JPH07159581A - Atomic reactor cooling facility - Google Patents

Atomic reactor cooling facility

Info

Publication number
JPH07159581A
JPH07159581A JP5304970A JP30497093A JPH07159581A JP H07159581 A JPH07159581 A JP H07159581A JP 5304970 A JP5304970 A JP 5304970A JP 30497093 A JP30497093 A JP 30497093A JP H07159581 A JPH07159581 A JP H07159581A
Authority
JP
Japan
Prior art keywords
pool
reactor
water
cooling
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5304970A
Other languages
Japanese (ja)
Inventor
Kiyoshi Fujimoto
清志 藤本
Yoshiyuki Kataoka
良之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5304970A priority Critical patent/JPH07159581A/en
Publication of JPH07159581A publication Critical patent/JPH07159581A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To reduce a cooling facility and miniaturize a reactor pressure vessel by cooling a core over a long period without using an external power source, and continuously cooling the core with a gravitational force drop type cooling water pool. CONSTITUTION:This reactor cooling facility is provided with an injector 8 in a dry well 3, a pipe 10 feeding steam from an automatic decompression system, a pipe 9 driving the cooling water of a pressure suppressing pool 5, and a pipe 11 injecting a coolant into a reactor pressure vessel 2 respectively. A core 1 is flooded with water over a long period to be cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子炉に係り、原子炉の
安全設計上想定しなければならない冷却材喪失事故時
に、格納容器内の圧力上昇を抑制するのに好適な原子炉
冷却設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear reactor, and more particularly to a nuclear reactor cooling facility suitable for suppressing a pressure rise in a containment vessel in the event of a coolant loss accident which must be assumed in safety design of a nuclear reactor. .

【0002】[0002]

【従来の技術】原子炉の安全設計上想定しなければなら
ない冷却材喪失事故時に、ポンプ等の動的機器を用いな
い静的な冷却機構によって、炉心から発生する崩壊熱を
除去し、炉心及び格納容器を冷却する原子炉冷却設備が
提案されている。
2. Description of the Related Art In the event of a loss of coolant accident, which must be assumed in the safety design of a nuclear reactor, a static cooling mechanism that does not use dynamic equipment such as a pump removes decay heat generated from the core, A reactor cooling system for cooling the containment vessel has been proposed.

【0003】例えば、主蒸気管破断を想定すると、主タ
ービン設備や給水設備と隔離され、原子炉冷却材は崩壊
熱により蒸気となり、自動減圧弁や破断孔から圧力抑制
プールへ放出される。そのため、原子炉冷却材が減少
し、炉心の冷却が阻害されることを防止するために、崩
壊熱で発生する炉蒸気で原子炉隔離時冷却設備タービン
を駆動させ、タービンによりポンプを駆動させ、前記ポ
ンプで冷却材を原子炉圧力容器内に注水するという冷却
設備がある。
For example, assuming that the main steam pipe is broken, it is isolated from the main turbine equipment and the water supply equipment, and the reactor coolant becomes steam due to decay heat and is discharged from the automatic pressure reducing valve and the break hole to the pressure suppression pool. Therefore, in order to prevent the reactor coolant from decreasing and the cooling of the core from being hindered, the reactor isolation cooling equipment turbine is driven by the reactor steam generated by the decay heat, and the pump is driven by the turbine. There is a cooling facility in which a coolant is injected into the reactor pressure vessel by the pump.

