JPH07163875A - Catalyst for removing nitrogen oxide in exhaust gas and production thereof - Google Patents

Catalyst for removing nitrogen oxide in exhaust gas and production thereof

Info

Publication number
JPH07163875A
JPH07163875A JP5312210A JP31221093A JPH07163875A JP H07163875 A JPH07163875 A JP H07163875A JP 5312210 A JP5312210 A JP 5312210A JP 31221093 A JP31221093 A JP 31221093A JP H07163875 A JPH07163875 A JP H07163875A
Authority
JP
Japan
Prior art keywords
titanium oxide
catalyst
type titanium
exhaust gas
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5312210A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Kato
泰良 加藤
Kunihiko Konishi
邦彦 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP5312210A priority Critical patent/JPH07163875A/en
Publication of JPH07163875A publication Critical patent/JPH07163875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst for removing nitrogen oxide enhanced in initial activity and reduced in the lowering of activity even when used for a long period of time. CONSTITUTION:A catalyst for removing nitrogen oxide catalystically reducing and removing nitrogen oxide in exhaust gas using NH3 is obtained by preliminarily making a vanadium compd. and a molybdenum compd. and/or a tungsten compd. adsorbed and supported on rutile type titanium oxide and subsequently mixing anatase type titanium oxide in a wt. ration of 99/1-50/50 to interpose the same between rutile type titanium oxide particles. Therefore, the catalyst excellent in initial activity is obtained and, since the lowering of activity caused by the conversion of titanium oxide being a catalyst carrier into rutile type titanium oxide with the elapse of use time is prevented, heat resistance is high and high activity can be kept for a long time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス中の窒素酸化物
除去用触媒およびその製造方法に係り、特に高い細孔容
積を有し、排ガスに含有される窒素酸化物(NOx)の
アンモニア(NH3 )による還元反応に優れた活性を示
す触媒とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for removing nitrogen oxides in exhaust gas and a method for producing the same, and particularly to ammonia (NOx) containing nitrogen oxide (NOx) having a high pore volume and contained in exhaust gas. The present invention relates to a catalyst exhibiting excellent activity for reduction reaction with NH 3 ) and a method for producing the same.

【0002】[0002]

【従来の技術】発電所、各種工場、自動車などから排出
される排ガス中のNOxは、光化学スモッグや酸性雨の
原因物質であり、その効果的な除去方法として、アンモ
ニア(NH3 )を還元剤とした選択的接触還元による排
ガス脱硝法が火力発電所を中心に幅広く用いられてい
る。触媒には、バナジウム(V)、モリブデン(M
o)、タングステン(W)などを活性成分にした酸化チ
タン(TiO2 )系触媒が使用されており、特に活性成
分の1つとしてバナジウムを含むものは活性が高いだけ
でなく、排ガス中に含まれている不純物による劣化が小
さいこと、他の触媒に比べて低温から使用できることな
どから、現在の脱硝触媒の主流になっている(特開昭5
0−128681号公報等)。触媒は通常ハニカム状、
板状に成形されて用いられ、各種製造法が開発されてき
た。
2. Description of the Related Art NOx in exhaust gas emitted from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog and acid rain, and ammonia (NH 3 ) is used as a reducing agent as an effective removal method. The exhaust gas denitration method by selective catalytic reduction is widely used in thermal power plants. Vanadium (V), molybdenum (M
o), Titanium oxide (TiO 2 ) based catalysts containing tungsten (W) as an active ingredient are used. Especially, those containing vanadium as one of the active ingredients are not only highly active but also contained in exhaust gas. Since it is less deteriorated by impurities and can be used at a lower temperature than other catalysts, it has become the mainstream of the present denitration catalyst (Japanese Patent Laid-Open No. Sho 5).
0-128681, etc.). The catalyst is usually honeycomb,
It is formed into a plate and used, and various manufacturing methods have been developed.

