JPH07159685A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPH07159685A
JPH07159685A JP5340273A JP34027393A JPH07159685A JP H07159685 A JPH07159685 A JP H07159685A JP 5340273 A JP5340273 A JP 5340273A JP 34027393 A JP34027393 A JP 34027393A JP H07159685 A JPH07159685 A JP H07159685A
Authority
JP
Japan
Prior art keywords
focusing
lens
subject
signal
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5340273A
Other languages
Japanese (ja)
Inventor
Kaneyoshi Togano
兼義 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5340273A priority Critical patent/JPH07159685A/en
Publication of JPH07159685A publication Critical patent/JPH07159685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To improve focusing accuracy and to shorten focusing time without using a special circuit by setting a range-finding frame used in a 2nd focusing means before focusing operation by the 2nd focusing means based on information obtained by focusing operation by a 1st focusing means. CONSTITUTION:An arithmetic circuit 7 obtains the deviation and the deviation direction of a focusing lens la from a position where a subject image is focused on the plane of a photoelectric conversion element 2 by an autocorrelation system by arithmetic operation. Based on the obtained deviation and the deviation direction of the lens 1a, a CPU 12 outputs a signal for driving the lens 1a from a present position to a position on this side of a focusing point by a specified amount to a motor 8 for driving the lens 1a, and the lens Ia is driven. The reason why the lens 1a is driven to the position on this side of the focusing point by the specified amount is to eliminate the need of obtaining the driving direction of the lens 1a again in the case of shifting the focusing means by a climbing system. Simultaneously, the state of a subject is judged by performing focusing operation by the autocorrelation system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスチルビデオカメラ等の
撮影装置における、自動焦点調節装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focusing device in a photographing device such as a still video camera.

【0002】[0002]

【従来の技術】従来スチルビデオカメラ等の撮影装置に
おける自動焦点調節装置の方式として、撮像素子からの
映像信号を直接評価して行う方式は、合焦精度が高く、
特別なセンサが不要である等の理由から広く利用されて
いる。中でも山登り方式による合焦手段及び自己相関方
式による合焦手段は有名である。また、特にこれらの合
焦手段を単独で用いることによる欠点を解決する為に、
まず自己相関方式による合焦手段で合焦を行い、次に山
登り方式による合焦手段で合焦を行う合焦方式が、本出
願人により特願平5−295389号として出願されて
いる。
2. Description of the Related Art Conventionally, as a method of an automatic focusing apparatus in a photographing apparatus such as a still video camera, a method of directly evaluating a video signal from an image pickup element has high focusing accuracy.
It is widely used because it does not require a special sensor. Among them, the focusing means by the hill climbing method and the focusing means by the autocorrelation method are famous. Further, in particular, in order to solve the drawbacks caused by using these focusing means alone,
The present applicant has filed a Japanese Patent Application No. 5-295389 for a focusing method in which focusing is performed by an autocorrelation focusing means and then focusing is performed by a hill climbing focusing means.

【0003】以下、これらについて説明する。These will be described below.

【0004】図4は山登り方式による合焦装置の構成ブ
ロック図である。レンズ20によって被写体像は光電変
換素子21に結像され撮像回路22によって映像信号と
なり、この中の輝度信号が演算回路23に入力される。
この演算回路23は、例えば図5に示すように構成され
る。
FIG. 4 is a block diagram of a hill climbing focusing device. The image of the subject is formed on the photoelectric conversion element 21 by the lens 20 and becomes a video signal by the image pickup circuit 22, and the luminance signal therein is input to the arithmetic circuit 23.
The arithmetic circuit 23 is configured, for example, as shown in FIG.

【0005】輝度信号は、特定域通過フィルタ(BP
F)23cを通過して特定成分のみが分離され、次段の
検波回路23dにて振幅検波される。ここで、フィルタ
の特性をCPU24で制御し変化させた場合、抽出され
る信号を変化させることができ、撮影場面に適したフィ
ルタ特性を選択することで、より正確な合焦を得ること
ができる。そして、この検波出力は、A/D変換回路2
3eにてデジタル値に変換され、ゲート回路23fで画
面中央に設定されたフォーカスエリアの信号だけが抜く
取られて、積分回路23gで映像信号のフィールド毎に
積分され、現フィールドの焦点評価値が得られる。
The luminance signal is a band-pass filter (BP).
F) Only the specific component is separated after passing through 23c, and amplitude detection is performed by the detection circuit 23d at the next stage. Here, when the characteristics of the filter are controlled and changed by the CPU 24, the extracted signal can be changed, and more accurate focusing can be obtained by selecting the filter characteristics suitable for the shooting scene. . Then, this detected output is the A / D conversion circuit 2
In 3e, the signal is converted into a digital value, the gate circuit 23f extracts only the signal in the focus area set in the center of the screen, and the integrating circuit 23g integrates it for each field of the video signal to obtain the focus evaluation value of the current field. can get.

【0006】このとき、輝度信号より同期分離回路23
aによって分離された垂直及び水平同期信号は、垂直、
水平同期信号及び固定の発振器出力に基づいて、画面中
央部分に長方形のフォーカスエリアを設定し、このエリ
アの範囲のみの輝度信号の通過を許容するゲート開閉信
号をゲート回路23fに供給している。また、このゲー
ト開閉信号をCPU24で制御し変化させた場合、画面
中の任意の場所にフォーカスエリアを設定できる。
At this time, the sync signal separating circuit 23 is selected from the luminance signal.
The vertical and horizontal sync signals separated by a are vertical,
Based on the horizontal sync signal and the fixed oscillator output, a rectangular focus area is set in the central portion of the screen, and a gate opening / closing signal that allows passage of the luminance signal only in the area of this area is supplied to the gate circuit 23f. Further, when the gate opening / closing signal is controlled and changed by the CPU 24, the focus area can be set at an arbitrary place on the screen.

