JPH07161381A - Polymer solid electrolyte battery - Google Patents

Polymer solid electrolyte battery

Info

Publication number
JPH07161381A
JPH07161381A JP5311759A JP31175993A JPH07161381A JP H07161381 A JPH07161381 A JP H07161381A JP 5311759 A JP5311759 A JP 5311759A JP 31175993 A JP31175993 A JP 31175993A JP H07161381 A JPH07161381 A JP H07161381A
Authority
JP
Japan
Prior art keywords
layer
polymer
battery
crosslinked polymer
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5311759A
Other languages
Japanese (ja)
Inventor
Kenji Nakai
賢治 中井
Kensuke Hironaka
健介 弘中
Takumi Hayakawa
他▲く▼美 早川
Akio Komaki
昭夫 小牧
Takefumi Nakanaga
偉文 中長
Akiyoshi Inubushi
昭嘉 犬伏
Michio Sasaoka
三千雄 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Resonac Corp
Original Assignee
Otsuka Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP5311759A priority Critical patent/JPH07161381A/en
Publication of JPH07161381A publication Critical patent/JPH07161381A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a polymer solid electrolyte battery in which short circuit between electrode plates hardly happens even if it is used in a high temperature range by forming a layer containing cross-linked polymer including cross-linked polymer body with a specified formula. CONSTITUTION:Regarding a polymer solid electrolyte battery, a positive pole active material layer 2 formed on one side of a positive pole collector 1 and a negative pole active material layer 4 formed on one side of a negative pole collector 3 are layered while having a polymer solid electrolytic layer 5. The electrolytic layer 5 has a layered structure consisting of two layers 5b containing no cross-linked polymer and a layer 5a containing cross-linked polymer and put between the two layers. The layer 5a contains cross-linked polymer having the shown chemical formula. Consequently, even if the polymer compound of the electrolytic layer 5 is softened, the layer 5a containing the polymer compound is not softened. As a result, dendrite growth is prevented by the polymer- containing layer 5 and short circuit between electrodes is prevented and the life of the battery is prolonged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温域でも使用すること
ができる高分子固体電解質電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer solid electrolyte battery which can be used even in a high temperature range.

【0002】[0002]

【従来の技術】電解質として電解液を用いる電池では、
電解質が漏れやすいという問題がある。このような問題
を解決するために電解質として固体の高分子化合物を用
いた高分子固体電解質電池が開発された。
2. Description of the Related Art In a battery using an electrolytic solution as an electrolyte,
There is a problem that the electrolyte easily leaks. In order to solve such a problem, a polymer solid electrolyte battery using a solid polymer compound as an electrolyte has been developed.

【0003】[0003]

【発明が解決しようとする課題】高分子固体電解質は、
電解液に比べて良好な耐熱性を有しているため、これま
で電解液を用いた電池では使用できなかった高温域での
使用が可能になる。しかしながら、高分子固体電解質に
用いる高分子化合物は高温に晒されると、軟化しやすく
なるという性質を有している。このように高分子化合物
が軟化すると、電解質強度が低下して、セパレータ機能
が大幅に低下する上、高分子固体電解質電池を充電する
際に負極活物質上に析出するデントライトが電解質内で
成長しやすくなる。そのため、高温環境下で電池を使用
するとデントライトが容易に正極活物質に達して、極板
間短絡が発生しやすいという問題があった。なお高分子
固体電解質層中にセパレータを配置して、電解質層の軟
質化に伴う問題を解決することも考えられたが、高分子
固体電解質層内にセパレータを配置すると電解質中のイ
オン伝導度が著しく低下して、電池性能が大幅に低下し
てしまうため実用性がなかった。
The solid polymer electrolyte is
Since it has better heat resistance than an electrolytic solution, it can be used in a high temperature range that could not be used in a battery using an electrolytic solution. However, the polymer compound used for the polymer solid electrolyte has a property of being easily softened when exposed to a high temperature. When the polymer compound is softened in this way, the electrolyte strength is reduced, the separator function is significantly reduced, and dendrites that deposit on the negative electrode active material during charging of the polymer solid electrolyte battery grow in the electrolyte. Easier to do. Therefore, there is a problem that when the battery is used in a high temperature environment, the dendrite easily reaches the positive electrode active material and a short circuit between the electrode plates easily occurs. It is also considered that the separator is placed in the polymer solid electrolyte layer to solve the problem associated with the softening of the electrolyte layer, but when the separator is placed in the polymer solid electrolyte layer, the ionic conductivity in the electrolyte is It was not practical because it remarkably deteriorated and battery performance deteriorated significantly.

