JPH07159981A - Mask substrate for exposure - Google Patents

Mask substrate for exposure

Info

Publication number
JPH07159981A
JPH07159981A JP30418593A JP30418593A JPH07159981A JP H07159981 A JPH07159981 A JP H07159981A JP 30418593 A JP30418593 A JP 30418593A JP 30418593 A JP30418593 A JP 30418593A JP H07159981 A JPH07159981 A JP H07159981A
Authority
JP
Japan
Prior art keywords
phase shift
shift film
substrate
refractive index
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30418593A
Other languages
Japanese (ja)
Inventor
Shinichi Ito
信一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30418593A priority Critical patent/JPH07159981A/en
Publication of JPH07159981A publication Critical patent/JPH07159981A/en
Priority to US08/583,857 priority patent/US5629115A/en
Priority to US08/729,592 priority patent/US5907393A/en
Priority to US08/730,017 priority patent/US5728494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To remove stray light and to improve pattern exposing accuracy by specifying the reflectivity of the surface of a translucent phase shift film on a surface arranged with a translucent phase shift film to a specific value or below. CONSTITUTION:This mask substrate for exposing is formed by disposing the translucent phase shift film of a single layer structure which has intensity transmittance t of 2 to 16% and is adjusted in refractive index, extinction coefft. and film thickness so as to vary an optical path length by a half wavelength with the light transmitted only through the light transparent substrate on at least a part of at least one surface on a transparent substrate. The reflectivity on the surface of the translucent phase shift film on the surface disposed with the translucent phase shift film is specified to >=10%. The reflectivity of the translucent phase shift film is so set that the refractive index of the translucent phase shift film is >=1.49 and is in a range of <=1.73+0.016t. As a result, the removal of the stray light is made possible and further, the blurring quantity of mask image quality is suppressed to >=2.5% of the desired size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造工程
におけるリソグラフィー技術に用いられる露光用マスク
基板に係わり、特に透明部の少なくとも一方に位相変化
領域を設けた露光用マスク基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure mask substrate used in a lithography technique in a semiconductor device manufacturing process, and more particularly to an exposure mask substrate having a phase change region on at least one of transparent portions.

【0002】[0002]

【従来の技術】従来より用いられている露光用マスク基
板で、マスク材料に露光波長に対し高反射率を有する材
料を用いた場合には、照明光が入射される露光用マスク
基板面で反射した光が照明部に戻り、更に照明部にある
レンズ等で反射され再び露光用マスク基板に照射され
る。この光はノイズとして照度斑を生じさせる影響をも
たらすため、解像性能の劣化や焦点深度が低下するとい
う問題が生じていた。
2. Description of the Related Art In a conventionally used mask substrate for exposure, when a material having a high reflectance with respect to an exposure wavelength is used as a mask material, it is reflected by the surface of the exposure mask substrate on which illumination light is incident. The emitted light returns to the illumination unit, is further reflected by a lens or the like in the illumination unit, and is irradiated again on the exposure mask substrate. Since this light causes an illuminance unevenness as noise, there has been a problem that the resolution performance is deteriorated and the depth of focus is reduced.

【0003】一方、露光用マスク基板でパターン面(照
明光が射出される面)では、パターン面の開口部を透過
した光が投影系レンズ及び被露光基板(ウエハ)で反射
し、更に露光用マスク基板に到達する。この光は非開口
部でより多く反射するため、被露光基板に到達した光は
本来形成されるマスク像に対し像反転したネガ像として
結像する。被露光基板ではマスク像と反転したマスク像
が結像することで、膜減りなどパターン形状が劣化する
という問題が生じていた。
On the other hand, on the pattern surface (the surface from which the illumination light is emitted) on the exposure mask substrate, the light transmitted through the opening of the pattern surface is reflected by the projection system lens and the substrate (wafer) to be exposed, and further exposed. Reach the mask substrate. Since this light is reflected more by the non-aperture portion, the light reaching the substrate to be exposed is imaged as a negative image which is the image inverted with respect to the mask image originally formed. On the substrate to be exposed, a mask image that is the reverse of the mask image is formed, which causes a problem that the pattern shape is deteriorated such as film reduction.

【0004】このような問題に対し、例えば特開昭61
−198156号公報に開示されているように、20〜
50nmの厚みを有する酸素や窒素を含むクロム膜によ
り反射防止膜を形成し、この反射防止膜を遮光パターン
上に設けることにより、露光用マスク基板のマスク材料
で形成されたパターン部の反射率を10%以下に抑え、
迷光の発生を防止している。
To address such a problem, for example, Japanese Patent Laid-Open No. 61-61
As disclosed in JP-A-198156, 20 to 20
By forming an antireflection film with a chromium film containing oxygen or nitrogen having a thickness of 50 nm and providing the antireflection film on the light-shielding pattern, the reflectance of the pattern portion formed of the mask material of the exposure mask substrate can be improved. Keep it below 10%,
Prevents the generation of stray light.

【0005】一方、従来用いられている露光用マスク基
板に対し、特開平4−136854号公報に開示されて
いるように、パターンデザインをそのまま用い、解像性
能,焦点深度を向上させる露光用半透明位相シフトマス
ク基板がある。前述の公報では露光用マスク基板のパタ
ーン部に強度透過率2〜16%を有し、且つ隣接する開
口部に対して180°の位相差を持つように構成された
半透明位相シフト膜を用いるようにしている。さらに、
この目的を達成するために、位相調整層と強度透過率調
整層を独立に設ける2層構造を考えていた。
On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 4-136854, a pattern design is used as it is for an exposure mask substrate which has been conventionally used, and an exposure half is used for improving resolution performance and depth of focus. There is a transparent phase shift mask substrate. In the above-mentioned publication, a semitransparent phase shift film configured to have an intensity transmittance of 2 to 16% in a pattern portion of an exposure mask substrate and a phase difference of 180 ° with respect to an adjacent opening portion is used. I am trying. further,
In order to achieve this object, a two-layer structure in which a phase adjusting layer and an intensity transmittance adjusting layer are independently provided has been considered.