【0003】火力発電用のボイラに使用される場合、上
記脱硝触媒の充填量は数百m3 にもなり、かつ触媒寿命
は短いもので2年、長いものでは10年以上必要とされ
る。また、排ガスには酸化硫黄(SOx)等の酸性ガス
が含まれるものや、石炭燃焼灰等が煤塵として数十mg/
3 含まれることも少なくない。このため、触媒の初期
活性はもとより耐久性もきわめて高いものが要求され、
両者に優れる触媒の組成、製造法の開発研究が進められ
てきた。その例として酸化チタン系触媒に無機繊維を添
加することにより強度を向上させると同時に多孔質化さ
せて活性の向上を図るもの(特開昭52−65191号
公報)、シンタリングしにくい酸化チタン−シリカ、ジ
ルコニア系アモルファス担体を使用し活性を高めた触媒
(特開昭52−122293号公報)などがある。
When used in a boiler for thermal power generation, the filling amount of the above-mentioned denitration catalyst reaches several hundred m 3 , and the catalyst life is as short as 2 years and as long as 10 years or more. Exhaust gas contains acidic gas such as sulfur oxide (SOx), coal combustion ash, etc. as soot and dust of several tens mg /
It is often included in m 3 . Therefore, not only the initial activity of the catalyst, but also the extremely high durability is required,
Research and development of catalyst compositions and manufacturing methods that are superior to both have been conducted. As an example thereof, a titanium oxide catalyst is added with an inorganic fiber to improve the strength and at the same time make it porous so as to improve the activity (JP-A-52-65191), titanium oxide which is difficult to sinter. There is a catalyst (JP-A-52-122293) in which the activity is enhanced by using an amorphous carrier of silica or zirconia.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術は、活性の大きな支配因子である触媒の細孔容積
を増大させ、かつ経時的な酸化チタンの結晶成長を防止
するようには配慮されておらず、触媒成分の持つ活性を
充分に発揮できないという問題を有していた。図2はチ
タン(Ti)、バナジウム(V)、タングステン系触媒
を例にとり、その性能の経時変化を示したものである。
一般に初期性能の高い触媒(図2の(A))は経時劣化
が大きく、経時劣化の少ない触媒を得ようとすると初期
性能が低い触媒(図2の(B))しか得られない傾向に
あった。
However, the above-mentioned prior art is designed so as to increase the pore volume of the catalyst, which is a major controlling factor of the activity, and prevent the crystal growth of titanium oxide over time. Therefore, there is a problem that the activity of the catalyst component cannot be fully exhibited. FIG. 2 shows changes over time in the performance of titanium (Ti), vanadium (V), and tungsten catalysts as examples.
Generally, a catalyst with high initial performance ((A) in FIG. 2) has a large deterioration with time, and when a catalyst with little deterioration with time is tried, only a catalyst with low initial performance ((B) in FIG. 2) tends to be obtained. It was

【0005】本発明の目的は、上記従来技術の問題点を
解決し、初期性能が高く、かつ経時劣化の小さい触媒、
すなわち図2(C)で示される特性を有する酸化チタン
系の窒素酸化物除去用触媒およびその製造方法を得るこ
とにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, to provide a catalyst having high initial performance and little deterioration over time,
That is, it is to obtain a titanium oxide-based catalyst for removing nitrogen oxides having the characteristics shown in FIG.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本願で特許請求される発明は、以下のとおりである。 (1)排ガス中の窒素酸化物をアンモニアにより接触還
元除去する窒素酸化物除去用触媒において、ルチル型の
種結晶を含有する含水酸化チタンもしくは酸化チタン
(以下、ルチル型酸化チタンと称す)にバナジウム、モ
リブデン、タングステンから選ばれた1種以上の化合物
を吸着または担持したものに、アナターゼ型の種結晶を
有する含水酸化チタンもしくは酸化チタン(以下、アナ
ターゼ型酸化チタンと称す)を添加して、ルチル型酸化
チタン間にアナターゼ型酸化チタンを介在させて構成し
たことを特徴とする排ガス中の窒素酸化物除去用触媒。
The invention claimed in the present application for achieving the above object is as follows. (1) In a catalyst for removing nitrogen oxides by catalytically reducing nitrogen oxides in exhaust gas with ammonia, vanadium is used as hydrous titanium oxide or titanium oxide containing rutile type seed crystals (hereinafter referred to as rutile type titanium oxide). Rutile by adding hydrous titanium oxide or titanium oxide having anatase-type seed crystals (hereinafter referred to as anatase-type titanium oxide) to a substance that adsorbs or supports one or more compounds selected from molybdenum, molybdenum, and tungsten. A catalyst for removing nitrogen oxides in exhaust gas, which is characterized in that anatase-type titanium oxide is interposed between type-type titanium oxide.