【0004】本発明の目的は、高温域で使用されても、
極板間短絡が発生し難い高分子固体電解質電池を提供す
ることにある。
The object of the present invention, even when used in a high temperature range,
It is intended to provide a polymer solid electrolyte battery in which a short circuit between electrode plates hardly occurs.

【0005】[0005]

【課題を解決するための手段】請求項1の発明では、高
分子固体電解質からなる電解質層を有する高分子固体電
解質電池を対象にして、電解質層内に
According to a first aspect of the present invention, a solid polymer electrolyte battery having an electrolyte layer made of a solid polymer electrolyte is provided in the electrolyte layer.

【化2】 の化学式で表される架橋高分子体を含有する架橋高分子
体含有層を形成する。
[Chemical 2] The crosslinked polymer-containing layer containing the crosslinked polymer represented by the chemical formula is formed.

【0006】なお本発明は、電解質層を複数の層により
形成して、その中の少なくとも一つの層を架橋高分子体
含有層に形成してもよく、また一つの電解質層を架橋高
分子体含有層に形成してもよい。
In the present invention, the electrolyte layer may be formed of a plurality of layers, and at least one of the layers may be formed as a crosslinked polymer-containing layer, or one electrolyte layer may be formed as a crosslinked polymer. You may form in a containing layer.

【0007】請求項2の発明では、架橋高分子体含有層
を介して架橋高分子体を含有しない2つの架橋高分子体
非含有層を積層して電解質層を構成する。
According to the second aspect of the invention, the electrolyte layer is formed by laminating two crosslinked polymer-free layers containing no crosslinked polymer through the crosslinked polymer-containing layer.

【0008】[0008]

【作用】架橋高分子体は温度が高くなっても分子構造は
容易に変形することがない。またこの架橋高分子体は、
イオン伝導性を阻害することも殆どない。そのため、請
求項1の発明のように電解質層内に架橋高分子体を含有
する架橋高分子体含有層を形成すると、電池が高温域で
使用されて高分子固体電解質に用いる高分子化合物が高
温に晒されて軟化しても、架橋高分子体含有層は実質的
に軟化することがない。そのため架橋高分子体含有層に
よってデントライトの成長が妨げられて、極板間短絡が
発生するのを防ぐことができる。
Function The molecular structure of the crosslinked polymer does not easily change even when the temperature rises. In addition, this cross-linked polymer,
It hardly interferes with ionic conductivity. Therefore, when the crosslinked polymer-containing layer containing the crosslinked polymer is formed in the electrolyte layer as in the invention of claim 1, the battery is used in a high temperature range, and the polymer compound used for the polymer solid electrolyte has a high temperature. The crosslinked polymer-containing layer does not substantially soften even when exposed to and softened. Therefore, it is possible to prevent the growth of dendrites from being blocked by the crosslinked polymer-containing layer and to prevent a short circuit between the electrode plates.

【0009】架橋高分子体非含有層は架橋高分子体含有
層に比べて粘性が高いので、請求項2の発明のように架
橋高分子体含有層を介して2つの架橋高分子体非含有層
を積層して電解質層を構成すると、架橋高分子体非含有
層と正極活物質層及び架橋高分子体非含有層と負極活物
質層が強く密着して電解質層と各活物質層との密着強度
を高めることができる。
Since the crosslinked polymer-free layer has a higher viscosity than the crosslinked polymer-containing layer, two crosslinked polymer-free layers are provided via the crosslinked polymer-containing layer as in the invention of claim 2. When the layers are laminated to form the electrolyte layer, the crosslinked polymer-free layer and the positive electrode active material layer and the crosslinked polymer-free layer and the negative electrode active material layer are strongly adhered to each other and the electrolyte layer and each active material layer The adhesion strength can be increased.