【0006】ところで、露光用半透明位相シフトマスク
基板を単層構造で形成した場合、図4に示す如く所望の
強度透過率,位相差を定めた場合には、屈折率,消衰係
数,膜厚の関係が一意的に定まる。しかし、その組み合
わせは図4の曲線に示す如く任意の屈折率に対し必ず一
つ存在する。一方、反射率はその物質の屈折率,消衰係
数と密接な関係があり、界面を形成する2物質間の屈折
率差,消衰係数差が大きいほど反射率は高くなる。従っ
て、ある大きさ以上の屈折率を持つ材料を半透明位相シ
フト膜に用いた場合には、この半透明位相シフト膜の反
射率が高くなって迷光の影響が生じ、パターン露光精度
の低下を招くことになる。
By the way, when the semitransparent phase shift mask substrate for exposure is formed with a single layer structure, when the desired intensity transmittance and phase difference are determined as shown in FIG. 4, the refractive index, extinction coefficient, film The thickness relationship is uniquely determined. However, there is always one such combination for any refractive index as shown by the curve in FIG. On the other hand, the reflectance is closely related to the refractive index and the extinction coefficient of the substance, and the greater the difference in the refractive index and the extinction coefficient between the two substances forming the interface, the higher the reflectance. Therefore, when a material having a refractive index of a certain value or more is used for the semitransparent phase shift film, the reflectivity of the semitransparent phase shift film becomes high and the effect of stray light occurs, which lowers the pattern exposure accuracy. Will be invited.

【0007】[0007]

【発明が解決しようとする課題】このように従来、露光
用半透明位相シフトマスク基板を単層構造で形成した場
合、半透明位相シフト膜の材料によりその反射率が高く
なり、迷光の影響が生じてパターン露光精度の低下を招
くという問題があった。
As described above, conventionally, when the semitransparent phase shift mask substrate for exposure is formed with a single layer structure, its reflectivity becomes high due to the material of the semitransparent phase shift film, and the influence of stray light is exerted. However, there is a problem in that the pattern exposure accuracy is deteriorated.

【0008】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、半透明位相シフト膜の
材料に起因する迷光の除去を可能とし、パターン露光精
度の向上をはかり得る露光用マスク基板を提供すること
にある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to enable removal of stray light caused by the material of the semitransparent phase shift film and improve the pattern exposure accuracy. An object is to provide a mask substrate for exposure.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、次のような構成を採用している。即ち、本
発明(請求項1)は、透光性基板上の少なくとも一方の
面に2〜16%の強度透過率tを有し、且つ透光性基板
のみを透過した光に対し光路長が半波長異なるように屈
折率,消衰係数,膜厚が調整された単層構造の半透明位
相シフト膜が少なくとも一部に配設された露光用マスク
基板において、半透明位相シフト膜が配設された面にお
ける該半透明位相シフト膜表面の反射率が10%以下で
あることを特徴とする。
In order to solve the above problems, the present invention employs the following configurations. That is, the present invention (Claim 1) has an intensity transmittance t of 2 to 16% on at least one surface of the transparent substrate, and has an optical path length for light transmitted through only the transparent substrate. A semitransparent phase shift film is provided in an exposure mask substrate in which a semitransparent phase shift film having a single-layer structure in which a refractive index, an extinction coefficient, and a film thickness are adjusted so as to differ by a half wavelength The reflectance of the surface of the semitransparent phase shift film on the formed surface is 10% or less.

【0010】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 半透明位相シフト膜の反射率は、半透明位相シフト
膜の屈折率を1.49以上で且つ1.73+0.016
t以下の範囲にあるように設定して達成されたものであ
る。
Preferred embodiments of the present invention are as follows. (1) The reflectance of the semitransparent phase shift film is such that the refractive index of the semitransparent phase shift film is 1.49 or more and 1.73 + 0.016.
This is achieved by setting the range to be t or less.

【0011】また、本発明(請求項2)は、透光性基板
上の少なくとも一方の面に2〜16%の強度透過率tを
有し、且つ透光性基板のみを透過した光に対し光路長が
半波長異なるように屈折率,消衰係数,膜厚が調整され
た単層構造の半透明位相シフト膜が少なくとも一部に配
設された露光用マスク基板において、半透明位相シフト
膜及び遮光膜が形成されていない開口部(パターン面の
開口部)について、互いに平行な2辺に対し等距離に位
置し且つ開口部内に位置する中線を想定し、互いに隣接
する開口部の持つ中線のうち互いに平行する中線の最短
距離Lを、露光時に用いる波長λと露光光学系の被露光
基板における開口数NAにより表されるλ/NAで除し
た値が被露光基板上で1以下であるか、又は最短距離L
をλ/NAで除した値が被露光基板上で1より大きい値
であっても開口部の最小幅をλ/NAで除した値が被露
光基板上で0.5以下であるパターンを少なくとも含
み、且つ半透明位相シフト膜が配設された面における半
透明位相シフト膜表面の反射率が10%以下であり、且
つ半透明位相シフト膜の反射率が該半透明位相シフト膜
の屈折率を1.49以上で且つ1.73+0.016t
以下の範囲にあるように設定して達成することを特徴と
する。
Further, according to the present invention (claim 2), at least one surface of the translucent substrate has an intensity transmissivity t of 2 to 16%, and light transmitted through only the translucent substrate is used. A mask layer for exposure, in which a semi-transparent phase shift film having a single-layer structure in which the refractive index, extinction coefficient, and film thickness are adjusted so that the optical path lengths differ by half wavelength Also, regarding the openings (openings on the pattern surface) where the light-shielding film is not formed, it is assumed that the openings that are adjacent to each other have a median line that is located equidistant from two parallel sides and located inside the openings. A value obtained by dividing the shortest distance L between parallel lines of the middle lines by the wavelength λ used during exposure and λ / NA represented by the numerical aperture NA of the exposure substrate of the exposure optical system is 1 on the exposure substrate. It is less than or the shortest distance L
A value obtained by dividing the minimum width of the opening by λ / NA is 0.5 or less on the exposed substrate, even if the value obtained by dividing by λ / NA is larger than 1 on the exposed substrate. The reflectance of the surface of the semitransparent phase shift film on the surface including the semitransparent phase shift film is 10% or less, and the reflectance of the semitransparent phase shift film is the refractive index of the semitransparent phase shift film. Is 1.49 or more and 1.73 + 0.016t
It is characterized by setting and achieving it within the following range.