【0007】(2)排ガス中の窒素酸化物をアンモニア
により接触還元除去する窒素酸化物除去用触媒の製造方
法において、ルチル型酸化チタンにバナジウムとモリブ
デンまたはタングステンの可溶性塩を添加し、水の存在
下で加熱しながら混練し水の一部を蒸発させる工程の途
中段階でアナターゼ型酸化チタンを加えることを特徴と
する排ガス中の窒素酸化物除去用触媒の製造方法。
(2) In the method for producing a catalyst for removing nitrogen oxides by catalytically reducing nitrogen oxides in exhaust gas with ammonia, rutile type titanium oxide is added with a soluble salt of vanadium and molybdenum or tungsten, and water is present. A method for producing a catalyst for removing nitrogen oxides in exhaust gas, which comprises adding anatase type titanium oxide in the middle of a step of kneading while heating below and evaporating a part of water.

【0008】(3)排ガス中の窒素酸化物をアンモニア
により接触還元除去する窒素酸化物除去用触媒の製造方
法において、あらかじめルチル型酸化チタンにバナジウ
ムとモリブデンおよび/またはタングステンの化合物を
担持した後、該組成物とアナターゼ型酸化チタンとを重
量比で99/1〜50/50の範囲で混合したことを特
徴とする排ガス中の窒素酸化物除去用触媒の製造方法。
(3) In a method for producing a catalyst for removing nitrogen oxides by catalytically reducing nitrogen oxides in exhaust gas with ammonia, rutile type titanium oxide is loaded with a compound of vanadium and molybdenum and / or tungsten in advance, A method for producing a catalyst for removing nitrogen oxides in exhaust gas, which comprises mixing the composition and anatase-type titanium oxide in a weight ratio of 99/1 to 50/50.

【0009】[0009]

【作用】一般に酸化チタンと酸化バナジウムを主成分に
する脱硝触媒では、五酸化バナジウム(V2 5 )の一
部が、ルチルに相転移した酸化チタン表面にルチル型の
結晶構造を有する二酸化バナジウム(VO2 )の形でエ
ピタキシャル成長して低原子価のV化合物を形成するこ
とにより活性を発現していると考えられている。したが
ってルチルを形成し易いルチル型酸化チタンを原料に用
いた場合にルチルが容易に形成され、上記ルチル型VO
2 成長が促進され、高活性な触媒を得ることができるも
のと考えられる。
In general, in a denitration catalyst containing titanium oxide and vanadium oxide as main components, a part of vanadium pentoxide (V 2 O 5 ) is vanadium dioxide having a rutile-type crystal structure on the surface of titanium oxide that has undergone phase transition to rutile. It is considered that the activity is expressed by epitaxially growing in the form of (VO 2 ) to form a low valence V compound. Therefore, when rutile type titanium oxide, which is easy to form rutile, is used as a raw material, rutile is easily formed.
2 It is considered that growth can be promoted and a highly active catalyst can be obtained.

