425B2 (en) 1987-05-20 1987-05-20 Transesterification method for fats and oils

Publications (2)

Publication Number Publication Date
JPS63287492A JPS63287492A (en) 1988-11-24
JPH0716425B2 true JPH0716425B2 (en) 1995-03-01

Family

ID=14863197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123543A Expired - Lifetime JPH0716425B2 (en) 1987-05-20 1987-05-20 Transesterification method for fats and oils

Country Status (1)

Country Link
JP (1) JPH0716425B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852009A (en) * 1984-03-19 1998-12-22 The Rockefeller University Compositions, including pharmaceutical compositions, for inhibiting the advanced glycosylation of proteins, and therapeutic methods based thereon
US5612332A (en) * 1984-03-19 1997-03-18 Alteon Inc. Di- and triaminoguanidines, and methods of use
WO1994010326A1 (en) * 1992-10-29 1994-05-11 Loders Croklaan B.V. Enzymic triglyceride conversion
GB9404483D0 (en) * 1994-03-08 1994-04-20 Norsk Hydro As Refining marine oil compositions
US5850840A (en) * 1995-11-15 1998-12-22 Alteon Inc. Methods for measurement and treatment predicated on the presence of advanced glycosylation endproducts in tobacco and its combustion byproducts
US5877217A (en) * 1995-12-26 1999-03-02 Alteon Inc. N-acylaminoalkyl-hydrazinecarboximidamides
US6110968A (en) * 1995-12-26 2000-08-29 The Picower Institute For Medical Research Methods for treatment predicated on the presence of advanced glycosylation endproducts in tobacco and its combustion byproducts
CA2627832C (en) * 1996-03-28 2012-12-11 Dsm Ip Assets B.V. Preparation of microbial polyunsaturated fatty acid containing oil from pasteurised biomass
ATE380877T1 (en) 2001-06-21 2007-12-15 T & T Oleochemie Gmbh METHOD FOR THE ENZYMATIC BREAKDOWN OF OILS AND FATS
DE102006012866B4 (en) * 2006-03-19 2009-04-09 Uic Gmbh Process for the separation of highly volatile components from a mixture of substances and apparatus for carrying out this process
US9150817B2 (en) 2006-04-13 2015-10-06 Nippon Suisan Kaisha, Ltd. Process for preparing concentrated polyunsaturated fatty acid oil
US7566795B2 (en) * 2006-10-06 2009-07-28 Eastman Chemical Company Preparation of retinyl esters

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203196A (en) * 1984-03-26 1985-10-14 Asahi Denka Kogyo Kk Process for ester interchange reaction of fat or oil by lipase

Also Published As

Publication number Publication date
JPS63287492A (en) 1988-11-24

Similar Documents

Publication Publication Date Title
JP3892463B2 (en) Method for producing alkyl ester
US7491522B2 (en) Lipase-catalysed esterification of marine oil
RU2422498C2 (en) Method of producing dioleoyl palmitoyl glyceride
EP0126416B1 (en) Reaction method for transesterifying fats and oils
JPH0338837B2 (en)
JPS6250115B2 (en)
JPH09510091A (en) Essential oil composition
JPH0439995B2 (en)
MX2014006078A (en) Palm oil enriched in unsaturated fatty acids.
RU2528954C2 (en) Method of producing triglyceride composition
JPH0716425B2 (en) Transesterification method for fats and oils
GB2239256A (en) Margarine oils having both low trans-unsaturate and low intermediate chain saturate content
JPH01165389A (en) Method for ester interchange of fat and oil
US4420560A (en) Method for modification of fats and oils
AU628644B2 (en) Enzymatic transesterification of tryglycerides
US7067684B2 (en) Processes for the production of triglycerides of conjugated linoleic acid
JP3785467B2 (en) Method for producing oil and fat composition
JP4310387B2 (en) Omega-3 highly unsaturated fatty acid-containing partial glyceride composition and method for producing the same
JPS62228290A (en) Substitute fat for cacao butter
JP4945838B2 (en) Oil and fat manufacturing method
JP2002088392A (en) Method for ester interchange of oils or fats
JP5782130B2 (en) Process for producing diacylglycerol-enriched oil or fat
JPH0369516B2 (en)
JPS6253153B2 (en)
JP3764793B2 (en) Method for producing diglycerides