【0012】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 最短距離Lをλ/NAで除した値の最小値が被露光
基板上で0.9〜1の範囲にあるか、又は最短距離Lを
λ/NAで除した値が被露光基板上で0.9より大きい
値であっても、開口部の最小幅をλ/NAで除した値の
最小値が被露光基板上で0.45〜0.5の範囲にある
パターンを少なくとも含み、且つ半透明位相シフト膜の
反射率(10%以下)を該半透明位相シフト膜の屈折率
が1.49以上で且つ1.73+0.016t以下の範
囲にあるように設定して達成すること。 (2) 最短距離Lをλ/NAで除した値の最小値が被露光
基板上で0.8〜0.9の範囲にあるか、又は最短距離
Lをλ/NAで除した値が被露光基板上で0.8より大
きい値であっても開口部の最小幅をλ/NAで除した値
の最小値が被露光基板上で0.40〜0.45の範囲に
あるパターンを少なくとも含み、且つ半透明位相シフト
膜の反射率(10%以下)を半透明位相シフト膜の屈折
率が1.60以上で且つ1.73+0.016t以下の
範囲にあるように設定して達成すること。 (3) 最短距離Lをλ/NAで除した値の最小値が被露光
基板上で0.75〜0.8の範囲にあるか、又は最短距
離Lをλ/NAで除した値が被露光基板上で0.75よ
り大きい値であっても開口部の最小幅をλ/NAで除し
た値の最小値が被露光基板上で0.375〜0.40の
範囲にあるパターンを少なくとも含み、且つ半透明位相
シフト膜の反射率(10%以下)を半透明位相シフト膜
の屈折率が1.72以上で且つ1.73+0.016t
以下の範囲にあるように設定して達成すること。 (4) 最短距離Lをλ/NAで除した値の最小値が被露光
基板上で0.7〜0.75の範囲にあるか、又は最短距
離Lをλ/NAで除した値が被露光基板上で0.7より
大きい値であっても開口部の最小幅をλ/NAで除した
値の最小値が被露光基板上で0.35〜0.375の範
囲にあるパターンを少なくとも含み、且つ半透明位相シ
フト膜の反射率(10%以下)を半透明位相シフト膜の
屈折率が1.81以上で且つ1.73+0.016t以
下の範囲にあるように設定して達成すること。 (5) 最短距離Lをλ/NAで除した値の最小値が被露光
基板上で0.7以下であるか、又は最短距離Lをλ/N
Aで除した値が被露光基板上で0.7より大きい値であ
っても開口部の最小幅をλ/NAで除した値の最小値が
被露光基板上で0.35以下であるパターンを少なくと
も含み、且つ半透明位相シフト膜の反射率(10%以
下)を半透明位相シフト膜の屈折率を1.85以上で且
つ1.73+0.016t以下の範囲にあるように設定
して達成すること。 (6) 単層半透明位相シフト膜が、表面に自然酸化された
領域を含むようにしていること。 (7) 本発明の露光用マスク基板を用い、斜入射照明によ
り被露光基板上に形成した感光性樹脂材料にマスクパタ
ーン像を形成し現像を行うことにより感光性樹脂パター
ンを形成すること。 (8) 本発明の露光用マスク基板を用い、露光光学系を介
して被露光基板上に形成した感光性樹脂材料にマスクパ
ターン像を形成し、現像を行うことにより形成した感光
性樹脂パターンをマスクに基板を加工することにより半
導体装置を形成すること。
Here, the following are preferred embodiments of the present invention. (1) The minimum value of the shortest distance L divided by λ / NA is in the range of 0.9 to 1 on the exposed substrate, or the value obtained by dividing the shortest distance L by λ / NA is the exposed substrate. Even if the above value is larger than 0.9, at least the pattern in which the minimum value of the value obtained by dividing the minimum width of the opening by λ / NA is in the range of 0.45 to 0.5 on the exposed substrate is included. And achieving the reflectance (10% or less) of the semitransparent phase shift film such that the refractive index of the semitransparent phase shift film is 1.49 or more and 1.73 + 0.016t or less. . (2) The minimum value of the shortest distance L divided by λ / NA is in the range of 0.8 to 0.9 on the substrate to be exposed, or the value obtained by dividing the shortest distance L by λ / NA is Even if the minimum value of the value obtained by dividing the minimum width of the opening by λ / NA is in the range of 0.40 to 0.45 on the substrate to be exposed even if the value is larger than 0.8 on the substrate to be exposed, Achieving by including the reflectance of the semitransparent phase shift film (10% or less) such that the refractive index of the semitransparent phase shift film is 1.60 or more and 1.73 + 0.016t or less. . (3) The minimum value obtained by dividing the shortest distance L by λ / NA is in the range of 0.75 to 0.8 on the substrate to be exposed, or the value obtained by dividing the shortest distance L by λ / NA is At least a pattern in which the minimum value of the minimum width of the opening divided by λ / NA is in the range of 0.375 to 0.40 on the exposed substrate even if the value is larger than 0.75 on the exposed substrate Including the reflectance of the semitransparent phase shift film (10% or less), the refractive index of the semitransparent phase shift film is 1.72 or more and 1.73 + 0.016t.
To achieve by setting within the following range. (4) The minimum value of the value obtained by dividing the shortest distance L by λ / NA is in the range of 0.7 to 0.75 on the substrate to be exposed, or the value obtained by dividing the shortest distance L by λ / NA. Even if the minimum value of the value obtained by dividing the minimum width of the opening by λ / NA is in the range of 0.35 to 0.375 on the exposed substrate, even if the value is larger than 0.7 on the exposed substrate, Achieving by including the reflectance of the semitransparent phase shift film (10% or less) such that the refractive index of the semitransparent phase shift film is 1.81 or more and 1.73 + 0.016t or less. . (5) The minimum value of the values obtained by dividing the shortest distance L by λ / NA is 0.7 or less on the substrate to be exposed, or the shortest distance L is λ / N.
A pattern in which the minimum value of the value obtained by dividing the minimum width of the opening by λ / NA is 0.35 or less on the exposed substrate even if the value divided by A is greater than 0.7 on the exposed substrate. And the reflectance (10% or less) of the semitransparent phase shift film is set such that the refractive index of the semitransparent phase shift film is in the range of 1.85 or more and 1.73 + 0.016t or less. To do. (6) The single-layer semitransparent phase shift film includes a naturally oxidized region on its surface. (7) Using the exposure mask substrate of the present invention, forming a mask pattern image on a photosensitive resin material formed on the substrate to be exposed by oblique incidence illumination and performing development to form a photosensitive resin pattern. (8) Using the exposure mask substrate of the present invention, a mask pattern image is formed on the photosensitive resin material formed on the substrate to be exposed through the exposure optical system, and a photosensitive resin pattern formed by developing is formed. Forming a semiconductor device by processing a substrate on a mask.

【0013】[0013]

【作用】図2に、i線(365nm)を露光光源とした
時に用いられる露光用半透明位相シフトマスクで、位相
差180°,強度透過率t=2〜16%のマスクを単層
構造で作成した場合の半透明位相シフトパターンの反射
率を示す。ここで、反射率は基板をクオーツ(屈折率=
1.45)に定め半透明位相シフトパターンが形成され
た場合を想定し、多重反射を考慮して求めている。
In FIG. 2, a semitransparent phase shift mask for exposure used when an i-line (365 nm) is used as an exposure light source, a mask having a phase difference of 180 ° and an intensity transmittance t = 2 to 16% has a single layer structure. The reflectance of the semitransparent phase shift pattern when created is shown. Here, the reflectance is the quartz (refractive index =
1.45) and the case where a semitransparent phase shift pattern is formed is assumed, and multiple reflection is taken into consideration.

