JPH07161368A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH07161368A
JPH07161368A JP5341570A JP34157093A JPH07161368A JP H07161368 A JPH07161368 A JP H07161368A JP 5341570 A JP5341570 A JP 5341570A JP 34157093 A JP34157093 A JP 34157093A JP H07161368 A JPH07161368 A JP H07161368A
Authority
JP
Japan
Prior art keywords
exchange membrane
ion exchange
membrane
water
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5341570A
Other languages
Japanese (ja)
Inventor
Yutaka Mizuno
裕 水野
Tomio Yasuma
富男 安間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP5341570A priority Critical patent/JPH07161368A/en
Publication of JPH07161368A publication Critical patent/JPH07161368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To suppress the deformation of an ion-exchange membrane in order to keep the contact state of the membrane with a catalytic electrode and to suppress the decrease of the electricity generating function and at the same time to improve the reliability and durability of a fuel cell by providing a means to absorb the expansion of the ion-exchange membrane. CONSTITUTION:A fuel cell has a positive catalytic electrode 10 in one side of an ion-exchange membrane 9 and a negative catalytic electrode 11 in the other side and oxygen with water and hydrogen with water are supplied to the electrodes through gas diffusion layers 12, 13, respectively. At the time water is produced by electrochemical reaction of hydrogen and oxygen, the free energy conversion is taken as electric energy and thus electricity generation is carried out. At that time, a way to absorb the expansion of the exchange membrane 9 is provided to keep the contact state of the exchange membrane 9 and the electrodes 10, 11 stable. As the way 30, some ways may be employed such as forming the membrane itself into a wavy form wherein recessed parts 31 and projected parts are formed asymmetrically in both sides of the membrane or forming the membrane like the bellows or forming patterned grooves in the membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、水素と酸素と反応さ
せて水を生成し、その際に電気を発生させる燃料電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell which reacts with hydrogen and oxygen to generate water and at the same time generates electricity.

【0002】[0002]

【従来の技術】電気自動車には、例えば燃料電池を搭載
し、この燃料電池によって発生する電気を駆動源として
走行するものがある。この燃料電池は、イオン交換膜の
一方面に正の触媒電極を有すると共に、他方面に負の触
媒電極を有し、水素と酸素と反応させて水を生成し、そ
の際に電気を発生させる。
2. Description of the Related Art Some electric vehicles are equipped with, for example, a fuel cell and run using electricity generated by the fuel cell as a drive source. This fuel cell has a positive catalyst electrode on one surface of the ion exchange membrane and a negative catalyst electrode on the other surface, and reacts with hydrogen and oxygen to generate water, and at that time, generates electricity. .

【0003】[0003]

【発明が解決しようとする課題】このような燃料電池で
は、水素と酸素との反応点がイオン交換膜と触媒電極と
の界面に生じるが、加温、加湿によってイオン交換膜と
触媒電極とでは膨張率が相違する。この両者の膨張率の
違いにより、イオン交換膜と触媒電極との接合状態が変
化し、イオン交換膜と触媒電極とのはがれ、イオン交換
膜の破れ等が生じることがあり、これにより反応点が安
定的に保持できない恐れがある。
In such a fuel cell, a reaction point between hydrogen and oxygen occurs at the interface between the ion exchange membrane and the catalyst electrode, but the ion exchange membrane and the catalyst electrode are not heated by heating and humidification. The expansion rate is different. Due to the difference in expansion coefficient between the two, the bonding state between the ion exchange membrane and the catalyst electrode may change, the ion exchange membrane and the catalyst electrode may be peeled off, and the ion exchange membrane may be broken, etc. It may not be able to hold it stably.

【0004】その結果、発電性能が低下し、信頼性が維
持できないばかりでなく、耐久性が低下する等の問題が
発生する。このため、高性能で高効率な電極特性を維持
するために、イオン交換膜の伸び対策が重要である。
As a result, power generation performance deteriorates, reliability cannot be maintained, and durability deteriorates. Therefore, in order to maintain high performance and high efficiency electrode characteristics, it is important to take measures against the elongation of the ion exchange membrane.