【0010】本発明者らは、上記発想に基づきルチル型
酸化チタンとアナターゼ型酸化チタンとを原料に用いた
場合の性能と経時劣化について詳細に研究した結果、ル
チル型酸化チタンを原料にすると初期性能に優れるもの
が得られるものの、活性の経時低下は非常に大きいこと
を見出した。これは酸化チタンがルチル型でありルチル
への相転移が容易なため、経時的に表面積の小さいルチ
ルに変化するためである。
Based on the above idea, the present inventors have studied in detail the performance and deterioration over time when rutile type titanium oxide and anatase type titanium oxide are used as raw materials. It was found that, although excellent performance was obtained, the decrease in activity over time was extremely large. This is because titanium oxide is a rutile type and the phase transition to rutile is easy, so that it changes into rutile with a small surface area over time.

【0011】これに対し、本発明のようにルチル型酸化
チタン表面にV、Mo、W等の化合物を吸着後アナター
ゼ型酸化チタンを添加した触媒では、図3に示したよう
にルチル型酸化チタン粒子が結晶系の異なるアナターゼ
型酸化チタン粒子で隔てられた状態になり、ルチル型酸
化チタン同士の接触による相転移が阻害されている。こ
のため、経時的にルチル化して表面積が低下することが
少なく、長時間活性の高い状態が維持できる。
On the other hand, in the catalyst according to the present invention in which the anatase type titanium oxide is added after adsorbing compounds such as V, Mo and W on the surface of the rutile type titanium oxide, as shown in FIG. The particles are separated by the anatase type titanium oxide particles having different crystal systems, and the phase transition caused by the contact between the rutile type titanium oxide particles is inhibited. For this reason, the surface area is less likely to decrease due to rutile formation over time, and a highly active state can be maintained for a long time.

【0012】これに加えて、図1の本発明の工程で触媒
を調製すると結晶型の異なる酸化チタンの表面電荷の差
異により粒子の凝集状態が変化し、混練終了時の水分が
増大し、活性に大きく寄与するミクロポアが増加する。
これは初期性能を大きく向上させる作用がある。
In addition to this, when the catalyst is prepared in the process of the present invention shown in FIG. 1, the aggregation state of particles is changed due to the difference in surface charge of titanium oxides having different crystal forms, the water content at the end of kneading is increased, and the activity is increased. The micropores that make a large contribution to the increase.
This has the effect of greatly improving the initial performance.

【0013】[0013]

【実施例】本発明は、ルチル型の種結晶を用いた含水酸
化チタンもしくは酸化チタン(以下、ルチル型酸化チタ
ンと総称する)にバナジウム(V)、モリブデン(M
o)およびタングステン(W)から選ばれる1種以上の
化合物を吸着または担持した後、アナターゼ型の種結晶
を用いた含水酸化チタンもしくは酸化チタン(以下、ア
ナターゼ型酸化チタンと総称する)を添加することによ
り達成できる。
EXAMPLE The present invention applies to hydrous titanium oxide or titanium oxide (hereinafter referred to as rutile type titanium oxide) using rutile type seed crystals, vanadium (V) and molybdenum (M).
o) and one or more compounds selected from tungsten (W) are adsorbed or supported, and then hydrous titanium oxide or titanium oxide (hereinafter referred to as anatase type titanium oxide) using anatase type seed crystals is added. Can be achieved by