【0007】このようにして積分回路23gより常時、
1フィールド分の焦点評価値を出力する。そして、この
焦点評価値が最大になるようにフォーカスモータ25を
駆動することで合焦動作を行うことができる。山登り合
焦動作のレンズ位置の変化を図6に示す。このように、
この山登り方式の合焦手段は、光電変換素子21面上で
の結像状態を毎フィールドごとに比較することで合焦を
行う為、被写体の変化にもリアルタイムに対応でき、か
つ合焦精度が高いものになっている。
In this way, the integrating circuit 23g constantly
The focus evaluation value for one field is output. Then, the focusing operation can be performed by driving the focus motor 25 so that the focus evaluation value becomes maximum. FIG. 6 shows changes in the lens position during the hill climbing focusing operation. in this way,
Since the hill-climbing focusing means performs focusing by comparing the image formation state on the surface of the photoelectric conversion element 21 for each field, it can respond to a change in the subject in real time and the focusing accuracy can be improved. It is expensive.

【0008】次に自己相関方式による合焦装置について
説明する。図7は自己相関方式による合焦手段の要部概
略図である。31は撮影レンズ、32は撮像手段であ
り、CCD等の光電変換素子よりなっている。同図では
撮像手段32が合焦位置にあるときを示している。10
1は2つの開口部を有した遮光部材(絞り)であり、撮
影光路中に挿脱可能に装着しており、光路中に配置して
撮影レンズ31の瞳を大きさの異なる2つの領域33,
34に分割している。
Next, a focusing device based on the autocorrelation method will be described. FIG. 7 is a schematic view of a main part of the focusing means based on the autocorrelation method. Reference numeral 31 is a photographing lens, and 32 is an image pickup means, which is composed of a photoelectric conversion element such as a CCD. In the figure, the image pickup means 32 is shown at the in-focus position. 10
Reference numeral 1 denotes a light-shielding member (aperture) having two openings, which is detachably mounted in the optical path of photographing and is arranged in the optical path so that two pupils 33 of the photographing lens 31 have different sizes. ,
It is divided into 34.

【0009】102は撮影レンズ31が後ピン状態にあ
る時の撮影手段32の位置を示し、103は撮影レンズ
31が前ピン状態にある時の撮像手段32の位置を示し
ている。合焦状態にない場合、異なる光路を通って結像
するこの2つの被写体像は一致せず、ズレた2つの像と
して結像する。37は演算回路であり、撮像手段32で
得られる像の相関を演算し、ズレ量・ズレ方向を算出す
る。38はフォーカスレンズ駆動用モータであり、演算
回路37からの合焦信号に基づいて撮影レンズ31のフ
ォーカスレンズ(不図示)を光軸上移動させて被写体の
撮像手段32の面上での合焦を行っている。
Reference numeral 102 shows the position of the image pickup means 32 when the taking lens 31 is in the rear focus state, and 103 shows the position of the image pickup means 32 when the taking lens 31 is in the front focus state. When the subject is not in focus, the two subject images formed through different optical paths do not match and are formed as two images that are misaligned. Reference numeral 37 denotes an arithmetic circuit, which calculates the correlation between the images obtained by the image pickup means 32 and calculates the deviation amount and the deviation direction. Reference numeral 38 denotes a focus lens driving motor, which moves a focus lens (not shown) of the taking lens 31 on the optical axis based on a focus signal from the arithmetic circuit 37 to focus an object on the surface of the image pickup means 32. It is carried out.

【0010】つまり、この方式の合焦動作の場合、撮像
手段32の面上に結像した被写体像に基づく自己相関を
演算回路37で計算することにより、撮影レンズ31が
合焦状態にあるか否か、さらに合焦状態にない場合に
は、ピントのズレ量がどれだけあるかの情報を一度に得
ることができる。また、加えて、撮影レンズ31の瞳を
二つに分割する領域33,34の瞳径を変えることで、
ピントのズレ方向の検出も一度にできる。
That is, in the case of the focusing operation of this system, whether the photographing lens 31 is in the focused state by calculating the autocorrelation based on the subject image formed on the surface of the image pickup means 32 by the arithmetic circuit 37. Whether or not it is further in the in-focus state, it is possible to obtain at once information about how much the focus shift amount is. In addition, by changing the pupil diameter of the regions 33 and 34 that divide the pupil of the taking lens 31 into two,
It is possible to detect the focus shift direction at the same time.

【0011】このように、この自己相関方式の合焦手段
は、撮像手段32の面上に結像した被写体像に基づく自
己相関を、最初の1フィールドの演算だけで求めフォー
カスレンズを合焦位置に駆動する為、高速な合焦が可能
となっている。
As described above, the auto-correlation type focusing means obtains the auto-correlation based on the subject image formed on the surface of the image pickup means 32 only by the calculation of the first one field and sets the focus lens to the focusing position. Since it is driven to, high-speed focusing is possible.

【0012】また、これらの合焦手段をそれぞれ単独で
用いた場合には、 山登り方式の場合 光電変換素子21面上での結像状態を、フォーカスレン
ズを動かしながら毎フィールドごとに比較しながら合焦
動作を行う為、特に初期の結像状態が合焦位置より大き
くズレている場合には、合焦までに時間がかかり、結果
として撮影チャンスをのがしてしまう。 自己相関方式の場合 最初の1フィールドの信号にて合焦位置を計算で求め、
フォーカスレンズをその計算で求めた合焦位置に駆動す
る。しかしながら実際はレンズ性能の設計上・加工上の
ばらつきにより、実際の合焦位置と上記計算で求めた合
焦位置との間に、微小な差が生じてしまう。現在、撮影
装置の小型化が進み、それに伴いレンズの小型化が進ん
でいる為、上記フォーカスレンズの微小な差がピント面
では無視出来ないレベルとなってしまい、結果としてピ
ントの甘い画が撮影されてしまう。という欠点があっ
た。
Further, when each of these focusing means is used independently, in the case of the hill climbing method, the image forming state on the surface of the photoelectric conversion element 21 is compared by moving the focus lens and comparing for each field. Since the focusing operation is performed, particularly when the initial image-forming state is largely deviated from the in-focus position, it takes time to bring the image into focus, and as a result, a shooting opportunity is lost. In the case of the autocorrelation method, the focus position is calculated by the signal of the first one field,
The focus lens is driven to the in-focus position obtained by the calculation. However, in reality, a slight difference occurs between the actual in-focus position and the in-focus position obtained by the above calculation due to variations in design and processing of lens performance. At present, the size of imaging devices is becoming smaller, and the lenses are becoming smaller accordingly. Therefore, the minute difference in the focus lens becomes a level that cannot be ignored on the focusing surface, resulting in a poorly focused image. Will be done. There was a drawback.