【0005】この発明は、かかる点に鑑みてなされたも
ので、イオン交換膜と触媒電極との接合状態を維持し、
発電性能の低下を防止し、信頼性を維持すると共に、耐
久性が向上する燃料電池を提供することを目的としてい
る。
The present invention has been made in view of the above points, and maintains the bonding state between the ion exchange membrane and the catalyst electrode,
An object of the present invention is to provide a fuel cell that prevents deterioration of power generation performance, maintains reliability, and improves durability.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に、請求項1記載の発明は、イオン交換膜の一方面に正
の触媒電極を有すると共に、他方面に負の触媒電極を有
し、水素と酸素と反応させて水を生成し、その際に電気
を発生させる燃料電池において、前記イオン交換膜に、
膨張を吸収する手段を施したことを特徴としている。
In order to solve the above-mentioned problems, the invention according to claim 1 has a positive catalyst electrode on one surface of the ion exchange membrane and a negative catalyst electrode on the other surface. In a fuel cell in which hydrogen is reacted with oxygen to generate water, and electricity is generated at that time, in the ion exchange membrane,
The feature is that a means for absorbing expansion is provided.

【0007】[0007]

【作用】この請求項1記載の発明では、イオン交換膜
に、膨張を吸収する手段を施しており、イオン交換膜の
伸びを吸収することで変形が少なくなり、イオン交換膜
と触媒電極との接合状態を維持でき、発電性能の低下を
防止し、信頼性が向上すると共に、耐久性が向上する。
In the invention according to claim 1, the ion exchange membrane is provided with a means for absorbing expansion, and by absorbing the expansion of the ion exchange membrane, deformation is reduced, and the ion exchange membrane and the catalyst electrode are The joined state can be maintained, the power generation performance is prevented from lowering, the reliability is improved, and the durability is improved.

【0008】[0008]

【実施例】以下、この発明の燃料電池の実施例を図面に
基づいて詳細に説明する。
Embodiments of the fuel cell of the present invention will be described below in detail with reference to the drawings.

【0009】図1は燃料電池の構成を示す縦断面図であ
る。この燃料電池1には、ガスケット2,3を介して一
対のセパレータ4,5が組み付けられ、この一対のセパ
レータ4,5の間には接合体6が配置されている。一対
のセパレータ4,5にはそれぞれ熱媒体通路7,8が設
けられ、この熱媒体通路7,8に循環ポンプ50、熱交
換器51の作動で熱媒体を供給して温度調節が行われ
る。この熱媒体としては、例えば市販の熱媒体で、水、
リフォーマの原料、バーナーの燃料等が用いられる。
FIG. 1 is a vertical sectional view showing the structure of a fuel cell. A pair of separators 4 and 5 are assembled to the fuel cell 1 via gaskets 2 and 3, and a bonded body 6 is arranged between the pair of separators 4 and 5. Heat medium passages 7 and 8 are provided in the pair of separators 4 and 5, and the heat medium is supplied to the heat medium passages 7 and 8 by the operation of the circulation pump 50 and the heat exchanger 51 to adjust the temperature. As this heat medium, for example, a commercially available heat medium, water,
Reformer raw material, burner fuel, etc. are used.

【0010】接合体6は、中央にイオン交換膜9を有
し、このイオン交換膜9の一方に正の触媒電極10を、
他方に負の触媒電極11を接合し、さらに正の触媒電極
10の外側にガス拡散層12を、負の触媒電極11の外
側にガス拡散層13を接合して構成されている。
The bonded body 6 has an ion exchange membrane 9 in the center, and a positive catalyst electrode 10 is provided on one side of the ion exchange membrane 9.
A negative catalyst electrode 11 is joined to the other, a gas diffusion layer 12 is joined to the outside of the positive catalyst electrode 10, and a gas diffusion layer 13 is joined to the outside of the negative catalyst electrode 11.

【0011】一方のセパレータ4のガス拡散層12と接
する面には互いに連通するガス流路14が形成され、さ
らにガス流路14の一方に連通する流入通路15が形成
され、また他方に連通する流出通路16が形成されてい
る。
On one surface of one of the separators 4 which is in contact with the gas diffusion layer 12, there are formed gas passages 14 which communicate with each other, and further an inflow passage 15 which communicates with one of the gas passages 14 and which communicates with the other. An outflow passage 16 is formed.