【0014】図2に示すように、反射率は半透明位相シ
フト膜の屈折率が大きくなるほど上昇する。また、強度
透過率が異なると反射率も異なる。図2に基づき反射率
10%となるときの屈折率を強度透過率に対して求めた
結果を、図1に示す。反射率10%以下を考慮し、更に
所望の強度透過率で180°の位相差を持つには、図1
で曲線で示される部分より小さい屈折率を持つ物質を半
透明位相シフト材料に定める必要がある。ここで、図1
の曲線は、屈折率=1.73+0.016tと近似され
る。
As shown in FIG. 2, the reflectance increases as the refractive index of the semitransparent phase shift film increases. Further, if the intensity transmittance is different, the reflectance is also different. FIG. 1 shows the result of obtaining the refractive index at a reflectance of 10% based on FIG. 2 with respect to the intensity transmittance. Considering a reflectance of 10% or less, and further having a phase difference of 180 ° at a desired intensity transmittance,
It is necessary to define a substance having a refractive index smaller than the portion indicated by the curve as a semitransparent phase shift material. Here, FIG.
The curve of is approximated as refractive index = 1.73 + 0.016t.

【0015】一方、図1に示された所望強度透過率に対
する屈折率の上限値は波長に殆ど依存することはない。
図3に、i線(365nm)とKrF(248nm)で
基板の屈折率を同じとして仮定したときの、所望強度透
過率2%及び16%を持つ露光用半透明位相シフトマス
ク基板について得られる反射率を示す。図3に見られる
ように、各強度透過率で得られる反射率はi線,KrF
で大変良い一致を見ることができる。このように、図1
で示した傾向は基板の屈折率,消衰係数が同じであれ
ば、i線を初めKrF,g線(436nm),250n
m,ArF(193nm)の光を用いた場合でも屈折率
の上限値はほぼ同じ値となる。
On the other hand, the upper limit value of the refractive index with respect to the desired intensity transmittance shown in FIG. 1 hardly depends on the wavelength.
FIG. 3 shows the reflection obtained for a semitransparent phase shift mask substrate for exposure having desired intensity transmittances of 2% and 16%, assuming that the refractive index of the substrate is the same for i-line (365 nm) and KrF (248 nm). Indicates the rate. As shown in FIG. 3, the reflectance obtained at each intensity transmittance is i line, KrF.
You can see a very good match in. Thus, FIG.
If the refractive index and extinction coefficient of the substrate are the same, the tendency indicated by is starting from i line to KrF, g line (436 nm), 250n
Even when light of m, ArF (193 nm) is used, the upper limit of the refractive index is almost the same.

【0016】図2、図3でクオーツの屈折率に1.45
を用いているが、基板の屈折率がこの値より異なる場
合、例えばAl23 に見られる屈折率1.75やSi
34に見られる屈折率2.03を用いた場合には、屈
折率の上限値は図1で示した値と異なる。しかしこの場
合には、各膜を基板に設けた条件で多重反射を考慮して
計算し、図2と同様な結果を求め、更に各強度透過率に
おける反射率を、マスクに要求される反射率の上限と交
わる時の屈折率を求め、図1に示すような相関を求め半
透明位相シフト膜の屈折率の上限値を定めるとよい。
The refractive index of quartz is 1.45 in FIGS.
However, when the refractive index of the substrate is different from this value, for example, the refractive index of 1.75 and Si found in Al 2 O 3
When the refractive index of 2.03 found in 3 N 4 is used, the upper limit of the refractive index is different from the value shown in FIG. However, in this case, calculation is performed in consideration of multiple reflection under the condition that each film is provided on the substrate, the same result as in FIG. 2 is obtained, and the reflectance at each intensity transmittance is further calculated as the reflectance required for the mask. The upper limit of the refractive index of the semitransparent phase shift film may be determined by obtaining the refractive index when it intersects with the upper limit of 1.

【0017】ところで、半透明位相シフトマスクは、斜
入射照明と合わせることで高解像性,焦点深度をより向
上させることが可能である。しかし、斜入射照明の場合
には斜め方向から光を照射するため、図5に示す如く滲
み域(光学情報が欠落する領域)が生じ像質が劣化す
る。なお、図5において、501は透光性基板、502
は半透明位相シフトパターン、503は照明光、504
は像滲み領域を示している。また、図5で斜入射角度
は、隣接する開口部間で界面で位相が180°異なるよ
うに設定している。像質劣化の傾向は半透明位相シフト
膜が厚くなるほど顕著になる。半透明位相シフトマスク
の場合、半透明位相シフト膜の厚さは主に屈折率に依存
する。
By the way, the semi-transparent phase shift mask can improve the high resolution and the depth of focus more by combining with the oblique incidence illumination. However, in the case of oblique incidence illumination, since light is emitted from an oblique direction, a bleeding region (a region where optical information is lost) occurs as shown in FIG. 5, and the image quality deteriorates. In FIG. 5, reference numeral 501 denotes a transparent substrate, 502
Is a semitransparent phase shift pattern, 503 is illumination light, 504
Indicates an image blur area. Further, in FIG. 5, the oblique incident angle is set so that the phases are different by 180 ° at the interface between the adjacent openings. The tendency of image quality deterioration becomes more remarkable as the thickness of the semitransparent phase shift film increases. In the case of a semitransparent phase shift mask, the thickness of the semitransparent phase shift film mainly depends on the refractive index.

【0018】ここで、最終的に形成されるウエハパター
ンの寸法変動を10%とし、この変動量をマスクパター
ンとレジストパターンで二分し、更にマスクに対するパ
ターン形成と膜厚から生じる変動量で二分されると考え
ると、滲み域504に許される変動量はマスク上所望寸
法で2.5%以内となる。
Here, the dimensional fluctuation of the finally formed wafer pattern is set to 10%, and this fluctuation amount is divided into a mask pattern and a resist pattern, and further divided into a fluctuation amount caused by the pattern formation on the mask and a film thickness. Considering that, the fluctuation amount allowed in the bleeding region 504 is within 2.5% in the desired dimension on the mask.

【0019】この滲みの元になるパターン寸法の考え方
を、図6に示す。図6では、2つの開口部610と62
0がある。なお、ここでいう開口部とは、通常は半透明
位相シフト膜の形成されていない部分である。マスクよ
っては半透明位相シフト膜以外に遮光膜が形成される場
合もあるが、この場合は遮光膜が形成された部分は、半
透明位相シフト膜が形成されていなくても開口部とは見
なさない。
FIG. 6 shows the concept of the pattern size which causes the bleeding. In FIG. 6, two openings 610 and 62 are shown.
There is 0. The opening here is usually a portion where the semitransparent phase shift film is not formed. Depending on the mask, a light-shielding film may be formed in addition to the semitransparent phase shift film, but in this case, the portion where the light-shielding film is formed is not considered to be the opening even if the semitransparent phase shift film is not formed. Absent.

