JPH0715844A - Particle behavior control method - Google Patents

Particle behavior control method

Info

Publication number
JPH0715844A
JPH0715844A JP14328993A JP14328993A JPH0715844A JP H0715844 A JPH0715844 A JP H0715844A JP 14328993 A JP14328993 A JP 14328993A JP 14328993 A JP14328993 A JP 14328993A JP H0715844 A JPH0715844 A JP H0715844A
Authority
JP
Japan
Prior art keywords
particle
particles
behavior control
electric field
particle behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14328993A
Other languages
Japanese (ja)
Inventor
Yasumoto Hirose
靖元 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14328993A priority Critical patent/JPH0715844A/en
Publication of JPH0715844A publication Critical patent/JPH0715844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Installation Of Bus-Bars (AREA)

Abstract

PURPOSE:To enhance the dielectric performance of a gas insulated machine by applying a positive, negative, or a pulsating voltage to a particle behavior control electrode in metallic enclosure of gas insulated machine, in which an ionization retardant gas is present, thereby controlling the behavior of particles. CONSTITUTION:A cylindrical high voltage central conductor 11 for conducting power is supported by an insulator in the center of a grounded cylindrical metal tank 10. Recessed particle traps 20 are provided at one or a plurality of points on the inner surface of the grounded tank 10. A particle collecting electrode 1 is placed in the particle trap 20. The electrode 1 is externally applied with a positive, a negative, or a pulsating voltage. Floating particles 4 induced with positive charges are repelled by the positive potential and attracted to the negative potential. Consequently, the behavior of the particles 4 is controlled and the dielectric deterioration of a gas insulated machine can be prevented through a simple structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス絶縁を用いた電力
送変電機器のパーティクル挙動制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle behavior control method for power transmission and transformation equipment using gas insulation.

【0002】[0002]

【従来の技術】送変電用のガス絶縁機器の絶縁上の大き
な問題点は、機器内部に混入した導電性パーティクルに
よる絶縁性能の低下である。
2. Description of the Related Art A major problem in insulation of gas-insulated equipment for power transmission and transformation is deterioration of insulation performance due to conductive particles mixed inside the equipment.

【0003】これを対策するため、特開昭62−37011 号
公報などの様に底面に傾斜を設けてパーティクルを誘導
したり、低電界部を作ってそこへ飛び込んだパーティク
ルの挙動を抑制したり、凹部を機器内部に作りそこへパ
ーティクルを落とす事によりパーティクルを捕獲してい
た。
In order to prevent this, a particle is introduced by inclining the bottom surface as in Japanese Patent Laid-Open No. 62-37011, or a low electric field portion is formed to suppress the behavior of the particle jumping into it. The particles were captured by making a recess inside the device and dropping the particles there.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの手法
はパーティクルの挙動の偶然性に頼ったパーティクル挙
動制御方法であり、気体空間内を飛行しているパーティ
クルには効果が薄く不十分であった。
However, these methods are particle behavior control methods relying on the randomness of the behavior of particles, and the effect on particles flying in a gas space is thin and insufficient.

【0005】本発明の目的は、従来技術では効果が薄か
った気体空間内を飛行しているパーティクルの挙動を制
御することにある。
An object of the present invention is to control the behavior of particles flying in a gas space, which has been less effective in the prior art.

【0006】[0006]

【課題を解決するための手段】パーティクルにある程度
以上の電界がかかると、パーティクルが正に帯電する事
に着目し、パーティクル挙動制御用電極に直流電圧をか
ける事により直流電界を発生させ、強電界により正に帯
電しているパーティクルの挙動を制御する方法を考案し
た。
[Means for Solving the Problems] Paying attention to the fact that particles are positively charged when an electric field exceeding a certain level is applied to particles, and a DC electric field is generated by applying a DC voltage to a particle behavior control electrode to generate a strong electric field. We devised a method to control the behavior of positively charged particles.

【0007】第一の方法はパーティクル挙動制御用電極
に直流電圧をかける事により直流電界を生成し、強電界
により正に帯電したパーティクルをその負電極部分に集
める方法である。
The first method is to generate a DC electric field by applying a DC voltage to the particle behavior control electrode, and collect the particles positively charged by the strong electric field in the negative electrode portion.

【0008】第二の方法はパーティクル挙動制御用電極
に直流電圧をかける事により直流電界を生成し、強電界
により正に帯電したパーティクルをその正電極部分から
遠ざける方法である。
The second method is a method in which a DC electric field is generated by applying a DC voltage to the particle behavior control electrode, and the particles positively charged by the strong electric field are moved away from the positive electrode portion.