【0004】また、炉心の冷却方法として上記の動的シ
ステムの他、流体の自然力を利用した静的システムが考
えられている。静的な方法は、炉心より上方に冷却水プ
ールを設け、冷却水プールと原子炉圧力容器内を均圧化
し、重力により冷却水を原子炉圧力容器内へ注水する方
法がある。しかし、この方法では冷却水プールを大きく
しなければいけないという欠点があるため特願平4−191
871 号明細書に示すように、冷却水プールの下方にタン
クを設け、注水水頭を増加する方法もある。さらに、特
願平3−75593号明細書に記載されている従来技術では、
原子炉容器からの蒸気を駆動源として、重力落下式冷却
水プールの水を駆動させ圧力容器内に注水するというも
のがある。しかし、プール水量に限りがあるため補給水
が必要となり、長期的な炉心の冷却には適さないという
問題がある。また、同一の従来技術では、事故時ドライ
ウェルから圧力抑制プールにベント管を通して流入して
くる蒸気を駆動源とし、圧力抑制プール水を駆動させる
ものがある。この場合、蒸気圧力が低く事故時の冷却水
の注水といった機能には適さないという問題がある。
In addition to the above dynamic system, a static system utilizing the natural force of fluid has been considered as a method for cooling the core. As a static method, there is a method in which a cooling water pool is provided above the core, the cooling water pool and the reactor pressure vessel are pressure-equalized, and the cooling water is injected into the reactor pressure vessel by gravity. However, this method has a drawback that the cooling water pool must be enlarged, and therefore, Japanese Patent Application No. 4-191
As shown in the specification of 871, there is also a method to increase the water injection head by installing a tank below the cooling water pool. Furthermore, in the prior art described in Japanese Patent Application No. 3-75593,
There is a method in which the steam from the reactor vessel is used as a drive source to drive the water in the gravity drop type cooling water pool to inject water into the pressure vessel. However, there is a problem that make-up water is required because the amount of pool water is limited, which is not suitable for long-term core cooling. Further, in the same conventional technique, there is one in which the pressure suppression pool water is driven by using, as a driving source, the steam flowing from the drywell to the pressure suppression pool through the vent pipe. In this case, there is a problem that the steam pressure is low and it is not suitable for the function of injecting cooling water in the event of an accident.

【0005】[0005]

【発明が解決しようとする課題】主蒸気管破断等を想定
した冷却材喪失事故時に、冷却材を原子炉に供給し炉心
の冷却を行う従来技術では、自動減圧系から放出された
蒸気によりタービンを駆動し、タービンでポンプを駆動
させ冷却水を圧力容器内に注水するが、この場合、破断
孔からの蒸気に加えてタービン駆動に使用する蒸気に相
当する冷却水を合わせて注水する必要があるので、冷却
水の注水流量を多くしなければいけないという問題があ
る。また、崩壊熱で発生する蒸気がタービンを駆動させ
るが、その際、タービンを駆動した後の蒸気が圧力抑制
プールに流入し、プール水の温度を上昇させる。そのた
め、圧力抑制プールでの蓄熱量が制限されるため冷却系
の負荷が大きくなるという問題もあげられる。
In the prior art in which the coolant is supplied to the reactor to cool the core in the event of a coolant loss accident, such as when the main steam pipe is broken, the turbine is cooled by the steam released from the automatic depressurization system. Drive the pump by the turbine to inject cooling water into the pressure vessel.In this case, it is necessary to inject the cooling water corresponding to the steam used to drive the turbine in addition to the steam from the break hole. Therefore, there is a problem that the flow rate of cooling water to be injected must be increased. Further, the steam generated by the decay heat drives the turbine, but at that time, the steam after driving the turbine flows into the pressure suppression pool and raises the temperature of the pool water. Therefore, the amount of heat stored in the pressure suppression pool is limited, so that the load of the cooling system becomes large.

【0006】そこで本発明では、外部電源を使用せず破
断孔からの蒸気を考慮し冷却水の注水流量を少なくする
ために、ドライウェル内に自動減圧系からの蒸気で駆動
するインジェクタを設け、インジェクタにより圧力抑制
プール水を駆動させ、原子炉圧力容器に冷却水を注水す
るという体系を提供する。
Therefore, in the present invention, an injector driven by steam from the automatic depressurization system is provided in the dry well in order to reduce the flow rate of the cooling water injected in consideration of the steam from the break hole without using an external power source. A system is provided in which pressure suppression pool water is driven by an injector and cooling water is injected into the reactor pressure vessel.

【0007】また、重力落下式冷却水プール水で炉心を
冷却する場合、プール水がなくなることやプール水量を
大きくしなければいけないという問題があるが、インジ
ェクタにより駆動する圧力抑制プール水を重力落下式冷
却水プールに注水することで、重力落下式冷却水プール
からの注水を継続的に行う体系を提供する。
Further, when the core is cooled by the gravity drop type cooling water pool water, there is a problem that the pool water runs out and the amount of pool water has to be increased, but the pressure suppression pool water driven by the injector falls by gravity. By supplying water to the cooling water pool, a system is provided to continuously inject water from the gravity falling cooling water pool.