【0020】開口部610と620のそれぞれについて
互いに平行している辺の中線は611,612,61
3,621のように描くことができる。次いで、開口部
610の中線611,612,613と開口部620の
中線621を比較し互いに平行する中線の組み合わせを
求める。この場合(611,621)、(613,62
1)の2組を求めることができる。さらに、これらの組
み合わせのうち、パターン間の距離が最小となる組み合
わせを求めると(611,621)が該当する。これら
の中線611と621の距離Lを全マスクパターンにつ
いて求め、それらの最小値と下記の(表1)を照らし合
わせることで、半透明位相シフト膜の屈折率の下限を求
める。
The middle lines of the sides parallel to each other for the openings 610 and 620 are 611, 612 and 61, respectively.
It can be drawn like 3,621. Next, the median lines 611, 612, 613 of the opening 610 and the median line 621 of the opening 620 are compared to obtain a combination of median lines parallel to each other. In this case (611, 621), (613, 62
Two sets of 1) can be obtained. Furthermore, among these combinations, the combination that minimizes the distance between patterns is (611, 621). The lower limit of the refractive index of the semitransparent phase shift film is obtained by finding the distance L between these middle lines 611 and 621 for all mask patterns and comparing their minimum values with (Table 1) below.

【0021】[0021]

【表1】 [Table 1]

【0022】反射率の低減と滲みを考慮した場合に、図
1と(表1)からより具体的な強度透過率範囲を求める
ことが可能である。具体的には、各最小距離Lに対する
屈折率の下限値は(表1)のように与えられる。なお、
現実には全体の寸法変動量10%を許容することは非常
に緩い規制であり、実際には屈折率の下限値は(表1)
の値より高めに設定することが望ましい。なお、斜入射
照明でない場合にも照明光は露光用マスク基板に対し入
射角度を持つため同様の設定が必要である。
In consideration of the reduction of reflectance and bleeding, it is possible to obtain a more specific intensity transmittance range from FIG. 1 and (Table 1). Specifically, the lower limit value of the refractive index for each minimum distance L is given as (Table 1). In addition,
In reality, it is a very loose regulation to allow an overall dimensional variation of 10%, and the lower limit of the refractive index is actually (Table 1).
It is desirable to set it higher than the value of. Even when the oblique illumination is not used, the illumination light has an incident angle with respect to the exposure mask substrate, and therefore the same setting is necessary.

【0023】また、本発明で望ましい形態は図1の関係
から半透明位相シフト膜の屈折率の上限を定め、さらに
(表1)の関係から半透明位相シフト膜の屈折率の下限
を定めることにより規定された範囲の屈折率を用いるこ
とが望ましい。
In the preferred embodiment of the present invention, the upper limit of the refractive index of the semitransparent phase shift film is determined from the relationship of FIG. 1, and the lower limit of the refractive index of the semitransparent phase shift film is determined from the relationship of (Table 1). It is desirable to use a refractive index in the range defined by

【0024】[0024]

【実施例1】以下、本発明の詳細を実施例によって説明
する。 (実施例1)本実施例は、KrFエキシマレーザ(24
8nm)を露光光源としたときに用いられる露光用半透
明位相シフトマスク基板に関するものである。本実施例
では強度透過率6%、位相差180°を所望値とした。
Embodiment 1 The details of the present invention will be described below with reference to embodiments. (Example 1) In this example, a KrF excimer laser (24
(8 nm) as an exposure light source, and to a semitransparent phase shift mask substrate for exposure. In this embodiment, the intensity transmittance was 6% and the phase difference was 180 ° as desired values.

【0025】透光性基板(クオーツ:屈折率1.51、
消衰係数0.00)上に、Siをターゲットとしアルゴ
ンと窒素雰囲気中で反応性スパッタを行い、透光性基板
上に半透明位相シフト膜SiN膜を形成した。このとき
に得られたSiN膜の屈折率は2.14、消衰係数は
0.48であった。しかし、この膜質で作成した場合の
半透明位相シフト膜表面の反射率は14.3%と、若干
ではあるが10%より高い値となった。
Translucent substrate (quartz: refractive index 1.51,
On the extinction coefficient of 0.00), reactive sputtering was performed in an atmosphere of argon and nitrogen with Si as a target to form a semitransparent phase shift film SiN film on the transparent substrate. The SiN film obtained at this time had a refractive index of 2.14 and an extinction coefficient of 0.48. However, the reflectance of the surface of the semitransparent phase shift film formed with this film quality was 14.3%, which was slightly higher than 10%.

【0026】(作用)の項に示した手法に基づき、基板
の屈折率及び所望強度透過率6%、位相差180°から
多重干渉を考慮して、反射率10%となる屈折率1.8
1を得た。従って、反射率10%以下とするには、半透
明位相シフト膜の屈折率を1.81以下とすることが必
要となる。そこで、成膜時に更に酸素を添加することで
SiONを組成に持つ半透明位相シフト膜を形成し、屈
折率=1.77,消衰係数=0.34を得た(膜厚16
2.8nm)。また、このとき半透明位相シフト膜の表
面反射率は9.4%に抑えることができた。
Based on the method described in the section (Function), the refractive index of the substrate is 1.8 and the desired intensity is 6%, and the refractive index is 1.8, which is 10% in consideration of multiple interference from the phase difference of 180 °.
Got 1. Therefore, in order to reduce the reflectance to 10% or less, it is necessary to set the refractive index of the semitransparent phase shift film to 1.81 or less. Therefore, a semitransparent phase shift film having a composition of SiON was formed by further adding oxygen at the time of film formation, and a refractive index of 1.77 and an extinction coefficient of 0.34 were obtained (film thickness 16
2.8 nm). At this time, the surface reflectance of the semitransparent phase shift film could be suppressed to 9.4%.

【0027】本実施例マスク基板についてレーザ描画に
よりパターニングを行い、更に半透明位相シフト膜のエ
ッチングを行うことで形成した露光用半透明位相シフト
マスクを用い、開口数NA=0.5,コヒーレントファ
クターσ=0.5の露光装置を用い、更にσ=0.5の
うちσ=0.33より内側の領域を透過する光を遮蔽し
0.25μmラインアンドスペースパターンの露光を行
った。その結果、従来用いていた反射率14.3%のマ
スクでは0.9μmの焦点深度しか得られなかったもの
が、反射率を低減し9.4%のマスクとすることで焦点
深度を1.1μmに拡大することができた。
A semitransparent phase shift mask for exposure formed by patterning the mask substrate of this embodiment by laser drawing and further etching the semitransparent phase shift film was used, and the numerical aperture NA was 0.5 and the coherent factor was 0.5. Exposure of a 0.25 μm line-and-space pattern was performed by using an exposure apparatus with σ = 0.5 and blocking light passing through a region inside σ = 0.33 of σ = 0.5. As a result, the mask with a reflectance of 14.3% used in the past could only obtain a depth of focus of 0.9 μm, but the mask with a reflectance of 9.4% reduces the depth of focus to 1. It was possible to expand to 1 μm.