【0012】他方のセパレータ5のガス拡散層13と接
する面には互いに連通するガス流路17が形成され、さ
らにガス流路17の一方に連通する流入通路18が形成
され、また他方に連通する流出通路19が形成されてい
る。
On the surface of the other separator 5 which is in contact with the gas diffusion layer 13, there are formed gas passages 17 which communicate with each other, and further an inflow passage 18 which communicates with one of the gas passages 17 and which communicates with the other. An outflow passage 19 is formed.

【0013】この一方のセパレータ4の流入通路15か
ら加温、加湿した酸素と水を供給すると、この酸素と水
はガス流路14を流れ、他方のセパレータ5の流入通路
18から加温、加湿した水素と水を供給すると、この水
素と水はガス流路17を流れる。このとき、接合体6に
より水素と酸素の電気化学的な反応により水を生成し、
その際の自由エネルギーの変化を電気エネルギーとして
取り出す発電が行われ、主として酸素と水が流出通路1
6から、主として水素と水が流出通路19から排出され
る。
When heated and humidified oxygen and water are supplied from the inflow passage 15 of the one separator 4, the oxygen and water flow in the gas flow passage 14, and the heated and humidified water is supplied from the inflow passage 18 of the other separator 5. When hydrogen and water are supplied, the hydrogen and water flow through the gas passage 17. At this time, water is generated by the electrochemical reaction of hydrogen and oxygen by the joined body 6,
Electricity is generated by taking out the change in free energy at that time as electric energy, and mainly oxygen and water are discharged from the outflow passage 1.
From 6, hydrogen and water are mainly discharged from the outflow passage 19.

【0014】接合体6による水素と酸素の電気化学的な
反応は、一方では酸素と水がガス拡散層12、触媒電極
10を通り、イオン交換膜9の表面に供給され、他方で
は水素と水がガス拡散層13、触媒電極11を通り、イ
オン交換膜9の表面に供給され、この触媒電極10とイ
オン交換膜9の界面及び触媒電極11とイオン交換膜9
の界面で行われる。
In the electrochemical reaction of hydrogen and oxygen by the joined body 6, oxygen and water are supplied to the surface of the ion exchange membrane 9 through the gas diffusion layer 12 and the catalyst electrode 10 on the one hand, and hydrogen and water on the other hand. Is supplied to the surface of the ion exchange membrane 9 through the gas diffusion layer 13 and the catalyst electrode 11, and the interface between the catalyst electrode 10 and the ion exchange membrane 9 and the catalyst electrode 11 and the ion exchange membrane 9 are supplied.
At the interface of.

【0015】この接合体6による水素と酸素の電気化学
的な反応で、水はイオン交換膜9の中でH+の移動を助
ける役割をしている。即ち、H+はイオン交換膜9中の
イオン交換基の間を、隣接する水分子を移動しながら、
あるいは水分子を伴って泳動しながら進んでいく。従っ
て、水が不足するとH+の移動の抵抗が大きくなり、性
能が低下する。
Water plays a role of assisting migration of H + in the ion exchange membrane 9 by the electrochemical reaction of hydrogen and oxygen by the joined body 6. That is, H + moves between the ion-exchange groups in the ion-exchange membrane 9 while moving adjacent water molecules,
Alternatively, it proceeds while migrating with water molecules. Therefore, when water is insufficient, the resistance of H + migration increases, and the performance deteriorates.

【0016】このイオン交換膜9の両面には、膨張を吸
収する手段30が施されており、この膨張を吸収する手
段30は凹部31で構成され、この凹部31はイオン交
換膜9の両面の対称位置に形成されている。
Means 30 for absorbing the expansion are provided on both sides of the ion exchange membrane 9. The means 30 for absorbing the expansion is composed of a concave portion 31, and the concave portion 31 is formed on both surfaces of the ion exchange membrane 9. It is formed in a symmetrical position.