【0010】[0010]

【実施例】以下、本発明を高分子固体電解質リチウム電
池に適用した実施例を図面を参照して詳細に説明する。
図1は本実施例の高分子固体電解質リチウム電池の概略
断面図である。本実施例の電池は正極集電体1の一方の
面上に形成された正極活物質層2と負極集電体3の一方
の面上に形成された負極活物質層4とが高分子固体電解
質層5を介して積層された構造を有している。そして高
分子固体電解質層5は架橋高分子体含有層5aを介して
2つの架橋高分子体非含有層5b,5bが積層された構
造を有している。
Embodiments of the present invention applied to a polymer solid electrolyte lithium battery will be described below in detail with reference to the drawings.
FIG. 1 is a schematic sectional view of a polymer solid electrolyte lithium battery of this example. In the battery of this example, the positive electrode active material layer 2 formed on one surface of the positive electrode current collector 1 and the negative electrode active material layer 4 formed on one surface of the negative electrode current collector 3 are polymer solids. It has a structure in which the electrolyte layers 5 are stacked. The solid polymer electrolyte layer 5 has a structure in which two crosslinked polymer-free layers 5b and 5b are laminated via a crosslinked polymer-containing layer 5a.

【0011】この高分子固体電解質リチウム電池は次の
ように製造した。まずメトキシオリゴエチレンオキシポ
リホスファゼン(以下、MEPと言う)と該MEPに対
して8重量%のLiSO3 CF3 とを1,2−ジメトキ
シエタン(以下、DMEと言う)溶液中に20重量%溶
かしてMEP/DME溶液を作った。そして、このME
P/DME溶液を重量比50:20の非晶質五酸化バナ
ジウム(a−V2 5)とアセチレンブラック(AB)
との混練物に混合してからこれを攪拌して混合物を作っ
た。なおa−V2 5 とABとの混練物とMEP/DM
E溶液との割合は、混練物とMEPとの重量比が70:
30になる割合とした。次にこの混合物からDMEを揮
発除去してから、これをロールプレスによりシート状に
成形し、適当な大きさに切断して厚み180μm の正極
活物質層2を作った。次に正極活物質層2を厚み20μ
m の電解ニッケル箔からなる正極集電体1の一方の面の
中央部分1aに貼り付けた。なおこのようにして作った
正極活物質層2は粘着性を有しているので、結着剤等を
用いなくても正極集電体1に貼り付けることができる。
次に前述のものと同じMEP/DME溶液を正極活物質
層2の上に塗布してからDMEを揮発除去して厚み40
μm の架橋高分子体非含有層5bを作った。次にMEP
と該MEPに対して8重量%のLiSO3 CF3 との混
合物と、下記の式で表されるエステルとを1:1の重量
割合で混合したものをDME溶液中に20重量%溶かし
て含エステル高分子MEP/DME溶液を作った。
This polymer solid electrolyte lithium battery was manufactured as follows. First, 20 wt% of methoxyoligoethyleneoxypolyphosphazene (hereinafter referred to as MEP) and 8 wt% of LiSO 3 CF 3 with respect to the MEP were dissolved in 1,2-dimethoxyethane (hereinafter referred to as DME) solution. To make a MEP / DME solution. And this ME
Amorphous vanadium pentoxide in a weight ratio of 50:20 to P / DME solution (a-V 2 O 5) and acetylene black (AB)
The resulting mixture was mixed with the kneaded mixture with and then stirred to form a mixture. The kneaded material of a-V 2 O 5 and AB and MEP / DM
As for the ratio with the E solution, the weight ratio of the kneaded material and MEP was 70 :.
The ratio was set to 30. Next, DME was volatilized and removed from this mixture, and this was formed into a sheet by a roll press and cut into an appropriate size to form a positive electrode active material layer 2 having a thickness of 180 μm. Next, the positive electrode active material layer 2 is formed to a thickness of 20 μm.
It was attached to the central portion 1a of one surface of the positive electrode collector 1 made of m 2 of electrolytic nickel foil. Since the positive electrode active material layer 2 formed in this manner has adhesiveness, it can be attached to the positive electrode current collector 1 without using a binder or the like.
Next, the same MEP / DME solution as described above is applied on the positive electrode active material layer 2 and then DME is removed by volatilization to a thickness of 40.
A μm-free crosslinked polymer-free layer 5b was prepared. Next MEP
And a mixture of 8% by weight of LiSO 3 CF 3 with respect to the MEP and an ester represented by the following formula in a weight ratio of 1: 1 and dissolved in a DME solution at 20% by weight to be contained. An ester polymer MEP / DME solution was made.