【0014】具体的には、図1に示すフローのようにル
チル型酸化チタンと活性成分であるVおよび/またはM
o、W等の塩類を水の存在下で加熱混練して酸化チタン
表面に活性成分を吸着させた後、アナターゼ型酸化チタ
ンを添加することにより達成できる。以下、具体的実施
例を用いて本発明を詳細に説明する。 実施例1〜4 ルチル型酸化チタン原料としてメタチタン酸スラリ(T
iO2 含有量:30wt%、SO4 含有量:8wt%)
67kgにパラタングステン酸アンモニウム((NH4
1010・W1246・6H2 O)を3.59kgおよびメタ
バナジン酸アンモン1.29kgとを加え加熱ニーダを用
いて水を蒸発させながら混練(加熱混練)し水分約50
%のペーストを得た。
Specifically, as shown in the flow chart of FIG. 1, rutile type titanium oxide and V and / or M which are active components.
This can be achieved by heating and kneading salts such as o and W in the presence of water to adsorb the active ingredient on the titanium oxide surface, and then adding anatase type titanium oxide. Hereinafter, the present invention will be described in detail with reference to specific examples. Examples 1 to 4 Slurry metatitanate (T
iO 2 content: 30 wt%, SO 4 content: 8 wt%)
67 kg of ammonium paratungstate ((NH 4 )
10 H 10 · W 12 O 46 · 6H kneaded (heated and kneaded while evaporating water with a heating kneader added and 3.59kg and ammonium metavanadate 1.29kg the 2 O)) and a moisture content of about 50
% Paste was obtained.

【0015】これとは別に、比表面積330m2 /g、
SO4 含有量:1.6wt%のアナターゼ型含水酸化チ
タン粉末(ローヌ・プーラン社製)を用意し、上記ペー
ストにアナターゼ型酸化チタン粉末を乾燥重量ベースで
各々99/1、90/10、70/30、50/50の
重量比率で添加し、さらに混練して水分約40%ペース
トを調製した。
Apart from this, a specific surface area of 330 m 2 / g,
SO 4 content: Anatase-type titanium oxide hydroxide powder of 1.6 wt% (manufactured by Rhone-Poulin) was prepared, and anatase-type titanium oxide powder was added to the above paste on a dry weight basis, 99/1, 90/10, 70, respectively. The paste was added at a weight ratio of / 30 and 50/50 and further kneaded to prepare a paste having a water content of about 40%.

【0016】これを3mmφの柱状に押出し造粒後流動層
乾燥機で乾燥し、次に大気中550℃で2時間焼成し
た。得られた顆粒をハンマーミルで1μm以下の粒径が
60%以上になるように粉砕し、触媒原料粉末を得た。
一方、繊維径9μmのEガラス製繊維1400本の捻糸
を10本/インチの粗さで平織りした網状物をチタニア
40%、シリカゾル20%、ポリビニールアルコール1
%のスラリに含浸し、150℃で乾燥して剛性を持たせ
触媒基材を得た。
This was extruded into a column of 3 mmφ, granulated, dried in a fluidized bed drier, and then calcined in the air at 550 ° C. for 2 hours. The obtained granules were pulverized with a hammer mill so that the particle size of 1 μm or less was 60% or more to obtain a catalyst raw material powder.
On the other hand, a net-like material obtained by plain weaving 1400 twisted threads of E glass fiber having a fiber diameter of 9 μm at a roughness of 10 threads / inch is 40% titania, 20% silica sol, 1% polyvinyl alcohol.
% Slurry was impregnated and dried at 150 ° C. to have rigidity to obtain a catalyst substrate.