【0017】従って、燃料電池1では、水素と酸素との
反応点がイオン交換膜9と触媒電極10,11との界面
に生じるが、加温、加湿によってイオン交換膜9と触媒
電極10,11との膨張率の違いにより、イオン交換膜
9が伸びる。このとき、イオン交換膜9に形成した凹部
31により伸びを吸収するため、イオン交換膜9と触媒
電極10,11との接合状態を維持することができ、発
電性能の低下を防止し、信頼性を維持すると共に、耐久
性が向上する。また、イオン交換膜9に形成した凹部3
1で、触媒電極10,11とイオン交換膜9との接触面
積を増加させることができ、その分発電効率が向上す
る。
Therefore, in the fuel cell 1, a reaction point between hydrogen and oxygen occurs at the interface between the ion exchange membrane 9 and the catalyst electrodes 10 and 11, but the ion exchange membrane 9 and the catalyst electrodes 10 and 11 are heated and humidified. The ion exchange membrane 9 expands due to the difference in the expansion coefficient between and. At this time, since the recesses 31 formed in the ion exchange membrane 9 absorb the elongation, the bonded state between the ion exchange membrane 9 and the catalyst electrodes 10 and 11 can be maintained, and the deterioration of power generation performance can be prevented and the reliability can be improved. And durability is improved. In addition, the concave portion 3 formed in the ion exchange membrane 9
In 1, the contact area between the catalyst electrodes 10 and 11 and the ion exchange membrane 9 can be increased, and the power generation efficiency is improved accordingly.

【0018】また、イオン交換膜9に施された膨張を吸
収する手段30を構成する凹部31は、図2に示すよう
に、イオン交換膜9の両面の非対称位置に形成してもよ
く、また図3に示すようにイオン交換膜9に片面のみに
形成してもよい。
Further, as shown in FIG. 2, the recesses 31 constituting the expansion absorbing means 30 applied to the ion exchange membrane 9 may be formed at asymmetrical positions on both sides of the ion exchange membrane 9, or As shown in FIG. 3, the ion exchange membrane 9 may be formed on only one side.

【0019】また、イオン交換膜に施された膨張を吸収
する手段30は、凸部32で構成することができ、この
凸部32は、図4に示すように、イオン交換膜9の両面
の非対称位置に形成してもよく、また図5に示すように
イオン交換膜9に一方面のみに形成してもよい。このよ
うに、イオン交換膜9に凸部32を形成するものでは、
凸部32によって触媒電極に余裕ができてイオン交換膜
9の伸びに追従することができる。
Further, the means 30 for absorbing the expansion applied to the ion exchange membrane can be constituted by a convex portion 32, and this convex portion 32 is provided on both sides of the ion exchange membrane 9 as shown in FIG. It may be formed at an asymmetrical position, or may be formed on only one surface of the ion exchange membrane 9 as shown in FIG. Thus, in the case where the convex portion 32 is formed on the ion exchange membrane 9,
The convex portion 32 allows a catalyst electrode to have a margin and can follow the extension of the ion exchange membrane 9.

【0020】また、イオン交換膜に施された膨張を吸収
する手段30は、図6に示すように、イオン交換膜9自
体を波形に形成することで構成してもよく、さらに図7
に示すようにイオン交換膜9自体を蛇腹状に形成して構
成してもよい。
The expansion absorbing means 30 applied to the ion exchange membrane may be formed by forming the ion exchange membrane 9 itself in a corrugated shape as shown in FIG.
The ion exchange membrane 9 itself may be formed in a bellows shape as shown in FIG.

【0021】さらに、イオン交換膜に施された膨張を吸
収する手段30は、溝33で構成することができ、この
溝33は、図8に示すように格子状に形成してもよく、
また図9に示すように中央部で溝を多く形成してもよ
く、さらに図10に示すように大きく蛇行させて形成し
てもよく、また図11に示すように連続したひだ状に形
成してもよい。
Further, the means 30 for absorbing the expansion applied to the ion exchange membrane can be constituted by a groove 33, which may be formed in a lattice shape as shown in FIG.
Further, as shown in FIG. 9, a large number of grooves may be formed in the central portion, and further, as shown in FIG. 10, it may be formed by a large meandering, and as shown in FIG. May be.

【0022】これらの溝33は、イオン交換膜9の片面
に形成しても、あるいは両面に形成してもよい。さら
に、これらの溝33を水通路とすることができ、図8乃
至図11に示すように溝33のパターンにより水通路の
入口と出口を自由に変えることができる。
These grooves 33 may be formed on one side or both sides of the ion exchange membrane 9. Further, these grooves 33 can be used as water passages, and the inlet and outlet of the water passages can be freely changed by the pattern of the grooves 33 as shown in FIGS. 8 to 11.