【0028】更に屈折率を最適化したことで斜入射照明
を行うことにより、0.20μmのライン&スペースパ
ターンの解像性能を飛躍的に向上させることができた。
即ち、光軸に対し4回対称に位置する2次光源を用いて
露光することで、従来の高反射率を有するマスクでは焦
点深度0.5μm程度であったものが、本実施例のマス
ク基板を用いることで焦点深度1μmを得ることができ
た。
Further, by optimizing the refractive index and performing oblique incidence illumination, the resolution performance of a 0.20 μm line & space pattern could be dramatically improved.
That is, by using a secondary light source located symmetrically four times with respect to the optical axis, the conventional mask having a high reflectance has a focal depth of about 0.5 μm. It was possible to obtain a focal depth of 1 μm.

【0029】本実施例マスク基板ではKrFエキシマレ
ーザ(248nm)を露光光源とし、強度透過率6%,
位相差180°を所望値としたものであるが、露光光
源,所望強度透過率,所望位相差はこれに限るものでは
ない。
In the mask substrate of this embodiment, a KrF excimer laser (248 nm) was used as an exposure light source, and the intensity transmittance was 6%,
Although the phase difference of 180 ° is set as the desired value, the exposure light source, the desired intensity transmittance, and the desired phase difference are not limited to these.

【0030】また、斜入射法も光軸に対し4回対称位置
に2次光源が配置されたものを用いたがこれに限るもの
ではなく、2回対称位置に2次光源が配置されたもの、
光源に対しリング状に形成された照明、或いはドーナツ
状に形成された照明等、斜入射成分を含む照明なら如何
なる照明を用いても構わない。勿論、通常の円形照明を
用いてもよい。
Also, in the oblique incidence method, the one in which the secondary light source is arranged at the four-fold symmetrical position with respect to the optical axis is used, but the present invention is not limited to this, and the one in which the secondary light source is arranged at the two-fold symmetrical position. ,
Any illumination may be used as long as the illumination includes an oblique incidence component, such as illumination formed in a ring shape with respect to the light source or illumination formed in a donut shape. Of course, ordinary circular illumination may be used.

【0031】また、コンタクトホールパターンについて
は円形照明が有効でこの場合にも焦点深度が向上するこ
とが確認された。また、半透明材料としてSiN膜を用
いたがこれに限るものではなく、Si,SiO,Cr
O,CrN,CrON,TiO,TiN,TiON,A
lO,AlN,AlON,及びMoSiのような金属シ
リサイドの酸化物、金属シリサイドの窒化物、金属シリ
サイドの酸窒化物などを用いてもよい。 (実施例2)本実施例は、i線(365nm)を露光光
源としたときに用いられる露光用半透明位相シフトマス
ク基板に関するものである。本実施例では強度透過率5
%、位相差180°を所望値とした。
Further, it was confirmed that circular illumination is effective for the contact hole pattern and the depth of focus is improved in this case as well. Although the SiN film is used as the semi-transparent material, the material is not limited to this, and Si, SiO, Cr may be used.
O, CrN, CrON, TiO, TiN, TiON, A
Oxides of metal silicides such as 10 O, AlN, AlON, and MoSi, nitrides of metal silicides, and oxynitrides of metal silicides may be used. (Embodiment 2) This embodiment relates to a translucent phase shift mask substrate for exposure which is used when an i-line (365 nm) is used as an exposure light source. In this embodiment, the intensity transmittance is 5
% And a phase difference of 180 ° were set as desired values.

【0032】透光性基板(クオーツ:屈折率1.44、
消衰係数0.00)上に、Siをターゲットとしアルゴ
ンと窒素雰囲気中で反応性スパッタを行い、透光性基板
上に半透明位相シフト膜SiN膜を形成した。このとき
に得られたSiN膜の屈折率は2.81、消衰係数は
0.74であった。しかし、この膜質で作成した場合の
半透明位相シフト膜表面の反射率は26.9%と、10
%と比べて高い値となった。
Translucent substrate (quartz: refractive index 1.44,
On the extinction coefficient of 0.00), reactive sputtering was performed in an atmosphere of argon and nitrogen with Si as a target to form a semitransparent phase shift film SiN film on the transparent substrate. The SiN film obtained at this time had a refractive index of 2.81 and an extinction coefficient of 0.74. However, the reflectivity of the surface of the semitransparent phase shift film is 26.9% when the film quality is 10%.
It became a high value compared with%.

【0033】(作用)の項に示した手法に基づき、基板
の屈折率及び所望強度透過率5%,位相差180°から
多重干渉を考慮して、反射率10%となる屈折率1.8
1を得た。従って、反射率10%以下とするには、半透
明位相シフト膜の屈折率を1.81以下とすることが必
要となる。そこで、成膜時に更に酸素を添加することで
SiONを組成に持つ半透明位相シフト膜を形成し、屈
折率=1.75,消衰係数=0.35を得た(膜厚24
6.2nm)。このとき、半透明位相シフト膜の表面反
射率は9.3%に抑えることができた。
Based on the method described in (Operation), the refractive index of the substrate is 5%, the desired intensity is 5%, the phase difference is 180 °, and multiple interference is taken into consideration.
Got 1. Therefore, in order to reduce the reflectance to 10% or less, it is necessary to set the refractive index of the semitransparent phase shift film to 1.81 or less. Therefore, a semitransparent phase shift film having a composition of SiON was formed by further adding oxygen during film formation, and a refractive index of 1.75 and an extinction coefficient of 0.35 were obtained (film thickness 24
6.2 nm). At this time, the surface reflectance of the semitransparent phase shift film could be suppressed to 9.3%.