【0017】上記触媒原料粉末20kgにシリカ・アルミ
ナ系無機繊維5.3kg、水13kgを加えてニーダで混練
し、触媒ペーストを得、上記基材2枚の間に調製したペ
ースト状触媒混合物を置き一対の加圧ローラを通過させ
て基材の網み目間および表面に触媒を圧着し厚さ約1mm
の板状触媒を得た。得られた触媒を、180℃で2時間
乾燥後大気中550℃で2時間焼成した。 比較例1 実施例1〜4におけるアナターゼ型酸化チタン粉末の添
加を行わない以外、他は実施例と同様に触媒を調製し
た。 実施例5 実施例3の第一成分の調製法におけるパラタングステン
酸アンモニウムに替え、モリブデン酸アンモニウム
((NH4 6 Mo7 24・4H2 O)2.43kgを用
いて、他は同様に触媒成形体を得た。 比較例2 実施例5に用いた第一成分のみを混練し、実施例5と同
様の触媒成形体を得た。
To 20 kg of the above catalyst raw material powder, 5.3 kg of silica / alumina-based inorganic fiber and 13 kg of water were added and kneaded with a kneader to obtain a catalyst paste, and the prepared paste-like catalyst mixture was placed between the two base materials. Approximately 1 mm thick by passing the catalyst through a pair of pressure rollers and pressing the catalyst onto the mesh and surface of the base material.
A plate-shaped catalyst of The obtained catalyst was dried at 180 ° C. for 2 hours and then calcined in the air at 550 ° C. for 2 hours. Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 except that the anatase type titanium oxide powder in Examples 1 to 4 was not added. Instead of ammonium paratungstate in the preparation of the first component of Example 5 Example 3, using ammonium molybdate ((NH 4) 6 Mo 7 O 24 · 4H 2 O) 2.43kg, other similarly A catalyst molded body was obtained. Comparative Example 2 Only the first component used in Example 5 was kneaded to obtain a catalyst molded body similar to that in Example 5.

【0018】実施例1〜5、および比較例1〜2の触媒
成形体について細孔容積および表1の条件で脱硝活性を
測定した。
The denitration activity of the catalyst molded bodies of Examples 1 to 5 and Comparative Examples 1 and 2 was measured under the pore volume and the conditions shown in Table 1.

【0019】[0019]

【表1】 以上の試験とは別に実施例1〜5、および比較例1〜2
の触媒成形体のルチル化による活性低下を調べるため、
600℃で6時間加熱してルチル化を促進した後、上記
表1の条件で活性を測定した。
[Table 1] Apart from the above test, Examples 1 to 5 and Comparative Examples 1 and 2
In order to investigate the activity decrease due to rutile formation of the catalyst molded body of
After heating at 600 ° C. for 6 hours to promote rutile formation, the activity was measured under the conditions shown in Table 1 above.

【0020】上記試験で得られた結果を表2にまとめて
示した。
The results obtained in the above test are summarized in Table 2.

【0021】[0021]

【表2】 表2から本発明の触媒は細孔容積が大きく、それに伴っ
て初期活性が比較例に較べ大きく向上している。また本
発明の触媒のルチル化促進後の触媒性能は比較例に較べ
著しく高く、耐熱性が大きく向上していることがわか
る。
[Table 2] From Table 2, the catalyst of the present invention has a large pore volume, and accordingly the initial activity is greatly improved as compared with the comparative example. Further, it can be seen that the catalyst performance of the catalyst of the present invention after promoting the rutile formation is remarkably higher than that of the comparative example, and the heat resistance is greatly improved.

【0022】このことから、本発明の方法は細孔容積を
増大させ初期性能を向上させるだけでなく、触媒のルチ
ル化による活性低下を防止し耐熱性を高める得る優れた
方法であることが明らかである。また、表2からアナタ
ーゼ型酸化チタンの添加量が少ない場合には効果が小さ
く、多過ぎると耐熱性は向上するものの初期性能が低
く、触媒原料(ルチル型酸化チタン使用)/アナターゼ
型酸化チタン重量比は99/1から50/50、望まし
くは90/10〜70/30の範囲が適当であることが
わかる。
From the above, it is clear that the method of the present invention is an excellent method not only for increasing the pore volume to improve the initial performance but also for preventing the activity from being lowered due to the rutile formation of the catalyst and enhancing the heat resistance. Is. Further, from Table 2, when the addition amount of anatase type titanium oxide is small, the effect is small, and when it is too large, the heat resistance is improved, but the initial performance is low, and the catalyst raw material (using rutile type titanium oxide) / weight of anatase type titanium oxide is used. It can be seen that a ratio of 99/1 to 50/50, preferably 90/10 to 70/30 is suitable.