【0023】また、イオン交換膜9の表面に形成された
細かい溝33は、機械加工刃、プラズマのような電気的
処理、プレス、または製膜時の型成型等により作ること
ができる。
Further, the fine grooves 33 formed on the surface of the ion exchange membrane 9 can be formed by a machining blade, electric treatment such as plasma, pressing, or die molding at the time of film formation.

【0024】また、イオン交換膜に施された膨張を吸収
する手段30は、突起34で構成することができ、この
突起34は、図12に示すように均等に分布させて形成
しても、図13に示すように中央を密にして分布に変化
をもたせてもよい。また、突起34の形状は、図12及
び図13ではイボ状に形成されているが、図14に示す
ようにリブ状に形成してもよい。
Further, the means 30 for absorbing the expansion applied to the ion exchange membrane can be constituted by the protrusions 34. Even if the protrusions 34 are formed by being evenly distributed as shown in FIG. As shown in FIG. 13, the center may be made dense and the distribution may be changed. Further, the shape of the protrusion 34 is formed in a wart shape in FIGS. 12 and 13, but may be formed in a rib shape as shown in FIG.

【0025】このように、イオン交換膜9に突起34が
形成され、このイオン交換膜9を図15に示すように、
イオン交換膜9を両側から触媒電極10,11により締
め付けることにより突起34が押さえられ、この後イオ
ン交換膜9を膨潤させると突起34と触媒電極10,1
1の締め付け部との接触圧により突起34間Dのイオン
交換膜9の伸びを抑えることができる。
Thus, the protrusions 34 are formed on the ion exchange membrane 9, and the ion exchange membrane 9 is formed as shown in FIG.
The protrusions 34 are pressed by tightening the ion exchange membrane 9 from both sides with the catalyst electrodes 10 and 11, and when the ion exchange membrane 9 is swollen thereafter, the protrusions 34 and the catalyst electrodes 10 and 1 are formed.
By the contact pressure with the tightening portion of No. 1, the extension of the ion exchange membrane 9 between the protrusions 34 can be suppressed.

【0026】また、イオン交換膜に施された膨張を吸収
する手段30は、図16に示すように孔を有する細径の
格子状パイプ35をイオン交換膜液36に浸すことによ
り、小面積の膜を多く作製したイオン交換膜9自体で構
成することができる。このイオン交換膜9は、図17に
示すように、膜面積の狭小化により膨潤により伸びの影
響を小さくすることができ、イオン交換膜9の水または
水蒸気の供給が格子状パイプ35の孔37から直接必要
分行なえ、しかも格子状パイプ35が補強材を兼ねるこ
とができる。
Further, the means 30 for absorbing the expansion applied to the ion exchange membrane has a small area by immersing a small diameter lattice-like pipe 35 having holes as shown in FIG. 16 in the ion exchange membrane liquid 36. It can be composed of the ion exchange membrane 9 itself, which is made of many membranes. As shown in FIG. 17, this ion exchange membrane 9 can reduce the influence of elongation due to swelling due to the narrowing of the membrane area, and the supply of water or water vapor to the ion exchange membrane 9 is provided by the holes 37 of the lattice pipe 35. Therefore, the grid pipe 35 can also serve as a reinforcing material.

【0027】さらに、このようなイオン交換膜9は、図
18乃至図21に示す種々の格子状パイプ35のロール
を、図22に示すようにイオン交換膜液36に浸し、そ
の後乾燥機38乾燥して製作される。
Further, in the ion exchange membrane 9 as described above, the rolls of various lattice pipes 35 shown in FIGS. 18 to 21 are dipped in the ion exchange membrane liquid 36 as shown in FIG. Is produced.

【0028】前記したように、格子状パイプ35には、
孔37が形成されており、この孔37の位置、数、形状
等は、例えば位置が結合部、中間部に形成され、その数
は結合部では数ケ所、中間部では2ケ所、形状は円形、
長方形に形成される。
As described above, the grid pipe 35 has
The holes 37 are formed, and the positions, numbers, shapes, etc. of the holes 37 are formed, for example, in the connecting portion and the intermediate portion, and the number is several in the connecting portion, two in the intermediate portion, and the shape is circular. ,
It is formed into a rectangle.