【0012】[0012]

【化3】 そして、この含エステル高分子MEP/DME溶液を架
橋高分子体非含有層5bの上に塗布してからDMEを揮
発除去し、表面に400WのUVランプを用いて紫外線
を数分間照射してエステルを架橋させて下記の式で表さ
れる架橋高分子体を生成し、厚み40μm の架橋高分子
体含有層5aを作った。
[Chemical 3] Then, this ester-containing polymer MEP / DME solution is applied on the cross-linked polymer-free layer 5b, the DME is volatilized and removed, and the surface is irradiated with ultraviolet rays for several minutes using a 400 W UV lamp to form the ester. Was crosslinked to produce a crosslinked polymer represented by the following formula, and a crosslinked polymer containing layer 5a having a thickness of 40 μm was prepared.

【0013】[0013]

【化4】 なお架橋高分子体含有層に含有させる架橋高分子体の量
はイオン伝導性を大きく低下させず、しかも架橋高分子
体含有層5aを軟化させない量であればよく、本実施例
では20〜70重量%が好ましい。また高分子固体電解
質層全体に対する架橋高分子体含有層の好ましい厚みの
範囲は20〜70%である。
[Chemical 4] The amount of the crosslinked polymer contained in the crosslinked polymer-containing layer may be an amount that does not significantly reduce the ion conductivity and does not soften the crosslinked polymer-containing layer 5a. In this example, 20 to 70. Weight percent is preferred. The preferable range of the thickness of the crosslinked polymer-containing layer with respect to the entire polymer solid electrolyte layer is 20 to 70%.

【0014】次に厚み20μm のステンレス箔からなる
負極集電体3の一方の面に厚み40μm のリチウム箔を
載置して負極活物質層4を形成した。そして、前述のも
のと同じMEP/DME溶液を負極活物質層4の上に塗
布してからDMEを揮発除去して厚み40μm の架橋高
分子体非含有層5bを作った。
Next, a negative electrode active material layer 4 was formed by placing a 40 μm thick lithium foil on one surface of the negative electrode current collector 3 made of a 20 μm thick stainless steel foil. Then, the same MEP / DME solution as described above was applied on the negative electrode active material layer 4, and then DME was removed by volatilization to form a crosslinked polymer-free layer 5b having a thickness of 40 μm.

【0015】次に正極集電体1の外周端部1bの上に加
熱圧着タイプのフィルム状接着剤6を載置してから、架
橋高分子体含有層5aと負極活物質層4上に形成した架
橋高分子体非含有層5bとが接合するように架橋高分子
体非含有層5b等を形成した負極集電体3を架橋高分子
体含有層5a上に載置した。そして、加熱によりフィル
ム状接着剤6を集電体1及び3の外周端部1b及び3b
に完全に接続して高分子固体電解質リチウム電池を完成
した。なお架橋高分子体含有層5aは、負極活物質層4
上に形成した架橋高分子体非含有層5bの上に含エステ
ル高分子MEP/DME溶液を塗布して形成しても構わ
ない。また正極活物質層2上に形成した架橋高分子体非
含有層5b及び負極活物質層4上に形成した架橋高分子
体非含有層5bのそれぞれに含エステル高分子MEP/
DME溶液を塗布して架橋高分子体含有層5aを形成し
ても構わない。
Next, a thermocompression-bonding type film adhesive 6 is placed on the outer peripheral end 1b of the positive electrode current collector 1, and then formed on the crosslinked polymer-containing layer 5a and the negative electrode active material layer 4. The negative electrode current collector 3 having the crosslinked polymer-free layer 5b and the like formed so as to be bonded to the crosslinked polymer-free layer 5b was placed on the crosslinked polymer-containing layer 5a. Then, by heating, the film adhesive 6 is applied to the outer peripheral end portions 1b and 3b of the current collectors 1 and 3.
To complete the solid polymer electrolyte lithium battery. The cross-linked polymer-containing layer 5a is the negative electrode active material layer 4
It may be formed by coating the ester-containing polymer MEP / DME solution on the crosslinked polymer-free layer 5b formed above. The ester-containing polymer MEP / MEP /
The DME solution may be applied to form the crosslinked polymer-containing layer 5a.