【0023】[0023]

【発明の効果】本発明によれば、従来の方法に較べ成形
体の細孔容積を大幅に増大することが可能になり、初期
活性に優れた触媒を実現できる。さらに、ルチル化によ
る活性低下が防止できるため、耐熱性が高く、長時間高
い活性を維持できる。これにより触媒の使用量を低減で
きる効果がある。
EFFECTS OF THE INVENTION According to the present invention, it is possible to significantly increase the pore volume of the molded body as compared with the conventional method, and it is possible to realize a catalyst having excellent initial activity. Furthermore, since activity reduction due to rutile formation can be prevented, heat resistance is high and high activity can be maintained for a long time. This has the effect of reducing the amount of catalyst used.

【0024】また長期間高い活性を維持できるので、触
媒の取り替えを少なくできるなど経済的にメリットも大
きい。
Further, since the high activity can be maintained for a long period of time, it is economically advantageous that the replacement of the catalyst can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の触媒の製造方法を示す製造工程図。FIG. 1 is a manufacturing process diagram showing a method for manufacturing a catalyst of the present invention.

【図2】従来技術の問題点を示す説明図。FIG. 2 is an explanatory diagram showing a problem of the conventional technique.

【図3】本発明の触媒の作用を示す構成模式図。FIG. 3 is a structural schematic view showing the action of the catalyst of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/28 ZAB A 23/30 ZAB A 33/00 B B01D 53/36 102 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/28 ZAB A 23/30 ZAB A 33/00 B B01D 53/36 102 H

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中の窒素酸化物をアンモニアによ
り接触還元除去する窒素酸化物除去用触媒において、ル
チル型の種結晶を含有する含水酸化チタンもしくは酸化
チタン(以下、ルチル型酸化チタンと称す)にバナジウ
ム、モリブデン、タングステンから選ばれた1種以上の
化合物を吸着または担持したものに、アナターゼ型の種
結晶を有する含水酸化チタンもしくは酸化チタン(以
下、アナターゼ型酸化チタンと称す)を添加して、ルチ
ル型酸化チタン間にアナターゼ型酸化チタンを介在させ
て構成したことを特徴とする排ガス中の窒素酸化物除去
用触媒。
1. A catalyst for removing nitrogen oxides by catalytic reduction removal of nitrogen oxides in exhaust gas with ammonia, comprising hydrous titanium oxide or titanium oxide containing rutile type seed crystals (hereinafter referred to as rutile type titanium oxide). To which one or more compounds selected from vanadium, molybdenum, and tungsten are adsorbed or supported, and hydrous titanium oxide or titanium oxide having anatase type seed crystals (hereinafter referred to as anatase type titanium oxide) is added. A catalyst for removing nitrogen oxides in exhaust gas, characterized in that anatase-type titanium oxide is interposed between rutile-type titanium oxide.
【請求項2】 排ガス中の窒素酸化物をアンモニアによ
り接触還元除去する窒素酸化物除去用触媒の製造方法に
おいて、ルチル型酸化チタンにバナジウムとモリブデン
またはタングステンの可溶性塩を添加し、水の存在下で
加熱しながら混練し水の一部を蒸発させる工程の途中段
階でアナターゼ型酸化チタンを加えることを特徴とする
排ガス中の窒素酸化物除去用触媒の製造方法。
2. A method for producing a catalyst for removing nitrogen oxides, which comprises catalytically reducing nitrogen oxides contained in exhaust gas with ammonia, wherein a soluble salt of vanadium and molybdenum or tungsten is added to rutile-type titanium oxide in the presence of water. A method for producing a catalyst for removing nitrogen oxides in exhaust gas, which comprises adding anatase-type titanium oxide in the middle of the step of kneading while heating and evaporating a part of water.
【請求項3】 排ガス中の窒素酸化物をアンモニアによ
り接触還元除去する窒素酸化物除去用触媒の製造方法に
おいて、あらかじめルチル型酸化チタンにバナジウムと
モリブデンおよび/またはタングステンの化合物を担持
した後、該組成物とアナターゼ型酸化チタンとを重量比
で99/1〜50/50の範囲で混合したことを特徴と
する排ガス中の窒素酸化物除去用触媒の製造方法。
3. A method for producing a catalyst for removing nitrogen oxides, which comprises catalytically reducing nitrogen oxides contained in exhaust gas with ammonia, wherein rutile-type titanium oxide is loaded with a compound of vanadium and molybdenum and / or tungsten in advance. A method for producing a catalyst for removing nitrogen oxides in exhaust gas, comprising mixing the composition and anatase type titanium oxide in a weight ratio of 99/1 to 50/50.
JP5312210A 1993-12-13 1993-12-13 Catalyst for removing nitrogen oxide in exhaust gas and production thereof Pending JPH07163875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5312210A JPH07163875A (en) 1993-12-13 1993-12-13 Catalyst for removing nitrogen oxide in exhaust gas and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5312210A JPH07163875A (en) 1993-12-13 1993-12-13 Catalyst for removing nitrogen oxide in exhaust gas and production thereof