【0029】[0029]

【発明の効果】前記したように、請求項1記載の発明
は、イオン交換膜に、膨張を吸収する手段を施したか
ら、イオン交換膜が伸びた時に伸びを吸収することで変
形が少なくなり、イオン交換膜と触媒電極との接合状態
を維持でき、発電性能の低下を防止し、信頼性が向上す
ると共に、耐久性が向上する。
As described above, according to the first aspect of the present invention, since the ion exchange membrane is provided with a means for absorbing the expansion, when the ion exchange membrane is extended, the extension is absorbed so that the deformation is reduced. The bonding state between the ion exchange membrane and the catalyst electrode can be maintained, the power generation performance can be prevented from lowering, the reliability can be improved, and the durability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】燃料電池の構成を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing the structure of a fuel cell.

【図2】イオン交換膜の両面に凹部を形成した実施例を
示す図である。
FIG. 2 is a diagram showing an example in which recesses are formed on both sides of an ion exchange membrane.

【図3】イオン交換膜の片面に凹部を形成した実施例を
示す図である。
FIG. 3 is a diagram showing an example in which a recess is formed on one side of an ion exchange membrane.

【図4】イオン交換膜の両面に凸部を形成した実施例を
示す図である。
FIG. 4 is a view showing an example in which convex portions are formed on both sides of an ion exchange membrane.

【図5】イオン交換膜の片面に凸部を形成した実施例を
示す図である。
FIG. 5 is a diagram showing an example in which a convex portion is formed on one surface of an ion exchange membrane.

【図6】イオン交換膜を波形に形成した実施例を示す図
である。
FIG. 6 is a view showing an example in which an ion exchange membrane is formed in a corrugated form.

【図7】イオン交換膜を蛇腹状に形成した実施例を示す
図である。
FIG. 7 is a diagram showing an example in which an ion exchange membrane is formed in a bellows shape.

【図8】イオン交換膜に格子状の溝を形成した実施例を
示す図である。
FIG. 8 is a diagram showing an example in which lattice-shaped grooves are formed in an ion exchange membrane.

【図9】イオン交換膜に中央で密集した溝を形成した実
施例を示す図である。
FIG. 9 is a view showing an example in which a groove densely formed in the center is formed in an ion exchange membrane.

【図10】イオン交換膜に蛇行した溝を形成した実施例
を示す図である。
FIG. 10 is a diagram showing an example in which a meandering groove is formed in an ion exchange membrane.

【図11】イオン交換膜に連続したひだ状の溝を形成し
た実施例を示す図である。
FIG. 11 is a view showing an example in which continuous pleated grooves are formed in the ion exchange membrane.

【図12】イオン交換膜に突起を均等に分布させたて形
成した実施例を示す図である。
FIG. 12 is a view showing an example in which projections are formed by being uniformly distributed on the ion exchange membrane.

【図13】イオン交換膜に突起を不均等に分布させて形
成した実施例を示す図である。
FIG. 13 is a diagram showing an example in which protrusions are formed on the ion exchange membrane in an uneven distribution.

【図14】イオン交換膜の突起の他の実施例を示す図で
ある。
FIG. 14 is a view showing another embodiment of the protrusion of the ion exchange membrane.

【図15】イオン交換膜の膨潤を示す図である。FIG. 15 is a diagram showing swelling of an ion exchange membrane.

【図16】イオン交換膜を格子状パイプで形成する実施
例を示す図である。
FIG. 16 is a diagram showing an example in which an ion exchange membrane is formed by a lattice pipe.

【図17】イオン交換膜の膨潤を示す図である。FIG. 17 is a diagram showing swelling of an ion exchange membrane.

【図18】イオン交換膜の格子状パイプの実施例を示す
図である。
FIG. 18 is a diagram showing an example of a lattice pipe of an ion exchange membrane.

【図19】イオン交換膜の格子状パイプの他の実施例を
示す図である。
FIG. 19 is a view showing another example of the lattice pipe of the ion exchange membrane.

