JPH07155859A - Impact pressure generating method and device by detonation - Google Patents

Impact pressure generating method and device by detonation

Info

Publication number
JPH07155859A
JPH07155859A JP5323448A JP32344893A JPH07155859A JP H07155859 A JPH07155859 A JP H07155859A JP 5323448 A JP5323448 A JP 5323448A JP 32344893 A JP32344893 A JP 32344893A JP H07155859 A JPH07155859 A JP H07155859A
Authority
JP
Japan
Prior art keywords
pressure
chamber
combustion chamber
reflector
pressure medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5323448A
Other languages
Japanese (ja)
Inventor
Mochimasa Yamaguchi
以昌 山口
Minoru Suzuki
実 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5323448A priority Critical patent/JPH07155859A/en
Publication of JPH07155859A publication Critical patent/JPH07155859A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/001Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by explosive charges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Press Drives And Press Lines (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To obtain a pressure distribution meeting the working ratios of respective parts of members to be worked, and to reduce the size of a device by arranging a reflector of impact waves in liquid or elastic material to regulate the ultimate liquid pressure or elastic pressure distribution. CONSTITUTION:Plate materials P to be molded are set in a metal mold 16 and the space between the metal mold 16 and the plate materials P is so sucked by a vacuum pump device that a prescribed vacuum degree is attained. After a combustion gas of nearly a theoretical mixing ratio is filled in a combustion chamber 1, an ignition plug 5 is actuated by an ignition device 6. Detonation is generated by ignition in an ignition chamber 4 and the flames thereof are propagated to the top end 1A of the combustion chamber 1. The flames progress from the top end 1A to the bottom end 1B in the combustion chamber 1 and the pressure thereof rises extremely high at the bottom end 1B. An exchangeable nozzle 12' is set in the aperture of the bottom end IB and the high pressure is propagated into the pressure medium G. The high pressure propagates as impact waves into the pressure medium G and is reflected by the reflector R in a pressure medium chamber 12. The reflected pressure arrives as the pressure distributed in various intensities at a molding device 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、材料加工・材料合成、
焼結、食品加工等の分野において、簡便かつ効率よく所
望の到達圧力分布及び加圧範囲設定機能を有する爆轟に
よる衝撃高圧を得るための方法およびそのための装置に
関するものである。
The present invention relates to material processing / material synthesis,
The present invention relates to a method for obtaining an impact high pressure due to a detonation, which has a desired ultimate pressure distribution and a desired pressure range setting function in a field such as sintering and food processing, and an apparatus therefor.

【0002】[0002]

【従来の技術】本発明が対象とする技術に比較的近い衝
撃高圧発生法として衝撃液圧発生技術が知られている。
例えば、加圧用の水等の液体中に弾丸を打ち込んで液体
中に衝撃液圧を発生させ、その圧力を板材等の部材に印
加して該部材を金型へ圧して三次元成形せんとする特開
平01−157725号にて提案されているような衝撃
液圧発生装置、水中で爆薬を燃焼させることによって衝
撃水圧を発生せしめ、その圧力で薄板の三次元成形を行
う成形装置、さらには、容器に収容された加圧用の液体
の液面に、ガス圧等により高速に加速されたピストンを
衝突させることにより衝撃液圧を発生させることとした
装置がある。
2. Description of the Related Art An impact hydraulic pressure generation technique is known as an impact high pressure generation method that is relatively close to the technique targeted by the present invention.
For example, a bullet is driven into a liquid such as water for pressurization to generate impact hydraulic pressure in the liquid, the pressure is applied to a member such as a plate material, and the member is pressed into a mold to form a three-dimensional molding. Japanese Patent Laid-Open No. 01-157725 discloses an impact hydraulic pressure generating device, an impact hydraulic pressure generated by burning explosives in water, and a molding device for three-dimensionally molding a thin plate by the pressure, and There is a device in which an impact hydraulic pressure is generated by causing a piston accelerated at high speed by gas pressure or the like to collide with the liquid surface of a pressurizing liquid contained in a container.

【0003】しかしながら、これらの装置にあっては、
液圧室の形状または寸法はエネルギー源(爆薬,高速飛
翔体)の挙動を考慮して決定する必要があり、自由度が
かなり小さいこと、圧力の持続時間が長く、かつ液圧室
内の比較的広い範囲にわたって同時に衝撃圧力が加わる
こと、危険性を伴うために、設置場所の制約または安全
性の配慮が必要であること、等の共通の問題の他、さら
には固有の問題をもかかえている。
However, in these devices,
The shape or size of the hydraulic chamber must be determined in consideration of the behavior of the energy source (explosive, high-speed projectile), the degree of freedom is considerably small, the pressure duration is long, and In addition to common problems such as simultaneous application of impact pressure over a wide range, risk of installation, restrictions on installation location or consideration of safety, etc., there are also unique problems. .