【0008】[0008]

【課題を解決するための手段】ドライウェル内に自動減
圧系からの蒸気で駆動するインジェクタを設け、前記イ
ンジェクタにより圧力抑制プール水を駆動させ、原子炉
圧力容器内または重力落下式冷却水プール内に冷却水を
注水することで、外部電源を使用せず長期的に炉心を冠
水し冷却することを特徴とする。
[Means for Solving the Problems] An injector driven by steam from an automatic depressurization system is provided in a dry well, and pressure-suppressing pool water is driven by the injector, and in a reactor pressure vessel or a gravity-drop cooling water pool. It is characterized by pouring cooling water into the core to flood and cool the core for a long time without using an external power source.

【0009】[0009]

【作用】上記の手段によれば、原子炉圧力容器から主蒸
気管を経て自動減圧系配管から蒸気が流入し、ドライウ
ェル内に設けたインジェクタを蒸気が駆動させる。そし
て、インジェクタは圧力抑制プール水を駆動させ、プー
ル水は蒸気の熱エネルギにより原子炉圧力容器内へ注水
される。そして、蒸気が発生する限り上記の作用は継続
する。そして、圧力抑制プールの水は一定時間は減少す
るが、圧力容器内が冷却水によって満水になり下部ドラ
イウェルに冷却水が流出し蓄積され、圧力抑制プールに
還元されることによって炉心の長期的な冷却が可能とな
るので、格納容器冷却系の熱負荷を小さくでき、格納容
器冷却系の軽減ができる。また、インジェクタにより駆
動される圧力抑制プール水を重力落下式冷却水プール内
に注水することで、長期的にプール水を確保できるため
重力落下式冷却水プールを小さくでき、格納容器の小型
化あるいは材料費の削減になる。
According to the above-mentioned means, steam flows from the reactor pressure vessel through the main steam pipe and the automatic depressurization system pipe, and the steam is driven by the injector provided in the dry well. Then, the injector drives the pressure suppression pool water, and the pool water is injected into the reactor pressure vessel by the thermal energy of the steam. Then, the above action continues as long as steam is generated. Then, the water in the pressure suppression pool decreases for a certain period of time, but the pressure vessel is filled with cooling water, and the cooling water flows out and accumulates in the lower dry well, and is returned to the pressure suppression pool to reduce the long-term Therefore, the heat load on the containment vessel cooling system can be reduced and the containment vessel cooling system can be reduced. Also, by injecting pressure-suppressed pool water driven by the injector into the gravity-drop cooling water pool, pool water can be secured for a long period of time, so the gravity-drop cooling water pool can be made smaller and the containment vessel can be made smaller or Material costs are reduced.

【0010】[0010]

【実施例】本発明の一実施例を、図1により説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIG.

【0011】本発明の一実施例に適用する原子炉格納容
器は、炉心1を内包する原子炉圧力容器2と、原子炉圧
力容器2を格納するドライウェル3と、圧力抑制プール
5を有する圧力抑制室4と、ドライウェル3と圧力抑制
プール5を連結するベント管7等で構成されている。
A reactor containment vessel applied to an embodiment of the present invention is a pressure vessel having a reactor pressure vessel 2 containing a core 1, a dry well 3 containing the reactor pressure vessel 2 and a pressure suppression pool 5. It is composed of a suppression chamber 4, a vent pipe 7 connecting the dry well 3 and the pressure suppression pool 5, and the like.

【0012】本実施例の特徴となる構成要素は、図1よ
りドライウェル3内に自動減圧系からの蒸気により駆動
するインジェクタ8と、インジェクタ8により駆動され
る圧力抑制プール5の水及びプール水が注水される圧力
容器2である。なお、インジェクタ8はそれぞれ配管
9,10,11で連結する。
As shown in FIG. 1, the characteristic components of this embodiment are the injector 8 driven by the steam from the automatic depressurization system in the dry well 3, the water of the pressure suppression pool 5 driven by the injector 8 and the pool water. Is the pressure vessel 2 into which water is poured. The injectors 8 are connected by pipes 9, 10, and 11, respectively.