【0016】次に本実施例の高分子固体電解質電池の特
性を調べるために、本実施例の電池と従来例の電池とを
用いて試験を行った。なお従来例の電池は架橋高分子体
を含まない架橋高分子体非含有層で電解質層全てを形成
し、その他は本実施例の電池と同じ構造を有しているも
のを用いた。最初に100℃の温度下で25μA/cm2
の電流密度により0.3mA(終止電圧2V)で放電し
た後に、0.9mA規制で3.8Vの定電圧充電を繰り
返す充放電を各電池に繰り返して、各電池のサイクル寿
命特性を調べた。図2は測定結果を示している。本図よ
り本実施例の電池は従来例の電池に比べて電池寿命が長
くなるのが判る。
Next, in order to examine the characteristics of the polymer solid electrolyte battery of this example, a test was conducted using the battery of this example and the battery of the conventional example. In the battery of the conventional example, a battery having the same structure as that of the battery of this example was used in which all the electrolyte layers were formed by a crosslinked polymer-free layer containing no crosslinked polymer. 25 μA / cm 2 at a temperature of 100 ° C.
After being discharged at 0.3 mA (final voltage 2 V) with the current density of No. 3, the battery was repeatedly charged and discharged by repeating constant voltage charging at 3.8 V under the regulation of 0.9 mA, and the cycle life characteristics of each battery were examined. FIG. 2 shows the measurement result. From this figure, it can be seen that the battery of this example has a longer battery life than the battery of the conventional example.

【0017】次に従来例の電池が早期寿命に達したとき
の各電池の充電電圧特性及び充電電流特性を調べた。図
3はその測定結果を示している。本図より従来例の電池
では、充電電圧及び充電電流共に不安定な特性を示すの
が判る。これは、従来例の電池では高温で電解質が軟化
したため、電池充電時に負極活物質上に析出したデント
ライト状のリチウムが正極活物質側に大きく成長し、正
極活物質と負極活物質との間で微小短絡が生じたためで
ある。
Next, the charging voltage characteristic and the charging current characteristic of each battery when the battery of the conventional example reached the early life were examined. FIG. 3 shows the measurement result. From this figure, it can be seen that the battery of the conventional example exhibits unstable characteristics in both charging voltage and charging current. This is because in the battery of the conventional example, the electrolyte softened at a high temperature, so that dendrite-like lithium deposited on the negative electrode active material during battery charging grew greatly on the positive electrode active material side, and the gap between the positive electrode active material and the negative electrode active material was increased. This is because a micro short circuit occurred.