【0034】本実施例マスク基板についてレーザ描画に
よりパターニングを行い、更に半透明位相シフト膜のエ
ッチングを行うことで形成した露光用半透明位相シフト
マスクを用い、開口数NA=0.5,コヒーレントファ
クターσ=0.6の露光装置を用い、更にσ=0.5の
うちσ=0.33より内側の領域を透過する光を遮閉し
0.35μmラインアンドスペースパターンの露光を行
った。その結果、従来用いていた反射率26.9%のマ
スクでは1.8μmの焦点深度しか得られなかったもの
が、反射率を低減し9.3%のマスクとすることで焦点
深度を2.5μmに拡大することができた。
A semitransparent phase shift mask for exposure formed by patterning the mask substrate of this embodiment by laser drawing and then etching the semitransparent phase shift film was used. Numerical aperture NA = 0.5, coherent factor Using an exposure device with σ = 0.6, light having a value of σ = 0.5, which transmits through a region inside σ = 0.33, was blocked, and a line and space pattern of 0.35 μm was exposed. As a result, the mask having a reflectance of 26.9% used in the past could obtain only a focal depth of 1.8 μm, but by reducing the reflectance to a mask having a reflectance of 9.3%, the focal depth of 2. It was possible to expand to 5 μm.

【0035】更に屈折率を最適化したことで斜入射照明
を行うことにより、0.30μmのライン&スペースパ
ターンの解像性能を飛躍的に向上させることができた。
即ち、光軸に対し4回対称に位置する2次光源を用いて
露光することで、従来の高反射率を有するマスクでは焦
点深度0.6μm程度であったものが、本実施例のマス
ク基板を用いることで焦点深度1.2μmを得ることが
できた。
By further optimizing the refractive index and performing oblique incidence illumination, the resolution performance of a 0.30 μm line & space pattern could be dramatically improved.
That is, by using a secondary light source located symmetrically four times with respect to the optical axis, the conventional mask having a high reflectance had a depth of focus of about 0.6 μm. It was possible to obtain a focal depth of 1.2 μm.

【0036】本実施例マスク基板ではi線(365n
m)を露光光源とし、強度透過率5%、位相差180°
を所望値としたものであるが、露光光源,所望強度透過
率,所望位相差はこれに限るものではない。
In the mask substrate of this embodiment, the i line (365n
m) as an exposure light source, intensity transmittance 5%, phase difference 180 °
Is set as a desired value, but the exposure light source, desired intensity transmittance, and desired phase difference are not limited to these.

【0037】また、斜入射法としては第1の実施例で説
明した各種の照明法を用いることができ、更には通常の
円形照明を用いてもよい。また、コンタクトホールパタ
ーンについては円形照明が有効で、この場合にも焦点深
度が向上することが確認された。また、半透明材料とし
ては、第1の実施例で説明した各種の材料を用いること
ができる。
As the oblique incidence method, the various illumination methods described in the first embodiment can be used, and ordinary circular illumination may be used. It was also confirmed that circular illumination is effective for the contact hole pattern, and in this case also the depth of focus is improved. As the translucent material, various materials described in the first embodiment can be used.

【0038】[0038]

【発明の効果】以上説明したように本発明によれば、半
透明位相シフト膜の強度透過率tが2〜16%の範囲で
ある時に、半透明位相シフト膜が配設された面における
該半透明位相シフト膜表面の反射率を10%以下、半透
明位相シフト膜の屈折率を1.49以上で且つ1.73
+0.016t以下の範囲とすることで、従来より用い
ている遮光マスクと比べより低反射率とすることができ
迷光の除去を可能とし、更にマスク像質についても滲み
量を所望寸法に対し2.5%以下に抑えることを可能と
した。従って、パターン露光精度の向上をはかり得る露
光用マスク基板を実現することが可能となる。
As described above, according to the present invention, when the intensity transmittance t of the semitransparent phase shift film is in the range of 2 to 16%, the translucent phase shift film on the surface provided with the semitransparent phase shift film has The reflectance of the surface of the semitransparent phase shift film is 10% or less, the refractive index of the semitransparent phase shift film is 1.49 or more, and 1.73.
By setting the range to + 0.016t or less, the reflectance can be made lower than that of the conventionally used light-shielding mask, stray light can be removed, and the bleeding amount of the mask image quality with respect to the desired dimension is 2 It has become possible to suppress it to 0.5% or less. Therefore, it is possible to realize an exposure mask substrate that can improve the pattern exposure accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における半透明位相シフト膜の屈折率の
上限値を説明するための図。
FIG. 1 is a diagram for explaining an upper limit value of a refractive index of a semitransparent phase shift film according to the present invention.

【図2】i線半透明位相シフト膜の強度透過率を設定し
たときのパターン面反射率を示す図。
FIG. 2 is a diagram showing a pattern surface reflectance when the intensity transmittance of the i-line semitransparent phase shift film is set.

【図3】i線とKrF線の半透明位相シフト膜のパター
ン面反射率を比較して示す図。
FIG. 3 is a diagram showing a comparison of pattern surface reflectances of a semitransparent phase shift film for i-line and KrF line.

【図4】単層半透明位相シフトマスクの強度透過率に対
する屈折率と消衰係数の関係を示す図。
FIG. 4 is a diagram showing a relationship between a refractive index and an extinction coefficient with respect to intensity transmittance of a single-layer semitransparent phase shift mask.

【図5】斜入射照明時に生じるパターン像滲み領域を説
明するための図。
FIG. 5 is a diagram for explaining a pattern image bleeding region that occurs during oblique incidence illumination.

【図6】最小寸法Lの考え方を説明するための図。FIG. 6 is a diagram for explaining the concept of the minimum dimension L.

【符号の説明】[Explanation of symbols]

501…透光性基板 502…半透明位相シフトパターン 503…照明光 504…像滲み領域 610,620…開口部 611,612,613,621…中線 501 ... Translucent substrate 502 ... Semi-transparent phase shift pattern 503 ... Illumination light 504 ... Image blur area 610, 620 ... Opening portion 611, 612, 613, 621 ...