【0009】これらの方法を用いる事により、空間内を
飛行しているパーティクルの挙動を制御する事が可能に
なる。
By using these methods, it is possible to control the behavior of particles flying in space.

【0010】[0010]

【作用】電気学会技術報告(II部)第397号『ガス絶
縁開閉装置の直流絶縁』(1991年12月)の11頁に記
載されているように直流電界下のパーティクルの挙動
は、電界強度により次の三種類に分けられる。すなわ
ち、電極間の往復運動、負電極上における振動運
動、ギャップ中の浮遊。
[Function] As described on page 11 of Technical Report of the Institute of Electrical Engineers of Japan (Part II) No. 397 "DC insulation of gas-insulated switchgear" (December 1991), the behavior of particles under a DC electric field depends on the electric field strength. It is divided into the following three types. That is, reciprocating motion between the electrodes, oscillatory motion on the negative electrode, and floating in the gap.

【0011】この挙動は次の様に解釈される。強電界が
かかる難電離性気体空間中に導電性パーティクルが存在
した場合、パーティクルの端部に電荷が集中して部分放
電が発生する。ここで、負の電荷が集中する部分では電
子が放出され、正の電荷が集中する部分では外部から電
子を受け取ることになる。しかし、パーティクルは周囲
を難電離性気体で囲まれているため、正電荷部分におけ
る外部からの電子の供給は、負電荷部分における電子の
放出に追いつかなくなる。よって、パーティクルは正に
帯電する事になる。
This behavior is interpreted as follows. When conductive particles are present in the space of the hardly-ionizing gas to which a strong electric field is applied, electric charges are concentrated at the ends of the particles and partial discharge occurs. Here, electrons are emitted in the portion where the negative charges are concentrated, and electrons are received from the outside in the portion where the positive charges are concentrated. However, since the particles are surrounded by the hardly ionized gas, the supply of electrons from the outside in the positive charge portion cannot catch up with the emission of electrons in the negative charge portion. Therefore, the particles are positively charged.

【0012】上記のはパーティクルの正電荷部分や負
電荷部分における放電が起こらず、電極からパーティク
ルが電荷を受けて挙動している状態、は負電荷部分だ
けから放電が起こりパーティクルが正に帯電して挙動し
ている状態、は負電荷部分から放電が起こるだけでは
なく、正電荷部分でも外部気体の電離が起こりパーティ
クルが弱く正に帯電して挙動している状態に対応してい
ると考えられる。
In the above-mentioned state where discharge is not generated in the positively-charged portion or negative-charged portion of the particle and the particle behaves by receiving electric charge from the electrode, in the above-mentioned state, discharge is generated only from the negative-charged portion and the particle is positively charged. It is thought that the state in which the particles behave in this manner corresponds to the state in which not only the discharge from the negatively charged portion but also the ionization of the external gas occurs at the positively charged portion and the particles are weakly positively charged and behaving. .

【0013】パーティクルにある程度以上の強度の電界
がかかると、その電界が交流電界,直流電界、何れの場
合でもパーティクルが正に帯電する事に着目すると、直
流または脈流電圧をパーティクル挙動制御用電極に印加
して直流的電界を形成することにより、パーティクルの
挙動を制御する事が出来る。
Focusing on the fact that when an electric field of a certain level or more is applied to a particle, the electric field is an AC electric field or a DC electric field, the particle is positively charged. DC or pulsating voltage is applied to the particle behavior control electrode. The behavior of the particles can be controlled by applying a DC electric field to the particles to form a DC electric field.

【0014】[0014]

【実施例】図1は本発明の一実施例を示したものであ
る。ガス絶縁母線のパーティクルトラップによるパーテ
ィクルの収集に対し、本発明を適用したものである。円
筒状の接地タンク10,通電用の円筒状中心導体11,
凹型パーティクルトラップ20を備えたガス絶縁母線の
凹型パーティクルトラップ20の中央部にパーティクル
収集用電極1を設置し、外部直流電源3によりパーティ
クル収集用電極1に負電圧を印加する事により直流電界
を生成して、円筒状中心導体11が作る高電界により正
に帯電したパーティクル4を集め、凹型パーティクルト
ラップ20にパーティクル4を収集する事が出来る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention. The present invention is applied to the collection of particles by a particle trap of a gas insulated busbar. A cylindrical grounding tank 10, a cylindrical central conductor 11 for energization,
A particle collecting electrode 1 is installed in the center of the concave particle trap 20 of the gas-insulated bus bar having the concave particle trap 20, and a DC voltage is generated by applying a negative voltage to the particle collecting electrode 1 by an external DC power supply 3. Then, the particles 4 positively charged by the high electric field generated by the cylindrical central conductor 11 can be collected, and the particles 4 can be collected in the concave particle trap 20.