【0013】そこで、まず、自己相関方式の合焦手段を
用いて、結像する複数の被写体像の相関からデフォーカ
ス量・方向を算出することで、フォーカスレンズを合焦
位置付近まで速やかに駆動し、次に、山登り方式の合焦
手段を用いて、被写体像の結像状態をフィールドごとに
比較することで、正確な合焦を行う合焦手段が考案され
ている。これは、互いの合焦手段の欠点を補い、高速で
なおかつ合焦精度の高い合焦手段を可能としたものであ
る。
Therefore, first, by using the auto-correlation type focusing means, the defocus amount / direction is calculated from the correlation of a plurality of formed subject images, so that the focus lens is driven rapidly to the vicinity of the in-focus position. Then, a focusing means of a hill-climbing method is devised to compare the image formation state of the subject image field by field to perform accurate focusing. This compensates for the drawbacks of the focusing means of each other and enables the focusing means with high speed and high focusing accuracy.

【0014】[0014]

【発明が解決しようとする課題】しかしながら上記従来
例においては、以下の欠点があった。 自己相関方式の合焦手段も併用してはいるが、最終的
には、山登り方式の合焦手段により合焦を得る方式であ
る為、合焦精度は、山登り方式に依存している。したが
って、図8に示すように、人物と背景の樹にそれぞれ第
1・第2のピークをもつ、いわゆる“遠近競合”の場面
の撮影の場合、山登り方式単独での合焦時と同様に誤っ
た被写体に合焦してしまう可能性がある。これは、焦点
評価値が図9に示すように複数のピークを持っており、
このうち所望でない物体のピーク付近の焦点評価値の変
化だけから、その場所に合焦を行ってしまうことに起因
するのであるが、この問題に関しては何ら考慮がなされ
ていない。 山登り方式の合焦手段では、映像信号の特定の周波数
成分を抽出し、その出力により合焦位置を決定するので
あるが、このとき、正確な合焦動作を行う為に有効な周
波数成分は、各撮影場面ごとに異なる。正確な合焦に有
効な周波数は、単純な図柄程低く、複雑な図柄になるに
従い高くなっている。このため実際には、合焦動作中
に、各撮影場面に有効な固有の周波数成分の抽出の為の
特定域通過フィルタ(BPF)の切り替え等を行い、そ
の値を決定しているものがある。しかしながら、この方
法を用いた場合、回路は複雑になり合焦時間も長くなっ
てしまう。
However, the above-mentioned conventional example has the following drawbacks. Although the auto-correlation type focusing means is also used, the focusing accuracy depends on the hill-climbing method because it is the method that finally obtains the focus by the hill-climbing focusing means. Therefore, as shown in FIG. 8, when shooting a so-called “far-far conflict” scene in which the person and the background tree have the first and second peaks, respectively, the same error as when focusing with the hill climbing method alone is performed. The subject may be out of focus. This is because the focus evaluation value has a plurality of peaks as shown in FIG.
The reason is that the focus is focused on the location only from the change in the focus evaluation value near the peak of the unwanted object, but no consideration is given to this problem. In the hill-climbing focusing means, a specific frequency component of the video signal is extracted and the focus position is determined by the output thereof. At this time, the effective frequency component for performing an accurate focusing operation is: Different for each shooting scene. The frequency effective for accurate focusing is as low as a simple pattern and becomes higher as the pattern becomes more complicated. Therefore, in practice, during the focusing operation, a specific band pass filter (BPF) for extracting a unique frequency component effective for each shooting scene is switched, and the value is determined. . However, when this method is used, the circuit becomes complicated and the focusing time becomes long.

【0015】本発明はかかる従来の課題を解決するため
になされたもので、特別な回路等を用いることなく合焦
精度の向上と合焦時間の短縮を図ることのできる自動焦
点調節装置を提供することを目的とする。
The present invention has been made in order to solve the conventional problems, and provides an automatic focusing apparatus capable of improving the focusing accuracy and shortening the focusing time without using a special circuit or the like. The purpose is to do.

【0016】[0016]

【課題を解決するための手段】本発明は、異なる光路を
通って結像する複数の被写体像の情報から被写体の合焦
を行う第1の合焦手段と、結像する1つの被写体像の情
報から被写体の合焦を行う第2の合焦手段を有し、各合
焦手段を第1・第2の順番に用いて合焦動作を行う装置
において、第1の合焦手段による合焦動作中に、第2の
合焦手段による合焦動作に用いる遠近競合の起こらない
測距枠の設定及び各撮影場面に適した信号抽出用フィル
タの特性の決定を行うようにしたものである。
According to the present invention, there is provided a first focusing means for focusing an object from information of a plurality of object images formed through different optical paths, and one object image to be formed. In a device having a second focusing means for focusing an object from information and performing a focusing operation by using each focusing means in the first and second order, focusing by the first focusing means During the operation, the distance measuring frame used for the focusing operation by the second focusing means is set and the characteristics of the signal extracting filter suitable for each shooting scene are determined.

【0017】[0017]

【作用】本発明によれば、第1の合焦手段により被写体
の状態が判断できるので、その情報に基づいて測距枠の
設定を行うことができるため、第2の合焦動作に先だっ
て主要被写体だけが枠内に入るように測距枠の設定を行
うことができ、それにより、第2の合焦動作においては
遠近競合を避けることができて、正確で高速な合焦動作
が可能になる。
According to the present invention, since the state of the object can be determined by the first focusing means, the distance measuring frame can be set based on the information, so that the main focusing operation can be performed prior to the second focusing operation. It is possible to set the distance measurement frame so that only the subject is within the frame, and thus it is possible to avoid perspective conflict in the second focusing operation, enabling accurate and high-speed focusing operation. Become.