【0018】なお上記実施例では、架橋高分子体含有層
を介して2つの架橋高分子体非含有層を積層して電解質
層を構成したが、本発明はこれに限定されるものではな
く、架橋高分子体含有層と架橋高分子体非含有層を積層
して電解質層を構成したり、架橋高分子体含有層のみで
電解質層を構成してもよい。また本実施例の電池は、正
極活物質と負極活物質とを単に固体電解質を介して積層
し電池に本発明を適用した例であるが、炭素材等からな
る負極活物質保持体(イオンドープ材)を負極側に配置
してデントライトの発生を抑制した電池に本発明を適用
しても構わない。この場合には、架橋高分子体含有層が
軟質化する固体電解質層の補強層として機能する。また
本実施例の電池は、二次電池に本発明を適用した例であ
るが、本発明はこれに限定されるものではなく、一次電
池に本発明を適用しても構わないのは勿論である。
In the above examples, the electrolyte layer was formed by laminating two crosslinked polymer-free layers via the crosslinked polymer-containing layer, but the present invention is not limited to this. The electrolyte layer may be formed by laminating the crosslinked polymer-containing layer and the crosslinked polymer-free layer, or the electrolyte layer may be formed only by the crosslinked polymer-containing layer. Further, the battery of this example is an example in which the present invention is applied to a battery in which a positive electrode active material and a negative electrode active material are simply laminated via a solid electrolyte, but a negative electrode active material holder (ion-doped) made of a carbon material or the like is used. The present invention may be applied to a battery in which the material) is arranged on the negative electrode side to suppress the generation of dendrite. In this case, the crosslinked polymer-containing layer functions as a reinforcing layer for the softened solid electrolyte layer. Further, the battery of this example is an example in which the present invention is applied to a secondary battery, but the present invention is not limited to this, and it goes without saying that the present invention may be applied to a primary battery. is there.

【0019】[0019]

【発明の効果】請求項1の発明によれば、電解質層内に
架橋高分子体を含有する架橋高分子体含有層を形成する
ので、電池が高温域で使用されて高分子固体電解質に用
いる高分子化合物が高温に晒されて軟化しても、架橋高
分子体含有層は実質的に軟化することがない。そのため
架橋高分子体含有層によってデントライトの成長が妨げ
られて、極板間短絡が発生するのを防ぐことができる。
そのため、本発明によれば、高分子固体電解質電池の寿
命を延ばすことができる。
According to the invention of claim 1, since the crosslinked polymer-containing layer containing the crosslinked polymer is formed in the electrolyte layer, the battery is used in a high temperature range and is used as a polymer solid electrolyte. Even if the polymer compound is exposed to a high temperature and softens, the crosslinked polymer-containing layer does not substantially soften. Therefore, it is possible to prevent the growth of dendrites from being blocked by the crosslinked polymer-containing layer and to prevent a short circuit between the electrode plates.
Therefore, according to the present invention, the life of the polymer solid electrolyte battery can be extended.

【0020】請求項2の発明によれば、架橋高分子体含
有層を介して2つの架橋高分子体非含有層を積層して電
解質層を構成するので、電解質層と各活物質層との密着
強度を高めることができる。
According to the second aspect of the present invention, since two crosslinked polymer-free layers are laminated via the crosslinked polymer-containing layer to form the electrolyte layer, the electrolyte layer and each active material layer are formed. The adhesion strength can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本実施例の高分子固体電解質リチウム電池の
概略断面図である。
FIG. 1 is a schematic cross-sectional view of a polymer solid electrolyte lithium battery of this example.

【図2】 試験に用いた電池のサイクル寿命特性を示す
図である。
FIG. 2 is a diagram showing cycle life characteristics of a battery used in a test.

【図3】 試験に用いた電池の充電電圧特性及び充電電
流特性を示す図である。
FIG. 3 is a diagram showing a charging voltage characteristic and a charging current characteristic of a battery used in a test.

【符号の説明】[Explanation of symbols]