【0015】図2は本発明の第二の実施例を示したもの
である。ガス絶縁母線の絶縁スペーサに対するパーティ
クル付着防止に、本発明を適用したものである。円筒状
の接地タンク10,通電用の円筒状中心導体11,絶縁
スペーサ21を備えたガス絶縁母線の絶縁スペーサ21
の周辺部にパーティクル排除用電極2を設置し、外部直
流電源3によりパーティクル排除用電極2に正電圧を印
加する事により直流電界を生成して、円筒状中心導体1
1が作る高電界により正に帯電したパーティクル4を排
除し、絶縁スペーサ21に対するパーティクル4の付着
を防ぐ事が出来る。
FIG. 2 shows a second embodiment of the present invention. The present invention is applied to prevent particles from adhering to the insulating spacer of the gas insulated busbar. Insulation spacer 21 of gas-insulated busbar, which includes a cylindrical ground tank 10, a cylindrical center conductor 11 for energization, and an insulation spacer 21.
A particle exclusion electrode 2 is installed in the peripheral portion of the electrode, and a DC electric field is generated by applying a positive voltage to the particle exclusion electrode 2 by an external DC power source 3 to generate a cylindrical central conductor 1.
The high electric field generated by 1 can remove the positively charged particles 4 and prevent the particles 4 from adhering to the insulating spacer 21.

【0016】図3は図2の実施例において、パーティク
ル排除用電極2を絶縁スペーサ21の内部に設置した実
施例である。絶縁スペーサ21に対するパーティクル4
の付着を防ぐ事が出来る。
FIG. 3 shows an embodiment in which the particle exclusion electrode 2 is installed inside the insulating spacer 21 in the embodiment of FIG. Particle 4 for insulating spacer 21
It is possible to prevent the adhesion of.

【0017】図4は図1と図2の実施例を組み合わせた
第四の実施例である。ガス絶縁母線のパーティクルトラ
ップによるパーティクルの収集と絶縁スペーサに対する
パーティクル付着防止に、本発明を適用したものであ
る。円筒状の接地タンク10,通電用の円筒状中心導体
11,凹型パーティクルトラップ20,絶縁スペーサ2
1を備えたガス絶縁母線の凹型パーティクルトラップ2
0の中央部にパーティクル収集用電極1を設置し、絶縁
スペーサ21の周辺部にパーティクル排除用電極2を設
置し、外部直流電源3によりパーティクル収集用電極1
に負電圧,パーティクル排除用電極2に正電圧を印加す
る事により、凹型パーティクルトラップ20にパーティ
クル4を収集し、絶縁スペーサ21に対するパーティク
ル4の付着を防ぐ事が出来る。
FIG. 4 shows a fourth embodiment in which the embodiments of FIGS. 1 and 2 are combined. The present invention is applied to the collection of particles by the particle trap of the gas-insulated bus bar and the prevention of particle adhesion to the insulating spacer. Cylindrical ground tank 10, energizing cylindrical center conductor 11, concave particle trap 20, insulating spacer 2
Gas insulated busbar concave particle trap 2 with 1
The particle collecting electrode 1 is installed in the central part of 0, the particle removing electrode 2 is installed in the peripheral part of the insulating spacer 21, and the particle collecting electrode 1 is installed by the external DC power supply 3.
By applying a negative voltage and a positive voltage to the particle exclusion electrode 2, it is possible to collect the particles 4 in the concave particle trap 20 and prevent the particles 4 from adhering to the insulating spacer 21.

【0018】図5は直流電圧をパーティクル挙動制御用
電極に印加するのではなく、時間平均として直流成分が
残る脈流電圧を印加する第五の実施例である。時間平均
として直流成分が残る脈流電圧を印加すれば、直流電圧
を印加した時と同様の効果を得ることが出来る。
FIG. 5 shows a fifth embodiment in which a DC voltage is not applied to the particle behavior control electrode, but a pulsating voltage in which a DC component remains as a time average is applied. By applying a pulsating voltage in which a DC component remains as a time average, the same effect as when a DC voltage is applied can be obtained.