【0018】[0018]

【実施例】図1に本発明の合焦装置を有した撮影装置の
構成を表すブロック図を示す。1は被写体像を後述する
光電変換素子面上に導く撮影レンズ、1aはそのなかで
もフォーカス機能を有すフォーカスレンズ、2は撮影レ
ンズ1により導かれた光を電気信号に変換する光電変換
素子、3は光電変換素子2に最適な被写体光量を導く為
の絞り、4は被写体の輝度情報を得るための測光素子、
5は光電変換素子2より得られた電気信号を後述する記
録装置や、演算回路に適した信号に変換して出力する撮
像回路、6は撮像回路5より出力された信号を記録する
記録装置、7は撮像回路5より出力された信号を基に、
光電変換素子2の面上における被写体像の結像状態を求
める演算回路であり、前述の山登り方式で用いる焦点評
価値の演算回路及び自己相関方式で用いる演算回路を含
んでいる。8は後述するCPUの指令に基づきフォーカ
スレンズ1aを撮影光軸方向に駆動させるフォーカスレ
ンズ駆動用モータ、13は上記フォーカスレンズ駆動用
モータ8の位置を検出し、後述するCPUに情報をフォ
ードバックするモータ位置検出回路、9は後述するCP
Uの指令に基づき、絞り3を切り換える切換用アクチュ
エータ、10は撮影装置全体の電源のON/OFF、撮
影・再生等のモードを切り換えるメイン電源/モード切
換スイッチ、11は撮影時において撮影動作のタイミン
グを入力する第1のストロークでスイッチ1、第1のス
トロークより大きい第2のストロークでスイッチ2がO
Nするように構成されたレリーズスイッチ、12はメイ
ン電源/モード切換スイッチ10の信号を基に設定され
たモードに必要なブロックに電源を入れたり、レリーズ
スイッチ11の信号を基に記録装置6、撮像回路5、測
光素子4、演算回路7の作動タイミングを指示したり、
演算回路7の信号を基にフォーカスレンズ駆動用モータ
8を制御したり、測光素子4、演算回路7の信号を基に
絞り切換用アクチュエータを制御したり等、各ブロック
の信号を基に必要なブロックに作動信号を与えるCPU
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing the structure of a photographing device having a focusing device according to the present invention. Reference numeral 1 denotes a photographing lens that guides a subject image onto a surface of a photoelectric conversion element to be described later, reference numeral 1a denotes a focus lens having a focusing function, and 2 denotes a photoelectric conversion element that converts the light guided by the photographing lens 1 into an electric signal. Reference numeral 3 denotes a diaphragm for guiding the optimum amount of light to the subject to the photoelectric conversion element 2, and 4 denotes a photometric element for obtaining luminance information of the subject.
Reference numeral 5 denotes a recording device, which will be described later, that converts an electrical signal obtained from the photoelectric conversion element 2 into a signal suitable for an arithmetic circuit and outputs the signal. Reference numeral 6 denotes a recording device that records the signal output from the imaging circuit 5, 7 is based on the signal output from the imaging circuit 5,
It is an arithmetic circuit for obtaining the image formation state of the subject image on the surface of the photoelectric conversion element 2, and includes an arithmetic circuit for the focus evaluation value used in the above-mentioned hill climbing method and an arithmetic circuit used in the autocorrelation method. Reference numeral 8 denotes a focus lens driving motor for driving the focus lens 1a in the photographing optical axis direction based on a command from a CPU, which will be described later, and 13 detects the position of the focus lens driving motor 8, and information is fed back to the CPU, which will be described later. Motor position detection circuit, 9 is CP described later
A switching actuator for switching the aperture 3 based on a command from U, 10 is a main power / mode switching switch for switching on / off the power of the entire photographing apparatus, and modes such as photographing / playback, and 11 is a timing of photographing operation during photographing. Switch 1 at the first stroke and switch 2 at the second stroke larger than the first stroke.
A release switch 12 configured to turn on the power supplies a block necessary for a mode set based on the signal of the main power / mode changeover switch 10, or a recording device 6 based on a signal of the release switch 11, Instructing the operation timing of the image pickup circuit 5, the photometric element 4, the arithmetic circuit 7,
The focus lens driving motor 8 is controlled based on the signal of the arithmetic circuit 7, the diaphragm switching actuator is controlled based on the signals of the photometric element 4 and the arithmetic circuit 7, and the like. CPU that gives operation signals to blocks
Is.

【0019】図2に上記絞り3の詳細図を示す。この絞
り3は、撮影レンズ1により導かれる光束に対し、少な
くとも大きさの異なる2つの開口部を有し、被写体像を
光電変換素子2の面上に2つの像として導くゾーン3a
と、光軸を中心に円形の1つの開口部を有し、被写体像
を1つの像として光電変換素子2の面上に導き、開口部
の面積が異なる開口径の大きいゾーン3b、開口径の小
さいゾーン3cよりなる。この3つのゾーンは、ステッ
ピングモータ等で構成される絞り切換用アクチュエータ
9により、上記光束中に1ゾーンづつ任意に挿入可能に
構成されている。
FIG. 2 shows a detailed view of the diaphragm 3. The diaphragm 3 has at least two openings having different sizes with respect to the light beam guided by the taking lens 1, and a zone 3 a for guiding the subject image as two images on the surface of the photoelectric conversion element 2.
And has a circular opening centered on the optical axis, guides the subject image as one image on the surface of the photoelectric conversion element 2, and has a large opening diameter zone 3b having different opening areas, It consists of a small zone 3c. These three zones can be arbitrarily inserted into the light flux one zone at a time by a diaphragm switching actuator 9 composed of a stepping motor or the like.