【0013】例えば主蒸気管12の破断等による冷却材
喪失事故を想定すると、主蒸気管12からドライウェル
3内に蒸気が流出する。それと同時に自動減圧系の配管
10より蒸気がインジェクタ8へ流入する。それに伴
い、インジェクタ8は原子炉圧力容器2に冷却材を注水
するため圧力抑制プール5の水を駆動させる。そして、
蒸気の熱エネルギにより圧力抑制プール5の水を原子炉
圧力容器2内へ注水する。この時、一時的に圧力抑制プ
ール5の水位が減少するが、原子炉圧力容器2内の冷却
材が満水となると同時に、下部ドライウェル3に冷却材
が蓄積し圧力抑制プール5に冷却材が再び戻るため問題
はない。したがって、外部電源を使用せず炉心1を長期
的に冷却でき、格納容器14の冷却設備の軽減ができ
る。
For example, assuming a coolant loss accident due to breakage of the main steam pipe 12, steam flows out from the main steam pipe 12 into the dry well 3. At the same time, steam flows into the injector 8 through the pipe 10 of the automatic depressurization system. Accordingly, the injector 8 drives the water in the pressure suppression pool 5 to inject the coolant into the reactor pressure vessel 2. And
Water in the pressure suppression pool 5 is poured into the reactor pressure vessel 2 by the thermal energy of the steam. At this time, the water level in the pressure suppression pool 5 temporarily decreases, but at the same time as the coolant in the reactor pressure vessel 2 becomes full, the coolant accumulates in the lower dry well 3 and the coolant in the pressure suppression pool 5 There is no problem because it returns again. Therefore, the core 1 can be cooled for a long period of time without using an external power source, and the cooling equipment for the containment vessel 14 can be reduced.

【0014】図2を用いて本発明の第二の実施例を説明
する。
A second embodiment of the present invention will be described with reference to FIG.

【0015】本実施例を適用する原子炉格納容器は、図
1を用いて説明した実施例と同様の構成で、本実施例の
特徴となる構成要素は、図2より自動減圧系からの蒸気
により駆動するインジェクタ8と、インジェクタ8で駆
動する圧力抑制プール5の水及び重力落下式冷却水プー
ル13である。なお、図1の実施例と同様、インジェク
タ8はそれぞれ配管9,10,11で連結し実現する。
The reactor containment vessel to which this embodiment is applied has the same structure as that of the embodiment described with reference to FIG. 1, and the characteristic components of this embodiment are the steam from the automatic depressurization system as shown in FIG. The injector 8 is driven by the water, the water of the pressure suppression pool 5 driven by the injector 8 and the gravity-drop cooling water pool 13. It should be noted that, like the embodiment of FIG. 1, the injector 8 is realized by connecting the pipes 9, 10 and 11, respectively.

【0016】例えば、主蒸気管12の破断時に、原子炉
圧力容器2内の冷却材が減少するため炉心1を冷却する
必要がある。そこで、重力により冷却水を注水する重力
落下式冷却水プール13があるが、この場合、プールの
容量を大きくしないと長期間の冷却に適さないという問
題があった。しかし、本実施例のように自動減圧系から
の蒸気によりインジェクタ8を駆動させ、インジェクタ
8で圧力抑制プール5の水を駆動させ重力落下式冷却水
プール13内に冷却水を注水することで炉心1の冷却が
継続的に行える。その結果、重力落下式冷却水プール1
3の容量を小さくでき、格納容器14の小型化が実現で
きる。
For example, when the main steam pipe 12 is broken, the amount of coolant in the reactor pressure vessel 2 decreases, so that the core 1 needs to be cooled. Therefore, there is a gravity-falling type cooling water pool 13 in which cooling water is poured by gravity, but in this case, there is a problem that it is not suitable for long-term cooling unless the capacity of the pool is increased. However, as in the present embodiment, the injector 8 is driven by the steam from the automatic depressurization system, the water of the pressure suppression pool 5 is driven by the injector 8 and the cooling water is injected into the gravity drop type cooling water pool 13, and thus the core is cooled. 1 can be continuously cooled. As a result, gravity-cooled cooling water pool 1
The capacity of the storage container 3 can be reduced, and the storage container 14 can be downsized.