【0019】図6はパーティクル挙動制御用電極に印加
する電圧を外部から供給せずに、強電界から直流または
脈流電圧を生成する電圧生成装置30により供給する第
六の実施例である。これにより外部から電圧を供給する
必要が無くなる。
FIG. 6 shows a sixth embodiment in which the voltage applied to the particle behavior control electrode is not supplied from the outside but is supplied by a voltage generator 30 which generates a DC or pulsating voltage from a strong electric field. This eliminates the need to supply a voltage from the outside.

【0020】図7は整流器を用いて強電界によりパーテ
ィクル挙動制御用電極に誘起される電圧を保持する事に
より、直流電界を生成する第七の実施例である。簡単な
構成によりパーティクルの挙動が制御出来る。
FIG. 7 shows a seventh embodiment in which a DC electric field is generated by holding a voltage induced in a particle behavior control electrode by a strong electric field using a rectifier. The behavior of particles can be controlled with a simple configuration.

【0021】図8は電圧生成装置30の一部分を外部か
ら保守出来る位置に設置する事により保守を容易にする
第八の実施例である。ガス絶縁機器などは、密閉性が高
く容易に開閉出来ない構造であるので、装置の一部分を
外部から保守出来る位置に設置すれば電気部品等を外部
から容易に保守出来るようになる。
FIG. 8 shows an eighth embodiment for facilitating maintenance by installing a part of the voltage generator 30 at a position where maintenance can be performed from the outside. Since the gas-insulated equipment has a structure that is highly airtight and cannot be opened and closed easily, if a part of the device is installed at a position where maintenance can be performed from the outside, electrical parts and the like can be easily maintained from the outside.

【0022】図9は以上のようなパーティクル挙動制御
装置とパーティクル検出装置31を組み合わせてパーテ
ィクル検出時に動作する様にした第九の実施例である。
パーティクルが検出された時にだけ動作させることが出
来る。
FIG. 9 shows a ninth embodiment in which the particle behavior control device and the particle detection device 31 as described above are combined to operate during particle detection.
It can only be activated when particles are detected.

【0023】[0023]

【発明の効果】本発明により、強電界がかかる装置内に
おいて飛行するパーティクルの挙動を制御する事が可能
になる。本発明をガス絶縁機器に適用すれば、絶縁信頼
性の高いガス絶縁機器を製作することが出来る。
According to the present invention, it is possible to control the behavior of particles flying in a device to which a strong electric field is applied. By applying the present invention to a gas insulation device, a gas insulation device with high insulation reliability can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明の第二の実施例を示す断面図。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】本発明の第三の実施例を示す断面図。FIG. 3 is a sectional view showing a third embodiment of the present invention.

【図4】本発明の第四の実施例を示す断面図。FIG. 4 is a sectional view showing a fourth embodiment of the present invention.

【図5】本発明の第五の実施例を示す断面図。FIG. 5 is a sectional view showing a fifth embodiment of the present invention.

【図6】本発明の第六の実施例を示す断面図。FIG. 6 is a sectional view showing a sixth embodiment of the present invention.

【図7】本発明の第七の実施例を示す断面図。FIG. 7 is a sectional view showing a seventh embodiment of the present invention.

【図8】本発明の第八の実施例を示す断面図。FIG. 8 is a sectional view showing an eighth embodiment of the present invention.