【0020】上記構成の撮影装置において、撮影時のフ
ローチャートを図3に示し、被写体の合焦動作を中心に
以下説明する。まず、メイン電源/モード切換スイッチ
10が撮影モードに設定されると(S1)、CPU12
の作動信号により、記録装置6が撮像回路5より出力さ
れる信号を記録可能状態にイニシャライズされる(S
2)。次に撮影者は不図示で公知の外部ファインダで撮
影被写体の構図を決める。次にレリーズスイッチ11の
スイッチ1がONされると(S3)、CPU12の作動
信号により絞り切換用アクチュエータ9が駆動され、絞
り3のゾーン3aが撮影レンズ1の光束中に挿入される
(S4)。同時に光電変換素子2、撮像回路5、演算回
路7の電源がONされる(S5)。次に測光素子4によ
り被写体輝度が測光され、その情報がCPU12に送ら
れる(S6)。次に上記被写体測光情報を基に、従来例
で述べた自己相関方式による合焦手段に適した電子シャ
ッタスピードをCPU12が求める。上記求められたシ
ャッタスピードにて被写体像が光電変換素子2に蓄積さ
れ、次に1フィールド、即ち1画面1/60秒のテレビ
信号レートの電気信号として撮像回路5に取り込まれ
る。
FIG. 3 shows a flow chart at the time of photographing in the photographing apparatus having the above structure, and the focusing operation of the subject will be mainly described below. First, when the main power / mode switch 10 is set to the photographing mode (S1), the CPU 12
The recording device 6 initializes the signal output from the image pickup circuit 5 to a recordable state by the operation signal of (S).
2). Next, the photographer determines the composition of the subject to be photographed with a known external viewfinder (not shown). Next, when the switch 1 of the release switch 11 is turned on (S3), the diaphragm switching actuator 9 is driven by the operation signal of the CPU 12, and the zone 3a of the diaphragm 3 is inserted into the light flux of the taking lens 1 (S4). . At the same time, the power supplies of the photoelectric conversion element 2, the imaging circuit 5, and the arithmetic circuit 7 are turned on (S5). Next, the subject brightness is measured by the photometric device 4, and the information is sent to the CPU 12 (S6). Next, based on the subject photometric information, the CPU 12 obtains an electronic shutter speed suitable for the focusing means by the autocorrelation method described in the conventional example. The subject image is accumulated in the photoelectric conversion element 2 at the shutter speed obtained as described above, and then captured in the image pickup circuit 5 as an electric signal of one field, that is, a television signal rate of 1/60 seconds per screen.

【0021】撮像回路5に取り込まれたこの信号は、従
来例で述べた自己相関方式による合焦手段に適した信号
に変換され演算回路7に入力される。この入力された信
号を基に演算回路7は、上記自己相関方式により、被写
体像を光電変換素子2の面上に合焦させる位置からのフ
ォーカスレンズ1aのズレ量とズレ方向を演算で求める
(S7)。上記求められたフォーカスレンズ1aのズレ
量・ズレ方向を基に、CPU12はフォーカスレンズ1
aを、現在位置から合焦点に対し一定量手前の位置に駆
動させる信号をフォーカスレンズ駆動用モータ8に出力
し、このモータ8の駆動によりフォーカスレンズ1aが
駆動される(S8)。ここで合焦点に対し、一定量手前
の位置にフォーカスレンズ1aを駆動する理由は、下記
山登り方式による合焦手段に移行した際、フォーカスレ
ンズ1aの駆動方向を改めて求める必要が無いようにし
てある。
This signal taken in the image pickup circuit 5 is converted into a signal suitable for the focusing means by the autocorrelation method described in the conventional example, and is input to the arithmetic circuit 7. Based on this input signal, the arithmetic operation circuit 7 calculates the amount and direction of deviation of the focus lens 1a from the position where the subject image is focused on the surface of the photoelectric conversion element 2 by the autocorrelation method ( S7). Based on the deviation amount and deviation direction of the focus lens 1a obtained as described above, the CPU 12 causes the focus lens 1a to move.
A signal that drives a from the current position to a position that is a certain amount before the in-focus point is output to the focus lens driving motor 8, and the focus lens 1a is driven by driving this motor 8 (S8). Here, the reason why the focus lens 1a is driven to a position before the focusing point by a certain amount is that it is not necessary to newly obtain the driving direction of the focus lens 1a when shifting to the focusing means by the following hill climbing method. .

【0022】また、このとき同時に、以下の動作を行う 測距枠の設定(S9) 自己相関方式で合焦動作を行うことにより、被写体の状
態が判断できる為、その情報に基づいて測距枠の設定を
行う。
At the same time, at the same time, the following operations are performed: Setting of the distance measuring frame (S9) Since the state of the object can be judged by performing the focusing operation by the autocorrelation method, the distance measuring frame is determined based on the information Set.

【0023】前述したように、測距枠(フォーカスエリ
ア)は、ゲート信号を制御することで、その位置・大き
さを変化させることが可能である。また、この時点で
は、自己相関方式による合焦動作が終了しているので、
その結果を利用することができる。
As described above, the position and size of the distance measuring frame (focus area) can be changed by controlling the gate signal. Also, at this point, since the focusing operation by the autocorrelation method has been completed,
The result can be used.

【0024】自己相関方式による合焦方式では、異なる
光路を通って結像する複数の被写体像のズレ量から距離
を算出する方式であるため、例えば、測距枠内に異なる
距離に存在する被写体があった場合、その各々の距離を
算出することから、どれが主要被写体であるかの判断
(例えば、距離の近い被写体を選択する・画面内に示す
割合が大きい被写体を選択する等)も下すことができる
のである。
In the focusing method based on the autocorrelation method, the distance is calculated from the deviation amount of a plurality of subject images formed through different optical paths. If there is, the distance is calculated for each, so it is also possible to judge which is the main subject (for example, select a subject with a short distance or a subject with a large proportion shown in the screen). It is possible.

【0025】図10に測距枠の設定のフローチャートを
示し、これに沿って具体的に説明する。まず、予め設定
されている測距枠内の自己相関を算出し、ピークの数を
調べる(S21)。自己相関のピークとは、ある距離に
被写体が存在することを表し、ピークが複数存在すると
いうことは、ピーク数に相当する数の被写体が異なる距
離に存在することを表す。ここで、ピークが1つである
場合は、この測距枠内の被写体は1つであると判断し、
測距枠の変更は行わない。また、ピークが2つ以上存在
する場合は、以下の動作を行う。
FIG. 10 shows a flow chart for setting the distance measuring frame, which will be specifically described. First, the autocorrelation within a preset distance measuring frame is calculated, and the number of peaks is checked (S21). The peak of autocorrelation means that a subject exists at a certain distance, and that there are a plurality of peaks means that a number of subjects corresponding to the number of peaks exist at different distances. Here, when there is one peak, it is determined that the number of subjects in this range-finding frame is one,
The distance measuring frame is not changed. Further, when there are two or more peaks, the following operation is performed.