【0017】図3を用いて本発明の第三の実施例を説明
する。
A third embodiment of the present invention will be described with reference to FIG.

【0018】本実施例を適用する原子炉格納容器は、図
1を用いて説明した実施例に炉心1より上方の位置でド
ライウェル3,重力落下式冷却水プール13及び圧力抑
制プール5と連結させた熱交換器15を内蔵した冷却水
プールを備えた構成で、本実施例の特徴となる構成要素
は、格納容器に図1の実施例あるいは図2の実施例を組
み合わせることである。
The reactor containment vessel to which this embodiment is applied is connected to the dry well 3, the gravity drop type cooling water pool 13 and the pressure suppression pool 5 at a position above the reactor core 1 in the embodiment described with reference to FIG. The cooling water pool having the built-in heat exchanger 15 is provided, and the characteristic component of this embodiment is that the storage container is combined with the embodiment of FIG. 1 or the embodiment of FIG.

【0019】冷却材喪失事故時等に、原子炉圧力容器2
から放出された蒸気は、自動減圧系の配管10を通り、
インジェクタ8に流入する。そして、インジェクタ8に
よって駆動される圧力抑制プール5の水が圧力容器2内
に注水される。それと同じく蒸気は、配管17から熱交
換器15内に導かれ凝縮して、配管19を通じて重力落
下式冷却水プール13内に放出され、重力落下式冷却水
プール13の作用により炉心1が冷却される。また、図
1の実施例等で説明したように、炉心1の冠水による冷
却が長期間行えるので、熱交換器15の受ける熱負荷を
小さくすることができ、熱交換器15の伝熱管本数等を
削減することができる。
In the event of a loss of coolant, etc., the reactor pressure vessel 2
The steam discharged from the pipe passes through the pipe 10 of the automatic depressurization system,
It flows into the injector 8. Then, the water in the pressure suppression pool 5 driven by the injector 8 is poured into the pressure vessel 2. Similarly, the steam is guided from the pipe 17 into the heat exchanger 15 and condensed, and is discharged into the gravity drop type cooling water pool 13 through the pipe 19, and the core 1 is cooled by the action of the gravity drop type cooling water pool 13. It Further, as described in the embodiment of FIG. 1 and the like, since the core 1 can be cooled by flooding for a long period of time, the heat load on the heat exchanger 15 can be reduced, and the number of heat transfer tubes of the heat exchanger 15 and the like can be reduced. Can be reduced.

【0020】図4を用いて本発明の第四の実施例を説明
する。
A fourth embodiment of the present invention will be described with reference to FIG.

【0021】本実施例を適用する原子炉格納容器は、図
1を用いて説明した実施例に格納容器壁が鋼製で圧力抑
制室4の外側で少なくとも圧力抑制プール5に対応する
範囲の壁に接して冷却水を内蔵した外周プール21を備
えた構成で、本実施例の特徴となる構成要素は、格納容
器に図1の実施例あるいは図2の実施例を組み合わせる
ことである。また、図1及び図3の格納容器に上記構成
要素を用いても問題はない。
In the reactor containment vessel to which this embodiment is applied, the wall of the containment vessel is made of steel in the embodiment described with reference to FIG. 1, and the wall of the area outside the pressure suppression chamber 4 corresponds to at least the pressure suppression pool 5. In the configuration provided with an outer peripheral pool 21 having a built-in cooling water in contact with, the characteristic component of this embodiment is that the storage container is combined with the embodiment of FIG. 1 or the embodiment of FIG. Further, there is no problem even if the above-mentioned components are used in the storage container shown in FIGS. 1 and 3.