【図9】本発明の第九の実施例を示す断面図。FIG. 9 is a sectional view showing a ninth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…パーティクル収集用電極、3…外部直流電源、4…
パーティクル、10…円筒状の接地タンク、11…通電
用の円筒状中心導体、20…凹型パーティクルトラッ
プ。
1 ... Electrode for collecting particles, 3 ... External DC power supply, 4 ...
Particles, 10 ... Cylindrical grounding tank, 11 ... Cylindrical center conductor for energization, 20 ... Recessed particle trap.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ガス絶縁機器など、難電離性気体が存在す
る空間へ強電界がかかる機器において、パーティクル挙
動制御用電極を設置し、負の直流電圧を印加する事によ
り空間内に直流電界を作り、導電性パーティクルを負電
極側へ集めることを特徴とするパーティクル挙動制御方
法。
1. A device for applying a strong electric field to a space in which a gas having a poor ionization property exists, such as a gas-insulated device, is provided with a particle behavior control electrode, and a negative DC voltage is applied to generate a DC electric field in the space. A method for controlling particle behavior, characterized in that conductive particles are collected on the negative electrode side.
【請求項2】ガス絶縁機器など、難電離性気体が存在す
る空間へ強電界がかかる機器において、パーティクル挙
動制御用電極を設置し、正の直流電圧を印加する事によ
り空間内に直流電界を作り、導電性パーティクルを正電
極側から遠ざけることを特徴とするパーティクル挙動制
御方法。
2. An apparatus for applying a strong electric field to a space where a gas having a low ionization property is present, such as a gas-insulated apparatus, is provided with a particle behavior control electrode and a positive DC voltage is applied to generate a DC electric field in the space. A method of controlling particle behavior, characterized in that the conductive particles are made away from the positive electrode side.
【請求項3】請求項1または2を組み合わせて用いるパ
ーティクル挙動制御方法。
3. A particle behavior control method using a combination of claim 1 and claim 2.
【請求項4】請求項1,2または3において、直流電圧
の代わりに脈流電圧を用いるパーティクル挙動制御方
法。
4. The particle behavior control method according to claim 1, wherein the pulsating current voltage is used instead of the DC voltage.
【請求項5】請求項1,2,3または4において、機器
より与えられる強電界から、電圧を作り出して動作する
パーティクル挙動制御方法。
5. The particle behavior control method according to claim 1, 2, 3 or 4, which operates by generating a voltage from a strong electric field provided by a device.
【請求項6】請求項5において、該装置の部品の一部を
外部から保守出来る場所へ設置して保守を容易にしたパ
ーティクル挙動制御方法。
6. The particle behavior control method according to claim 5, wherein a part of the parts of the apparatus is installed in a place where maintenance can be performed from the outside to facilitate maintenance.
【請求項7】請求項1,2,3,4,5または6におい
て、パーティクル検出装置と組み合わせてパーティクル
検出時に動作する様にしたパーティクル挙動制御方法。
7. A particle behavior control method according to claim 1, 2, 3, 4, 5 or 6, wherein the particle behavior control method is operated in combination with a particle detection device so as to operate at the time of particle detection.
JP14328993A 1993-06-15 1993-06-15 Particle behavior control method Pending JPH0715844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14328993A JPH0715844A (en) 1993-06-15 1993-06-15 Particle behavior control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14328993A JPH0715844A (en) 1993-06-15 1993-06-15 Particle behavior control method

Publications (1)

Publication Number Publication Date
JPH0715844A true JPH0715844A (en) 1995-01-17

Family

ID=15335271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14328993A Pending JPH0715844A (en) 1993-06-15 1993-06-15 Particle behavior control method

Country Status (1)

Country Link
JP (1) JPH0715844A (en)

Similar Documents

Publication Publication Date Title
US6063168A (en) Electrostatic precipitator
KR100940082B1 (en) Electrostatic separation method and electrostatic separator
KR101431860B1 (en) Prevention of emitter contamination with electronic waveforms
CA2496381A1 (en) Grid type electrostatic separator/collector and method of using same
EP0713562B1 (en) Electronic purification of exhaust gases
KR900001481B1 (en) Gas-insulated electrical apparatus
JPH0715844A (en) Particle behavior control method
EP4084243A1 (en) Electrostatic precipitator
JPS59145314A (en) Diesel particulate collector
KR0184228B1 (en) Deodorizing apparatus of electrostatic collector
JPH08252482A (en) Method for electric dust collection and apparatus therefor
KR100206774B1 (en) Electrostatic precipitator
US4177046A (en) AC type dust collecting apparatus
SU1743015A1 (en) Method of electric charge removal from space vehicles
JP6666599B2 (en) Substrate processing equipment
CN210273141U (en) Switch board with destatic function
JP3333382B2 (en) Earth circuit and negative ion generator
JPS6342753A (en) Electrifying method for material and device therefor
CN1019553B (en) Device for power supply of gas-cleaning electrical precipitators
US20200295677A1 (en) Power Receiver Including Faraday Cage for Extracting Power from Electric Field Energy in the Earth
SU1126327A1 (en) Method of removing dust from electrostatic precipitator electrodes
CN114918041A (en) Air purifier
JPS6362851B2 (en)
Malik et al. Effect of dust on discharges in rod‐rod air gaps in the presence of parallel insulating spacer
WO2002092233A1 (en) Device by gas cleaning