【図20】イオン交換膜の格子状パイプの他の実施例を
示す図である。
FIG. 20 is a view showing another example of the lattice pipe of the ion exchange membrane.

【図21】イオン交換膜の格子状パイプの他の実施例を
示す図である。
FIG. 21 is a view showing another example of the lattice pipe of the ion exchange membrane.

【図22】イオン交換膜を格子状パイプで形成する実施
例を示す図である。
FIG. 22 is a diagram showing an example in which the ion exchange membrane is formed by a lattice pipe.

【符号の説明】[Explanation of symbols]

1 燃料電池 9 イオン交換膜 10,11 触媒電極 30 膨張を吸収する手段 1 Fuel Cell 9 Ion Exchange Membrane 10, 11 Catalyst Electrode 30 Means for Absorbing Expansion

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換膜の一方面に正の触媒電極を
有すると共に、他方面に負の触媒電極を有し、水素と酸
素と反応させて水を生成し、その際に電気を発生させる
燃料電池において、前記イオン交換膜に、膨張を吸収す
る手段を施したことを特徴とする燃料電池。
1. An ion exchange membrane having a positive catalyst electrode on one surface and a negative catalyst electrode on the other surface, which reacts with hydrogen and oxygen to generate water, and at that time, generates electricity. In the fuel cell, the ion exchange membrane is provided with a means for absorbing expansion.
JP5341570A 1993-12-10 1993-12-10 Fuel cell Pending JPH07161368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5341570A JPH07161368A (en) 1993-12-10 1993-12-10 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5341570A JPH07161368A (en) 1993-12-10 1993-12-10 Fuel cell

Publications (1)

Publication Number Publication Date
JPH07161368A true JPH07161368A (en) 1995-06-23

Family

ID=18347099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5341570A Pending JPH07161368A (en) 1993-12-10 1993-12-10 Fuel cell

Country Status (1)