【0022】この方法では、自動減圧系からの蒸気によ
りインジェクタ8を駆動させ、インジェクタ8により圧
力抑制プール5の水を駆動させ、冷却水は原子炉圧力容
器2内に流入する。そして、原子炉圧力容器2及び下部
ドライウェル3が満水となるが、圧力抑制プール5に戻
る冷却水は温水に近い状態である。しかし、格納容器2
0外に設けた外周プール21により圧力抑制プール5の
水は冷却され、崩壊熱の除去系にも適する。
In this method, the injector 8 is driven by the steam from the automatic depressurization system, the water in the pressure suppression pool 5 is driven by the injector 8, and the cooling water flows into the reactor pressure vessel 2. Then, although the reactor pressure vessel 2 and the lower dry well 3 are filled with water, the cooling water returning to the pressure suppression pool 5 is in a state close to warm water. However, containment 2
The water in the pressure suppression pool 5 is cooled by the outer peripheral pool 21 provided outside 0, and is suitable for a decay heat removal system.

【0023】図5を用いて本発明の第五の実施例を説明
する。
A fifth embodiment of the present invention will be described with reference to FIG.

【0024】本実施例を適用する原子炉格納容器は、図
1を用いて説明した実施例に図4の構成要素、図3の構
成要素の中の熱交換器15,重力落下式冷却水プール1
3及び外周プール21を組み合わせた構成で、本実施例
の特徴となる構成要素は、格納容器に図1の実施例ある
いは図2の実施例を組み合わせることである。また、図
1及び図3の格納容器に上記の構成要素を用いても問題
はない。
The reactor containment vessel to which this embodiment is applied is the same as the embodiment described with reference to FIG. 1 except that the components shown in FIG. 4 and the heat exchanger 15 in the components shown in FIG. 1
3 and the outer peripheral pool 21 are combined, and a characteristic component of this embodiment is that the storage container is combined with the embodiment of FIG. 1 or the embodiment of FIG. Further, there is no problem even if the above-mentioned components are used in the storage container shown in FIGS. 1 and 3.

【0025】この方法では、自動減圧系からの蒸気でイ
ンジェクタ8を駆動させることにより、長期的に炉心1
への冷却水の注水が行え、炉心1の上方に熱交換器15
を内蔵した冷却水プール16,重力により駆動する重力
落下式冷却水プール13,側面には冷却水を内蔵した外
周プール21が備え付けられているので、格納容器20
の冷却設備を軽減できる。また、炉心1上方の熱交換器
15を内蔵したプール16並びに重力落下式冷却水プー
ル13の容量を削減できるため、耐震性に適する。
According to this method, the injector 8 is driven by the steam from the automatic depressurization system, so that the reactor core 1 is long-term.
Cooling water can be injected into the heat exchanger 15 above the core 1.
Since a cooling water pool 16 having a built-in cooling water, a gravity-falling cooling water pool 13 driven by gravity, and an outer peripheral pool 21 having a built-in cooling water on its side surface are provided, the storage container 20 is provided.
The cooling equipment can be reduced. Further, since the capacity of the pool 16 having the heat exchanger 15 above the core 1 and the gravity-drop cooling water pool 13 can be reduced, it is suitable for earthquake resistance.

【0026】[0026]

【発明の効果】請求項1によれば、外部電源を使用せず
炉心及び格納容器を長期的に冷却することができる。
According to the first aspect of the present invention, the core and the containment vessel can be cooled for a long period of time without using an external power source.

【0027】請求項2によれば、重力落下式冷却水プー
ルの冷却作用を長期的に行え、炉心を冷却できる。
According to the second aspect, the cooling action of the gravity-drop type cooling water pool can be performed for a long time, and the core can be cooled.

【0028】請求項3によれば、圧力容器から放出され
た蒸気は、それぞれ熱交換器あるいは自動減圧系からイ
ンジェクタに流入するため、炉心を長期的に冷却でき、
崩壊熱をすばやく除去できる。
According to the third aspect, since the steam discharged from the pressure vessel flows into the injector from the heat exchanger or the automatic pressure reducing system, respectively, the core can be cooled for a long period of time.
Decay heat can be removed quickly.

【0029】請求項4によれば、格納容器内の単純な構
成により炉心を長期的に冷却できる。
According to the fourth aspect, the core can be cooled for a long period of time with a simple structure in the containment vessel.