Publications (1)

Publication Number Publication Date
JPH07163875A true JPH07163875A (en) 1995-06-27

Family

ID=18026528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5312210A Pending JPH07163875A (en) 1993-12-13 1993-12-13 Catalyst for removing nitrogen oxide in exhaust gas and production thereof

Country Status (1)

Country Link
JP (1) JPH07163875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433069A (en) * 2022-01-26 2022-05-06 浙江科卓环保科技有限公司 Production process of high-ash flue gas honeycomb denitration catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433069A (en) * 2022-01-26 2022-05-06 浙江科卓环保科技有限公司 Production process of high-ash flue gas honeycomb denitration catalyst

Similar Documents

Publication Publication Date Title
EP1371416B1 (en) Exhaust gas clarification catalyst
US7256155B2 (en) Flue gas denitration catalyst and preparation process thereof
CA1268018A (en) Catalyst for decreasing the content of nitrogen oxides in flue gases
KR101121184B1 (en) Exhaust gas catalyst
JP6364125B2 (en) Method for producing catalyst fabric filter and catalyst fabric filter
JP6595088B2 (en) SCR catalyst for removing nitrogen oxides and method for producing the same
JPH0817939B2 (en) Flue gas denitration catalyst
WO2008150462A2 (en) Catalyst for selective reduction of nitrogen oxides, method for making same and use thereof
EP0415145A1 (en) Catalyst for removal of nitrogen oxides and method for removal of nitrogen oxides by use of the catalyst
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
KR102020303B1 (en) Low Temperature De―NOx Catalyst for Selective Catalytic Reduction and Preparation Method Thereof
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
KR100629574B1 (en) Catalyst for nitrogen oxides reduction using activated carbon and method for preparing the same
JP2583912B2 (en) Nitrogen oxide removal catalyst
JPH07163875A (en) Catalyst for removing nitrogen oxide in exhaust gas and production thereof
KR20060087084A (en) Manufacturing method of titania for extrusion forming of de-nox catalyst
JP3775815B2 (en) Nitrogen oxide removal method
KR100979031B1 (en) Catalyst for Nitrogen Oxide Removal and method for Manufacturing the same
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP3076421B2 (en) DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same
JPH07114964B2 (en) Nitrogen oxide reduction catalyst and method for producing the same
KR100295370B1 (en) Method for producing a vanadium pentoxide-based catalyst for removing nitrogen oxides using titanium dioxide for pigment as a carrier of catalyst
JP2743336B2 (en) Catalyst for reducing nitrogen oxides and method for removing nitrogen oxides from exhaust gas
JPH038820B2 (en)
JP2005021780A (en) Production method of exhaust gas treatment catalyst