【0026】焦点評価値の各ピークに対応する画素を抽
出する(S22)。これは、焦点評価値のピークに対応
した距離にある画像の抽出を意味し、この動作を行うこ
とで(例えば、遠景・近景の)画像の分離ができる。次
にS22で抽出した各ピークに対応する画素の数を比較
する(S23)。ここで、比較により得られる画素数の
比とは、撮影画面上に示す各被写体の面積の比に当た
る。そして、この結果から主要被写体の特定を行う(S
24)。ここでは、測距枠内に示す最大面積の被写体が
主要被写体であるとの判断から、主要被写体を決定す
る。
A pixel corresponding to each peak of the focus evaluation value is extracted (S22). This means extraction of images at a distance corresponding to the peak of the focus evaluation value, and by performing this operation, it is possible to separate images (for example, distant view / near view). Next, the numbers of pixels corresponding to the respective peaks extracted in S22 are compared (S23). Here, the ratio of the number of pixels obtained by the comparison corresponds to the ratio of the areas of the respective subjects shown on the photographing screen. Then, the main subject is identified from this result (S
24). Here, the main subject is determined based on the determination that the subject having the maximum area shown in the distance measurement frame is the main subject.

【0027】また、この実施例では“最大面積の被写
体”を主要被写体と判断したが、“最近距離の被写
体”,“所定距離内で所定面積以上の被写体”等の条件
で判断することも可能である。主要被写体の特定ができ
たならば、測距枠の変更を行う(S25)。ゲート開閉
信号の制御により、主要被写体だけが含まれる特定範囲
のみの輝度信号の通過を許容することで、遠近競合のな
い測距枠の変更を行う。
Further, in this embodiment, the "maximum area subject" is determined to be the main subject, but it is also possible to determine under the conditions of "the closest distance subject", "the subject having a predetermined area or more within a predetermined distance", and the like. Is. When the main subject can be identified, the distance measuring frame is changed (S25). By controlling the gate opening / closing signal, the luminance signal in only a specific range including only the main subject is allowed to pass, so that the distance measuring frame is changed without any distance competition.

【0028】以上、これらの動作を行うことで、自己相
関方式の合焦動作で用いた測距枠が“遠近競合”であっ
た場合、それらの結果を利用し、山登り方式の合焦動作
に先立って主要被写体だけが枠内に入るように測距枠の
設定を行うことができる為、山登り方式の合焦動作にお
いては、“遠近競合”を避けることができ、正確で高速
な合焦動作が可能になる。 フィルタ特性の決定(S10) 前述したように、山登り方式による合焦動作では、撮影
場面に応じた映像信号の特定周波数成分の抽出が必要で
あり、その為のフィルタ特性の決定をしなければならな
い。ここでは、自己相関方式で用いた“異なる光路を通
って結像した像”を利用する。
As described above, by performing these operations, when the distance measurement frame used in the auto-correlation type focusing operation is "perspective conflict", those results are used for the hill climbing type focusing operation. Since the range-finding frame can be set in advance so that only the main subject enters the frame, it is possible to avoid "conflict of perspective" in the focusing operation of the hill climbing method, and an accurate and high-speed focusing operation. Will be possible. Determination of Filter Characteristics (S10) As described above, in the focusing operation by the hill climbing method, it is necessary to extract the specific frequency component of the video signal according to the shooting scene, and the filter characteristics for that purpose must be determined. . Here, the "image formed through different optical paths" used in the autocorrelation method is used.

【0029】自己相関方式の合焦動作時に使用される像
は、正規の撮影時に比べ小さい絞りを通して結像してい
るため、合焦状態ではなくてもそのボケ量は小さいもの
になっている。よって、この像から、被写体像に含ま
れ、山登り方式による合焦動作に有効な周波数の判断が
可能であり、各撮影場面固有の周波数成分の抽出のため
の特定域通過フィルタの特性の決定ができる。
Since the image used during the focusing operation of the autocorrelation method is formed through a smaller aperture than in the normal photographing, the amount of blur is small even in the in-focus state. Therefore, from this image, it is possible to determine the frequency included in the subject image and effective for the focusing operation by the hill climbing method, and the characteristics of the specific pass filter for extracting the frequency component unique to each shooting scene can be determined. it can.

【0030】図11にフィルタ特性の決定のフローチャ
ートを示し、これに沿って説明する。まず、得られた映
像信号を周波数変換し、信号に含まれる周波数成分を調
べる(S31)。次に、この結果を基に、山登り合焦動
作に有効な周波数を求める(S32)。ここで求められ
る周波数は、前述したように、単純な図柄ほど低く、複
雑な図柄になるに従い、高いものとなっている。そし
て、以上の結果から、所定のルールに従って、CPUで
DSP(デジタル・シグナル・プロセッサ)を制御する
(S33)。ここでは、有効周波数によって通過させる
帯域の中心周波数を変化させている。これにより、正確
な合焦が可能となる。また、それとは別に、デフォーカ
ス量が大である場合は、通過帯域の低域側を拡大する操
作も行っている。これは、山登り合焦動作でデフォーカ
ス量が大の場合、周波数の高域成分が少なく、“ノイズ
との分離”,“高域成分での判断”が困難である為、初
期のレンズ移動には比較的大きい低域成分が有効である
ことを考慮したものである。これにより、一層の高速化
・高精度化が望める。そして、以上の一連の動作で、フ
ィルタ特性の決定がなされる(S34)。
FIG. 11 shows a flow chart for determining the filter characteristic, which will be described below. First, the obtained video signal is frequency-converted to check the frequency component contained in the signal (S31). Next, based on this result, a frequency effective for the hill climbing focusing operation is obtained (S32). As described above, the frequency required here is lower for a simple symbol and higher for a more complicated symbol. Based on the above results, the CPU controls the DSP (digital signal processor) according to the predetermined rule (S33). Here, the center frequency of the band to be passed is changed depending on the effective frequency. As a result, accurate focusing is possible. In addition to this, when the defocus amount is large, an operation of expanding the low frequency side of the pass band is also performed. This is because when the amount of defocus is large in the mountain climbing focus operation, there are few high frequency components of the frequency, and it is difficult to "separate from noise" and "judgment based on high frequency components". Takes into consideration that a relatively large low-frequency component is effective. As a result, higher speed and higher accuracy can be expected. Then, the filter characteristic is determined by the above series of operations (S34).