【0030】請求項5によれば、外部からの冷却が行え
るため確実に格納容器内の圧力上昇の防止ができ、炉心
を長期的に冠水し冷却できる。
According to the fifth aspect, since the cooling can be performed from the outside, the pressure increase in the containment vessel can be surely prevented, and the core can be flooded and cooled for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による原子炉格納容器の縦断
面図。
FIG. 1 is a vertical cross-sectional view of a reactor containment vessel according to an embodiment of the present invention.

【図2】本発明の第二の実施例による原子炉格納容器の
縦断面図。
FIG. 2 is a vertical sectional view of a reactor containment vessel according to a second embodiment of the present invention.

【図3】本発明の第三の実施例による原子炉格納容器の
縦断面図。
FIG. 3 is a vertical sectional view of a reactor containment vessel according to a third embodiment of the present invention.

【図4】本発明の第四の実施例による原子炉格納容器の
縦断面図。
FIG. 4 is a vertical sectional view of a reactor containment vessel according to a fourth embodiment of the present invention.

【図5】本発明の第五の実施例による原子炉格納容器の
縦断面図。
FIG. 5 is a vertical sectional view of a reactor containment vessel according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…炉心、2…原子炉圧力容器、3…ドライウェル、4
…圧力抑制室、5…圧力抑制プール、6…ウェットウェ
ル、7…ベント管、8…インジェクタ、9,10,11
…配管、12…主蒸気管、13…重力落下式冷却水プー
ル、14…コンクリート製格納容器。
1 ... Reactor core, 2 ... Reactor pressure vessel, 3 ... Dry well, 4
... Pressure suppression chamber, 5 ... Pressure suppression pool, 6 ... Wet well, 7 ... Vent pipe, 8 ... Injector, 9, 10, 11
... Piping, 12 ... Main steam pipe, 13 ... Gravity drop type cooling water pool, 14 ... Concrete containment vessel.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】炉心を内包する原子炉圧力容器と、前記原
子炉圧力容器を格納するドライウェルと、圧力抑制プー
ルを有する圧力抑制室と、前記ドライウェルと前記圧力
抑制プールを連結するベント管を有する原子炉格納容器
において、前記ドライウェル内に自動減圧系からの蒸気
で駆動するインジェクタを配置し、前記インジェクタに
より前記圧力抑制プール内の水が駆動され、前記プール
水を前記圧力容器内に注水することを特徴とする原子炉
冷却設備。
1. A reactor pressure vessel containing a reactor core, a dry well for storing the reactor pressure vessel, a pressure suppression chamber having a pressure suppression pool, and a vent pipe connecting the dry well and the pressure suppression pool. In a reactor containment vessel having, an injector driven by steam from an automatic depressurization system is arranged in the dry well, water in the pressure suppression pool is driven by the injector, and the pool water is placed in the pressure container. Reactor cooling facility characterized by water injection.
【請求項2】請求項1において、前記ドライウェル内に
自動減圧系からの蒸気で駆動する前記インジェクタ及び
重力落下式冷却水プールを配置し、前記インジェクタに
より前記圧力抑制プール水が駆動され、前記プール水を
重力落下式冷却水プール内に注水する原子炉冷却設備。
2. The injector according to claim 1, wherein the injector driven by steam from an automatic depressurization system and a gravity drop type cooling water pool are arranged in the dry well, and the pressure suppression pool water is driven by the injector, A reactor cooling facility that injects pool water into the gravity-drop cooling water pool.
【請求項3】請求項1または2において、前記炉心より
上方の位置の冷却水プール中に、前記ドライウェル,重
力落下式冷却水プール及び前記圧力抑制プールとのみ結
合される熱交換器を配置する原子炉冷却設備。
3. The heat exchanger according to claim 1, wherein a heat exchanger that is connected only to the dry well, the gravity drop type cooling water pool, and the pressure suppression pool is arranged in the cooling water pool located above the core. Reactor cooling equipment to do.
【請求項4】請求項1,2または3において、前記格納
容器の材質がコンクリート製である原子炉冷却設備。
4. The reactor cooling equipment according to claim 1, 2 or 3, wherein the material of the containment vessel is concrete.
【請求項5】請求項1,2または3において、前記格納
容器の材質が鋼製であり、前記格納容器の壁外に圧力抑
制プールの高さに対応する冷却水を内蔵した外周プール
を設けた原子炉冷却設備。
5. The outer containment pool according to claim 1, wherein the material of said containment vessel is steel, and a cooling water corresponding to the height of the pressure suppression pool is built in outside the wall of said containment vessel. Reactor cooling equipment.
JP5304970A 1993-12-06 1993-12-06 Atomic reactor cooling facility Pending JPH07159581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5304970A JPH07159581A (en) 1993-12-06 1993-12-06 Atomic reactor cooling facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5304970A JPH07159581A (en) 1993-12-06 1993-12-06 Atomic reactor cooling facility