Country Link
JP (1) JPH07161368A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2828769A1 (en) * 2001-12-21 2003-02-21 Commissariat Energie Atomique Membrane/electrodes or electrolyte/electrodes base module for small size combustible battery for portable micro-energy sources uses heavy ion ionic reactive laser machining to form electrodes
JP2005174565A (en) * 2003-12-08 2005-06-30 Hitachi Ltd Polymer electrolyte membrane for fuel cell, membrane/electrode joint body, its manufacturing method, and fuel cell using it
JP2005535098A (en) * 2002-08-07 2005-11-17 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Metal-coated polymer electrolyte membrane with reinforced structure
JP2006507627A (en) * 2002-03-29 2006-03-02 ヒューレット・パッカード・カンパニー Fuel cell electrolyte
EP1843425A1 (en) * 2006-04-04 2007-10-10 Samsung SDI Co., Ltd. A membrane-electrode assembly for a fuel cell, a method of preparing the same and a fuel cell system including the same
EP1914825A1 (en) * 2006-08-31 2008-04-23 Samsung SDI Co., Ltd. Membrane-electrode assembly for fuel cell, method of preparing same, and fuel cell system cpmrising same
WO2010049441A1 (en) * 2008-10-30 2010-05-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrolyte plate with increased rigidity, and electrochemical system including such an electrolyte plate
JP2010153349A (en) * 2008-11-30 2010-07-08 Equos Research Co Ltd Fuel cell
WO2010078952A3 (en) * 2009-01-08 2010-09-30 Bayer Technology Services Gmbh Structured gas diffusion electrode for electrolysis cells
JP2011522374A (en) * 2008-05-28 2011-07-28 エルジー・ケム・リミテッド Production method of polymer electrolyte membrane for fuel cell, membrane electrode assembly, and polymer electrolyte fuel cell
GB2597846A (en) * 2020-07-29 2022-02-09 Univ Jiangsu Microtextured Proton Exchange membrane for Fuel Cell and Processing Method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2828769A1 (en) * 2001-12-21 2003-02-21 Commissariat Energie Atomique Membrane/electrodes or electrolyte/electrodes base module for small size combustible battery for portable micro-energy sources uses heavy ion ionic reactive laser machining to form electrodes
JP2006507627A (en) * 2002-03-29 2006-03-02 ヒューレット・パッカード・カンパニー Fuel cell electrolyte
JP4880876B2 (en) * 2002-03-29 2012-02-22 エバレデイ バツテリ カンパニー インコーポレーテツド Fuel cell electrolyte
JP4868740B2 (en) * 2002-08-07 2012-02-01 エバレデイ バツテリ カンパニー インコーポレーテツド Metal-coated polymer electrolyte membrane with reinforced structure
JP2005535098A (en) * 2002-08-07 2005-11-17 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Metal-coated polymer electrolyte membrane with reinforced structure
JP2005174565A (en) * 2003-12-08 2005-06-30 Hitachi Ltd Polymer electrolyte membrane for fuel cell, membrane/electrode joint body, its manufacturing method, and fuel cell using it
EP1843425A1 (en) * 2006-04-04 2007-10-10 Samsung SDI Co., Ltd. A membrane-electrode assembly for a fuel cell, a method of preparing the same and a fuel cell system including the same
EP1914825A1 (en) * 2006-08-31 2008-04-23 Samsung SDI Co., Ltd. Membrane-electrode assembly for fuel cell, method of preparing same, and fuel cell system cpmrising same
JP2011522374A (en) * 2008-05-28 2011-07-28 エルジー・ケム・リミテッド Production method of polymer electrolyte membrane for fuel cell, membrane electrode assembly, and polymer electrolyte fuel cell
FR2938121A1 (en) * 2008-10-30 2010-05-07 Commissariat Energie Atomique ELECTROLYTE PLATE WITH INCREASED RIGIDITY, AND ELECTROCHEMICAL SYSTEM COMPRISING SUCH AN ELECTROLYTE PLATE
WO2010049441A1 (en) * 2008-10-30 2010-05-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrolyte plate with increased rigidity, and electrochemical system including such an electrolyte plate
US8889313B2 (en) 2008-10-30 2014-11-18 Commissariat à l'énergie atomique et aux énergies alternatives Electrolyte plate with increased rigidity, and electrochemical system comprising such an electrolyte plate
JP2010153349A (en) * 2008-11-30 2010-07-08 Equos Research Co Ltd Fuel cell
WO2010078952A3 (en) * 2009-01-08 2010-09-30 Bayer Technology Services Gmbh Structured gas diffusion electrode for electrolysis cells
CN102301037A (en) * 2009-01-08 2011-12-28 拜尔技术服务有限责任公司 Structured Gas Diffusion Electrode For Electrolysis Cells
GB2597846A (en) * 2020-07-29 2022-02-09 Univ Jiangsu Microtextured Proton Exchange membrane for Fuel Cell and Processing Method thereof
GB2597846B (en) * 2020-07-29 2022-09-14 Univ Jiangsu Microtextured Proton Exchange membrane for Fuel Cell and Processing Method thereof

Similar Documents

Publication Publication Date Title
US10998557B2 (en) Separator for fuel cell, manufacturing method thereof, and fuel cell having such a separator
KR101813919B1 (en) Fuel cell with reduced mass transfer limitations
CA2256276C (en) Fuel cell and separator for the same
EP1820230B1 (en) Fuel cell separator
JP2004527872A (en) Electrochemical cell stack
JPH07161368A (en) Fuel cell
JP2008171615A (en) Sealing-integrated membrane electrode assembly
US8293425B2 (en) Fuel cell and gasket
TWI474548B (en) Polar plate and polar plate unit using the same
JP5111826B2 (en) Fuel cell
JP2006278247A (en) Fuel cell
WO2021137730A1 (en) Bipolar plate for fuel cell stacks
JP5364980B2 (en) Fuel cell
JP5082313B2 (en) Fuel cell separator structure
JPS58166658A (en) Fuel cell
JP6880202B2 (en) Fuel cell stack
JP4595282B2 (en) Polymer electrolyte fuel cell
US7955753B2 (en) Bipolar unit for fuel cell provided with porous current collectors
JPH07161369A (en) Fuel cell
JP7496377B2 (en) Power generation cell
JP2021512472A (en) Fuel cell, single cell and cell stack structure
JP2004503069A (en) Gas distribution material for fuel cells
JP2006079919A (en) Fuel cell
JPS628456A (en) Fuel cell
JPH06267563A (en) Solid high polymer electrolyte fuel cell