【0031】通常この動作は、山登り方式による合焦動
作時に、合焦動作と平行して行っているが、山登り方式
による合焦動作に先立って自己相関方式の結果に基づい
て行うため、合焦時間の短縮になる。なお、本実施例で
は、デジタル・フィルタによって通過帯域を制限してい
るが、複数のフィルタを用意し、それらを選択する方法
や、複数のフィルタからの情報の加算比を制御する方法
でも同様の効果が得られる。
Normally, this operation is performed in parallel with the focusing operation during the hill climbing focusing operation. However, since this operation is performed based on the result of the autocorrelation method prior to the hill climbing focusing operation, the focusing operation is performed. It saves time. In the present embodiment, the pass band is limited by the digital filter, but a method of preparing a plurality of filters and selecting them or a method of controlling the addition ratio of the information from the plurality of filters is also the same. The effect is obtained.

【0032】次に、上記被写体輝度情報を基にCPU1
2は、従来例で述べた山登り方式による合焦手段に適し
た電子シャッタスピードと、絞り3のゾーン3bまたは
ゾーン3cを選択・決定する。上記決定された絞り3の
ゾーンに絞りが切り換わるよう、CPU12が絞り切換
用アクチュエータ9を駆動する(S11)。次に上記決
定された電子シャッタスピードにて被写体像が光電変換
素子2に蓄積され、1画面1/60秒のテレビ信号レー
トの映像信号として、逐次撮像回路5に取り込まれる。
撮像回路5に取り込まれたこの信号は、従来例で述べた
山登り方式による合焦手段に適した信号に変換され、演
算回路7に入力される。
Next, based on the subject brightness information, the CPU 1
Reference numeral 2 selects and determines the electronic shutter speed suitable for the focusing means by the hill climbing method described in the conventional example, and the zone 3b or zone 3c of the diaphragm 3. The CPU 12 drives the aperture switching actuator 9 so that the aperture is switched to the determined zone of the aperture 3 (S11). Next, the subject image is accumulated in the photoelectric conversion element 2 at the determined electronic shutter speed, and is sequentially captured by the image pickup circuit 5 as a video signal having a television signal rate of 1/60 second per screen.
This signal taken into the image pickup circuit 5 is converted into a signal suitable for the focusing means by the hill climbing method described in the conventional example, and is input to the arithmetic circuit 7.

【0033】この入力された信号を基に、演算回路7は
上記従来例で述べた山登り方式による合焦手段により被
写体像の光電変換素子2の面上での焦点状態を評価し、
CPU12はこの評価値を基にフォーカスレンズ駆動用
モータ8を制御し、フォーカスレンズ1aが被写体像を
光電変換素子2の面上に合焦となる位置に駆動される
(S12)。
Based on this input signal, the arithmetic circuit 7 evaluates the focus state of the subject image on the surface of the photoelectric conversion element 2 by the focusing means by the hill climbing method described in the above-mentioned conventional example,
The CPU 12 controls the focus lens driving motor 8 based on this evaluation value, and the focus lens 1a is driven to a position where the subject image is focused on the surface of the photoelectric conversion element 2 (S12).

【0034】次に、レリーズスイッチ11のスイッチ2
がONされると(S13)、光電変換素子2に蓄積され
た被写体像が撮像回路5に取り込まれる。撮像回路5に
取り込まれたこの信号は、記録装置6に記録するのに適
した信号に変換され、記記録装置6に記録される(S1
4)。このようにして被写体が記録された後、次の撮影
に備え、スタンバイ状態となる。
Next, the switch 2 of the release switch 11
When is turned on (S13), the subject image accumulated in the photoelectric conversion element 2 is captured by the image pickup circuit 5. This signal taken into the image pickup circuit 5 is converted into a signal suitable for recording in the recording device 6 and recorded in the recording device 6 (S1).
4). After the subject is recorded in this manner, the standby state is set up for the next shooting.

【0035】〔他の実施例〕先の実施例では、第1の合
焦手段の代表として、“自己相関方式”を例にとって説
明したが、これを、他の位相差方式の合焦手段に置き換
えても同様の効果が得られることは言うまでもない。
[Other Embodiments] In the previous embodiment, the "auto-correlation method" has been described as an example of the first focusing means, but this is used as another phase difference focusing means. It goes without saying that the same effect can be obtained even if the replacement is performed.

【0036】[0036]

【発明の効果】以上説明した通り、本発明によれば、異
なる光路を通って結像する複数の被写体像の情報から被
写体の合焦を行う、例えば“自己相関方式”に代表され
る第1の合焦手段と、結像する1つの被写体像の情報か
ら被写体の合焦を行う、例えば“山登り方式”に代表さ
れる第2の合焦手段とを有し、各合焦手段を第1・第2
順番で用いて合焦動作を行う装置において、第1の合焦
手段による合焦動作で得られる情報に基づいて、第2の
合焦手段による合焦動作に先立って、第2の合焦手段で
用いる測距枠の設定及び信号抽出用フィルタの特性の決
定を行う為、特別な回路等を用いることなく、合焦精度
の向上と合焦時間の短縮を図ることができる。
As described above, according to the present invention, the subject is focused on the basis of the information of a plurality of subject images formed through different optical paths, for example, the first method represented by the "autocorrelation method". Focusing means and a second focusing means typified by, for example, a "mountain climbing method" for focusing the subject from the information of one subject image to be formed.・ Second
In a device for performing a focusing operation by using the second focusing means in advance, before the focusing operation by the second focusing means, based on the information obtained by the focusing operation by the first focusing means. Since the range-finding frame used in (1) and the characteristics of the signal extraction filter are determined, it is possible to improve the focusing accuracy and shorten the focusing time without using a special circuit or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の主要構成を示すブロック図
である。
FIG. 1 is a block diagram showing the main configuration of an embodiment of the present invention.

【図2】本発明の一実施例の絞りの詳細図である。FIG. 2 is a detailed view of a diaphragm according to an embodiment of the present invention.

【図3】本発明の一実施例の動作を示すフローチャート
である。
FIG. 3 is a flowchart showing the operation of the embodiment of the present invention.

【図4】従来例の概略構成を示すブロック図である。FIG. 4 is a block diagram showing a schematic configuration of a conventional example.

【図5】従来例の回路構成を示すブロック図である。FIG. 5 is a block diagram showing a circuit configuration of a conventional example.