Publications (1)

Publication Number Publication Date
JPH07159581A true JPH07159581A (en) 1995-06-23

Family

ID=17939507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5304970A Pending JPH07159581A (en) 1993-12-06 1993-12-06 Atomic reactor cooling facility

Country Status (1)

Country Link
JP (1) JPH07159581A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893598B1 (en) * 2007-06-22 2009-04-20 경희대학교 산학협력단 Ex-Vessel Cooling System for In-Vessel Retention of Pressurized Water Reactor
JP2013195428A (en) * 2012-03-21 2013-09-30 Ge-Hitachi Nuclear Energy Americas Llc Low pressure reactor safety systems and methods
JP2015031684A (en) * 2013-08-07 2015-02-16 株式会社東芝 Nuclear power plant
WO2022252359A1 (en) * 2021-05-31 2022-12-08 上海核工程研究设计院有限公司 Novel automatic depressurizing system and method for nuclear power plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893598B1 (en) * 2007-06-22 2009-04-20 경희대학교 산학협력단 Ex-Vessel Cooling System for In-Vessel Retention of Pressurized Water Reactor
JP2013195428A (en) * 2012-03-21 2013-09-30 Ge-Hitachi Nuclear Energy Americas Llc Low pressure reactor safety systems and methods
US9460818B2 (en) 2012-03-21 2016-10-04 Ge-Hitachi Nuclear Energy Americas Llc Low pressure reactor safety systems and methods
JP2015031684A (en) * 2013-08-07 2015-02-16 株式会社東芝 Nuclear power plant
WO2022252359A1 (en) * 2021-05-31 2022-12-08 上海核工程研究设计院有限公司 Novel automatic depressurizing system and method for nuclear power plant

Similar Documents

Publication Publication Date Title
JP6277322B2 (en) PCV cooling system, and PCV / reactor pressure vessel joint cooling system
US7983376B2 (en) Boiling water nuclear reactor and emergency core cooling system of the same
JP2507694B2 (en) Nuclear reactor equipment
US8559583B1 (en) Passive cooling and depressurization system and pressurized water nuclear power plant
US7526057B2 (en) Decay heat removal system for liquid metal reactor
KR100813939B1 (en) Passive type emergency core cooling system for an integral reactor with a safeguard vessel
JPS62187291A (en) Passive safety device for nuclear reactor
KR100419194B1 (en) Emergency Core Cooling System Consists of Reactor Safeguard Vessel and Accumulator
US5295169A (en) Reactor containment facilities
US5091143A (en) Natural circulation reactor
US20040240601A1 (en) Forced cooling circular deep & minus; water pond type heat supply nuclear reactor with natural circulation
KR101559017B1 (en) Inherent-safety Reactor after nuclear decay and operating method for the reactor
CA1070860A (en) Power reducing pool water for a nuclear reactor
JPH07159581A (en) Atomic reactor cooling facility
JP2934341B2 (en) Reactor containment cooling system
US4812286A (en) Shroud tank and fill pipe for a boiling water nuclear reactor
JP2899979B2 (en) High temperature gas furnace
JPS6375691A (en) Natural circulation type reactor
JPH04157396A (en) Natural cooling type container
KR100306123B1 (en) Core makeup tanks with pressure-balancing lines connected to a pressurizer
JP3028842B2 (en) Reactor containment vessel
JPH04258794A (en) Pressure accumulator injection tank for nuclear reactor emergency cooling water feeder
JPH0511593B2 (en)
JPH0694881A (en) Emergency cooling system for atomic reactor
JPH0658417B2 (en) Overpressure prevention device for reactor using heavy water as moderator