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】透光性基板上の少なくとも一方の面に2〜
16%の強度透過率tを有し、且つ前記透光性基板のみ
を透過した光に対し光路長が半波長異なるように屈折
率,消衰係数,膜厚が調整された単層構造の半透明位相
シフト膜が少なくとも一部に配設された露光用マスク基
板において、 前記半透明位相シフト膜が配設された面における該半透
明位相シフト膜表面の反射率が10%以下であることを
特徴とする露光用マスク基板。
1. A light-transmissive substrate having 2 to at least one surface thereof.
A half-layer structure having a 16% intensity transmittance t and having a refractive index, an extinction coefficient, and a film thickness adjusted so that an optical path length differs by half a wavelength with respect to light transmitted through only the transparent substrate. In an exposure mask substrate in which a transparent phase shift film is provided on at least a part, the reflectance of the surface of the semitransparent phase shift film on the surface on which the semitransparent phase shift film is provided is 10% or less. Characteristic mask substrate for exposure.
【請求項2】透光性基板上の少なくとも一方の面に2〜
16%の強度透過率tを有し、且つ前記透光性基板のみ
を透過した光に対し光路長が半波長異なるように屈折
率,消衰係数,膜厚が調整された単層構造の半透明位相
シフト膜が少なくとも一部に配設された露光用マスク基
板において、 前記半透明位相シフト膜及び遮光膜が形成されていない
開口部について、互いに平行な2辺に対し等距離に位置
し且つ前記開口部内に位置する中線を想定し、互いに隣
接する前記開口部の持つ中線のうち互いに平行する前記
中線の最短距離Lを、露光時に用いる波長λと露光光学
系の被露光基板における開口数NAにより表されるλ/
NAで除した値が被露光基板上で1以下であるか、又は
前記最短距離Lをλ/NAで除した値が被露光基板上で
1より大きい値であっても開口部の最小幅をλ/NAで
除した値が被露光基板上で0.5以下であるパターンを
少なくとも含み、 且つ前記半透明位相シフト膜が配設された面における該
半透明位相シフト膜表面の反射率が10%以下であり、
且つ前記半透明位相シフト膜の屈折率を1.49以上で
且つ1.73+0.016t以下の範囲となるように設
定したことを特徴とする露光用マスク基板。
2. Two to at least one surface of a transparent substrate
A half-layer structure having a 16% intensity transmittance t and having a refractive index, an extinction coefficient, and a film thickness adjusted so that an optical path length differs by half a wavelength with respect to light transmitted through only the transparent substrate. In an exposure mask substrate in which a transparent phase shift film is provided in at least a part thereof, the openings in which the semitransparent phase shift film and the light shielding film are not formed are located at equal distances to two sides parallel to each other, and Assuming a center line located in the opening, the shortest distance L between the center lines parallel to each other among the center lines of the adjacent openings has a wavelength λ used at the time of exposure and the exposed substrate of the exposure optical system. Λ / represented by numerical aperture NA
Even if the value divided by NA is 1 or less on the exposed substrate or the value obtained by dividing the shortest distance L by λ / NA is a value larger than 1 on the exposed substrate, the minimum width of the opening is The reflectance of the surface of the semitransparent phase shift film on the surface on which the semitransparent phase shift film is provided includes at least a pattern whose value divided by λ / NA is 0.5 or less on the substrate to be exposed. % Or less,
An exposure mask substrate, wherein the semi-transparent phase shift film has a refractive index of 1.49 or more and 1.73 + 0.016t or less.
JP30418593A 1993-04-30 1993-12-03 Mask substrate for exposure Pending JPH07159981A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30418593A JPH07159981A (en) 1993-12-03 1993-12-03 Mask substrate for exposure
US08/583,857 US5629115A (en) 1993-04-30 1996-01-11 Exposure mask and method and apparatus for manufacturing the same
US08/729,592 US5907393A (en) 1993-04-30 1996-10-11 Exposure mask and method and apparatus for manufacturing the same
US08/730,017 US5728494A (en) 1993-04-30 1996-10-11 Exposure mask and method and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30418593A JPH07159981A (en) 1993-12-03 1993-12-03 Mask substrate for exposure

Publications (1)

Publication Number Publication Date
JPH07159981A true JPH07159981A (en) 1995-06-23

Family

ID=17930060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30418593A Pending JPH07159981A (en) 1993-04-30 1993-12-03 Mask substrate for exposure

Country Status (1)

Country Link
JP (1) JPH07159981A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000250196A (en) * 1999-03-02 2000-09-14 Toppan Printing Co Ltd Blanks for half tone type phase shift mask and half tone type phase shift mask
CN107861334A (en) * 2016-09-21 2018-03-30 Hoya株式会社 The manufacture method of the manufacture method of photomask, photomask and display device
KR20190122694A (en) 2017-03-16 2019-10-30 호야 가부시키가이샤 Method of manufacturing mask blanks, transfer masks and semiconductor devices
WO2019230313A1 (en) * 2018-05-30 2019-12-05 Hoya株式会社 Mask blank, phase-shift mask, and semiconductor device manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000250196A (en) * 1999-03-02 2000-09-14 Toppan Printing Co Ltd Blanks for half tone type phase shift mask and half tone type phase shift mask
CN107861334A (en) * 2016-09-21 2018-03-30 Hoya株式会社 The manufacture method of the manufacture method of photomask, photomask and display device
KR20190122694A (en) 2017-03-16 2019-10-30 호야 가부시키가이샤 Method of manufacturing mask blanks, transfer masks and semiconductor devices
US11314162B2 (en) 2017-03-16 2022-04-26 Hoya Corporation Mask blank, transfer mask, and method of manufacturing semiconductor device
US11624979B2 (en) 2017-03-16 2023-04-11 Hoya Corporation Mask blank, transfer mask, and method of manufacturing semiconductor device
KR20230144128A (en) 2017-03-16 2023-10-13 호야 가부시키가이샤 Mask blank, transfer mask and method for producing semiconductor device
WO2019230313A1 (en) * 2018-05-30 2019-12-05 Hoya株式会社 Mask blank, phase-shift mask, and semiconductor device manufacturing method
US11442357B2 (en) 2018-05-30 2022-09-13 Hoya Corporation Mask blank, phase-shift mask, and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6653026B2 (en) Structure and method of correcting proximity effects in a tri-tone attenuated phase-shifting mask
JPH06175347A (en) Photomask and pattern forming method using the same
JPH0690505B2 (en) Photo mask
KR940007066B1 (en) Reflection type photomask and photolithography method thereby
JP2004207593A (en) Mask for extreme ultra-violet exposure, blank, and method for pattern transfer
JPH10319569A (en) Mask for exposure
US6627356B2 (en) Photomask used in manufacturing of semiconductor device, photomask blank, and method of applying light exposure to semiconductor wafer by using said photomask
JPH10186632A (en) Blank for halftone type phase shift mask and halftone type phase shift mask
JP3347670B2 (en) Mask and exposure method using the same
JP5724509B2 (en) Photomask and photomask blanks
JP4977535B2 (en) Pattern transfer method
JP7059679B2 (en) Reflective photomask blank and reflective photomask
JPH07159981A (en) Mask substrate for exposure
JPH0968790A (en) Photomask
JP3312653B2 (en) Photo mask
JPH1184624A (en) Blank for halftone type phase shift mask, halftone type phase shift mask and their production
JP3485071B2 (en) Photomask and manufacturing method
JP3178516B2 (en) Phase shift mask
JP6119836B2 (en) Photo mask
JPH06289590A (en) Photomask and exposing method
JP3469570B2 (en) Manufacturing method of exposure mask
JPH1026820A (en) Halftone phase shift mask blank, and halftone phase shift mask
JPH04212154A (en) Photomask
JP2001337441A (en) Photomask, photomask blank and method for exposing semiconductor wafer using the photomask
JP4977794B2 (en) Pattern transfer method and photomask