【図6】山登り合焦動作の説明図である。FIG. 6 is an explanatory diagram of a mountain climbing focusing operation.

【図7】従来例の概略構成を示すブロック図である。FIG. 7 is a block diagram showing a schematic configuration of a conventional example.

【図8】従来例の測距枠を示す図である。FIG. 8 is a diagram showing a distance measuring frame of a conventional example.

【図9】遠近競合の説明図である。FIG. 9 is an explanatory diagram of perspective competition.

【図10】測距枠設定のフローチャートである。FIG. 10 is a flowchart for setting a distance measurement frame.

【図11】フィルタ特性の決定のフローチャートであ
る。
FIG. 11 is a flowchart for determining filter characteristics.

【符号の説明】[Explanation of symbols]

1,20,31 撮影レンズ 2,21,31 光電変換素子 3,101 絞り 4 測光素子 6 記録装置 7,23,37 演算回路 11 レリーズスイッチ 12,24 CPU 1, 20, 31 Photographing lens 2, 21, 31 Photoelectric conversion element 3, 101 Aperture 4 Photometric element 6 Recording device 7, 23, 37 Arithmetic circuit 11 Release switch 12, 24 CPU

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 異なる光路を通って結像する複数の被写
体像の情報から被写体の合焦を行う第1の合焦手段と、
結像する1つの被写体像の情報から被写体の合焦を行う
第2の合焦手段とを有し、これら各合焦手段を第1・第
2の順番で用いて合焦動作を行う装置において、第1の
合焦手段による合焦動作で得られる情報に基づいて、第
2の合焦手段による合焦動作で用いる情報を設定するこ
とを特徴とする自動焦点調節装置。
1. A first focusing means for focusing a subject based on information of a plurality of subject images formed through different optical paths,
A device for performing a focusing operation, comprising a second focusing means for focusing a subject from information of one subject image to be formed, and using each of these focusing means in the first and second order. An automatic focus adjusting device is characterized in that the information used in the focusing operation by the second focusing means is set based on the information obtained by the focusing operation by the first focusing means.
【請求項2】 第1の合焦手段による合焦動作で得られ
る情報に基づいて、第2の合焦手段による合焦動作で用
いる測距枠を設定することを特徴とする請求項1記載の
自動焦点調節装置。
2. The distance measuring frame used in the focusing operation by the second focusing means is set based on the information obtained by the focusing operation by the first focusing means. Auto focus device.
【請求項3】 第1の合焦手段による合焦動作で得られ
る情報に基づいて、第2の合焦手段による合焦動作で用
いる信号抽出用フィルタの特性を決定することを特徴と
する請求項1記載の自動焦点調節装置。
3. The characteristic of the signal extraction filter used in the focusing operation by the second focusing means is determined based on the information obtained by the focusing operation by the first focusing means. Item 1. The automatic focusing device according to item 1.
JP5340273A 1993-12-08 1993-12-08 Automatic focusing device Pending JPH07159685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5340273A JPH07159685A (en) 1993-12-08 1993-12-08 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5340273A JPH07159685A (en) 1993-12-08 1993-12-08 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPH07159685A true JPH07159685A (en) 1995-06-23

Family

ID=18335366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5340273A Pending JPH07159685A (en) 1993-12-08 1993-12-08 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPH07159685A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051255A (en) * 2000-07-31 2002-02-15 Olympus Optical Co Ltd Main object detectable camera
GB2430096A (en) * 2005-09-08 2007-03-14 Hewlett Packard Development Co Automatic focussing
JP2009115893A (en) * 2007-11-02 2009-05-28 Canon Inc Image-pickup apparatus
JP2011086082A (en) * 2009-10-15 2011-04-28 Hitachi Ltd Vehicle number recognition device and method for adjusting the same
JP2013003298A (en) * 2011-06-15 2013-01-07 Canon Inc Imaging apparatus, control method therefor, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051255A (en) * 2000-07-31 2002-02-15 Olympus Optical Co Ltd Main object detectable camera
GB2430096A (en) * 2005-09-08 2007-03-14 Hewlett Packard Development Co Automatic focussing
US7577351B2 (en) 2005-09-08 2009-08-18 Hewlett-Packard Development Company, L.P. Image data processing method and apparatus
GB2430096B (en) * 2005-09-08 2010-06-16 Hewlett Packard Development Co Image data processing method and apparatus
JP2009115893A (en) * 2007-11-02 2009-05-28 Canon Inc Image-pickup apparatus
JP2011086082A (en) * 2009-10-15 2011-04-28 Hitachi Ltd Vehicle number recognition device and method for adjusting the same
JP2013003298A (en) * 2011-06-15 2013-01-07 Canon Inc Imaging apparatus, control method therefor, and program

Similar Documents

Publication Publication Date Title
US8259215B2 (en) Image pickup apparatus having focus control using phase difference detection
JP3975395B2 (en) Camera system
US7847856B2 (en) Digital camera
US8736689B2 (en) Imaging apparatus and image processing method
JP5082631B2 (en) Imaging device
US8254773B2 (en) Image tracking apparatus and tracking evaluation method
US20050212950A1 (en) Focal length detecting method, focusing device, image capturing method and image capturing apparatus
US9380200B2 (en) Image pickup apparatus and control method in which object searching based on an image depends on pixel combining on the image
US20050099522A1 (en) Variable length encoding method and variable length decoding method
JP2007129310A (en) Imaging apparatus
JP2002122773A (en) Focusing unit, electronic camera and focusing method
JP4045483B2 (en) Focus status detection device
JP5056136B2 (en) Image tracking device
JP5403111B2 (en) Image tracking device
JP2010191366A (en) Imaging apparatus
JP2013160991A (en) Imaging apparatus
JP2013113857A (en) Imaging device, and control method therefor
JP5765935B2 (en) Focus adjustment apparatus and method
JPH09211308A (en) Mechanism for detecting object of automatic focusing image pickup unit
JPH07159685A (en) Automatic focusing device
JP2006350188A (en) Autofocus device
JP3412915B2 (en) Automatic focusing device
JPH07154669A (en) Automatic focus adjustment device
JP7023673B2 (en) Focus control device, focus control method, and image pickup device
JP2010200138A (en) Photographic subject tracking device