2 正極活物質層 4 負極活物質層 5 高分子固体電解質層 5a 架橋高分子体含有層 5b 架橋高分子体非含有層 2 Positive Electrode Active Material Layer 4 Negative Electrode Active Material Layer 5 Polymer Solid Electrolyte Layer 5a Crosslinked Polymer-Containing Layer 5b Crosslinked Polymer-Free Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早川 他▲く▼美 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 小牧 昭夫 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 中長 偉文 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 犬伏 昭嘉 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 笹岡 三千雄 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hayakawa et al. ▲ Ku ▼ Beauty 2-1, 1-1 Nishinishinjuku, Shinjuku-ku, Tokyo Shin-Kindo Electric Co., Ltd. (72) Inventor Akio Komaki Nishishinjuku, Shinjuku-ku, Tokyo 2-1-1 No. 1 Shinshin Todenki Co., Ltd. (72) Inventor Nakamura Weibun 463 Kagasuno, Kawauchi-cho, Tokushima City, Tokushima Prefecture Otsuka Chemical Co., Ltd. Tokushima Laboratory (72) Inventor Akiyoshi Inubushi Tokushima, Tokushima Prefecture 463 Kagasuno, Ichikawauchi-machi, Tokushima Research Institute, Otsuka Chemical Co., Ltd. (72) Inventor, Michio Sasaoka, 463, Kagasuno, Kawauchi-machi, Tokushima, Tokushima Prefecture, Tokushima Research Institute, Otsuka Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高分子固体電解質からなる電解質層を有
する高分子固体電解質電池において、 前記電解質層内に 【化1】 の化学式で表される架橋高分子体を含有する架橋高分子
体含有層を形成したことを特徴とする高分子固体電解質
電池。
1. A polymer solid electrolyte battery having an electrolyte layer made of a polymer solid electrolyte, wherein: A crosslinked polymer-containing layer containing a crosslinked polymer represented by the following chemical formula is formed: a polymer solid electrolyte battery.
【請求項2】 前記電解質層は、前記架橋高分子体含有
層を介して架橋高分子体を含有しない2つの架橋高分子
体非含有層が積層されて構成されていることを特徴とす
る請求項1に記載の高分子固体電解質電池。
2. The electrolyte layer is formed by laminating two crosslinked polymer-free layers containing no crosslinked polymer through the crosslinked polymer-containing layer. Item 2. The polymer solid electrolyte battery according to Item 1.
JP5311759A 1993-12-13 1993-12-13 Polymer solid electrolyte battery Pending JPH07161381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5311759A JPH07161381A (en) 1993-12-13 1993-12-13 Polymer solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5311759A JPH07161381A (en) 1993-12-13 1993-12-13 Polymer solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPH07161381A true JPH07161381A (en) 1995-06-23

Family

ID=18021145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5311759A Pending JPH07161381A (en) 1993-12-13 1993-12-13 Polymer solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPH07161381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275633A (en) * 1997-01-28 1998-10-13 Mitsubishi Electric Corp Lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275633A (en) * 1997-01-28 1998-10-13 Mitsubishi Electric Corp Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
EP0397523A2 (en) Solid state electrochemical cell and current collector therefor
US4042760A (en) Flat battery
JP2000503161A (en) Apparatus and method for making stacked rechargeable battery cells
JP4352475B2 (en) Solid electrolyte secondary battery
EP0108954A1 (en) Sheet-shaped polymer secondary battery of layer built type
KR100865996B1 (en) Method for producing electrode sheets for electrochemical elements
US20030054256A1 (en) Totally solid type polymer lithium ion secondary battery and manufacturing method of the same
US4740434A (en) Surface treated electrodes applicable to zinc-halogen secondary batteries
JPH07326383A (en) Polymeric sold electrolyte battery and manufacture thereof
JP3347439B2 (en) Polymer solid electrolyte lithium secondary battery and method of manufacturing the same
JPH0521086A (en) Electrode and battery using this
EP0973223A1 (en) Lithium battery and method for manufacturing the same
JP4010521B2 (en) Stacked battery
JPH07161381A (en) Polymer solid electrolyte battery
JPH01195657A (en) Silver-iron cell
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JPH11260336A (en) Polymer electrolyte battery
JP3421409B2 (en) Polymer solid electrolyte battery
JP2001351694A (en) Rechargeable battery cell
JP2732442B2 (en) Manufacturing method of solid state secondary battery
TW406448B (en) Secondary battery separator and process for making same
JP3108187B2 (en) Lithium secondary battery
EP3723168B1 (en) Secondary battery structure having windable flexible polymer matrix solid electrolyte and manufacturing method thereof
JPH02253569A (en) Manufacture of solid state secondary battery
EP4325617A1 (en) All-solid-state battery comprising two types of solid electrolyte layers and method for manufacturing same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021008