【0004】そこで、これらの問題を解決するものとし
て、出願人は特開平04−351299に開示されてい
る爆轟液圧発生方法及び装置を提案した。
In order to solve these problems, the applicant has proposed a detonation hydraulic pressure generating method and apparatus disclosed in JP-A-04-351299.

【0005】この装置にあっては、燃焼室は逆円錐状を
なしていて火炎の進行につれて断面積が一端部から次第
に小さくなるように設定され、他端部では最小断面積を
もつ収束部が形成され、他端部の開口に、液圧室の液面
が臨んでいる。燃焼室内の火炎は進行と共に該燃焼室の
断面積が小さくなるので圧力が上昇し、他端部ではきわ
めて高い圧力となる。この高圧は液圧室内の液体の液圧
に変換される。そして液圧室に型を有する加工室を設
け、該型の上に板材等の被加工部材を配することとすれ
ば、上記液圧によって型に沿った所定形状に加工を行う
ことができる。また、上記液圧室は液体に代えてゴム状
の弾性体を有する弾圧室とすることもできる。
In this apparatus, the combustion chamber has an inverted conical shape, and the cross-sectional area is set to gradually decrease from one end as the flame progresses, and the other end has a converging portion having a minimum cross-sectional area. The liquid surface of the hydraulic chamber faces the opening formed at the other end. As the flame in the combustion chamber progresses, the cross-sectional area of the combustion chamber becomes smaller, so the pressure rises, and the pressure at the other end becomes extremely high. This high pressure is converted into the hydraulic pressure of the liquid in the hydraulic chamber. If a processing chamber having a mold is provided in the hydraulic chamber and a member to be processed such as a plate material is arranged on the mold, it is possible to perform processing into a predetermined shape along the mold by the hydraulic pressure. Further, the liquid pressure chamber may be an elastic pressure chamber having a rubber-like elastic body instead of the liquid.

【0006】[0006]

【発明が解決しようとする課題】上記爆轟液圧発生装置
では、液圧室は被加工部材の大きさに対応する受圧面積
を得るために上記収束部から受圧部に向け断面積が増大
する円錐状をなしている。また液圧室内を受圧部に向け
伝播される圧力波は上記液圧室の円錐内壁面に対し直角
をなすので球面波となる。したがって、上記受圧部にお
ける被加工部材には中央部に圧力が到達した後に周囲に
向け拡がるように圧力が作用する。そして、上記被加工
部材には、中央部で最高圧が得られ、外周部に近づくほ
ど圧力が単調に低下する(波の伝播距離が長くなるた
め)。
In the above detonation hydraulic pressure generator, the hydraulic chamber has an increased cross-sectional area from the converging portion toward the pressure receiving portion in order to obtain a pressure receiving area corresponding to the size of the member to be processed. It has a conical shape. Further, the pressure wave propagating toward the pressure receiving portion in the hydraulic chamber is a spherical wave because it is perpendicular to the inner wall surface of the cone of the hydraulic chamber. Therefore, the pressure acts on the member to be processed in the pressure receiving portion so that the pressure spreads toward the periphery after the pressure reaches the central portion. Then, the maximum pressure is obtained in the central part of the member to be processed, and the pressure monotonously decreases toward the outer peripheral part (because the wave propagation distance becomes long).

【0007】したがって、大きな被加工部材の一部を加
工したり、あるいは、加工度が被加工部材の部位により
変わる場合には上記爆轟液圧発生装置は不向きである。
この場合、最大加工度の部位に合わせて爆圧を定める
と、他の部位に不必要に過大な圧力を加えることとな
り、エネルギーの無駄となり、かつ過大な圧力が加わっ
た部位で割れが発生しやすい。
Therefore, the detonation hydraulic pressure generator is unsuitable when a part of a large workpiece is machined or when the degree of processing changes depending on the portion of the workpiece.
In this case, if the explosion pressure is determined according to the part with the maximum degree of processing, unnecessary pressure will be applied to other parts unnecessarily, energy will be wasted, and cracks will occur at parts where excessive pressure is applied. Cheap.

【0008】また、逆円錐状の燃焼室と円錐状の液圧室
を同一軸線上に連結する形をなすので、所定の大きさの
受圧部を得るには装置の上記軸線方向の寸法(通常、装
置の高さ)はきわめて大きくなってしまうという問題も
ある。
Further, since the inverse conical combustion chamber and the conical hydraulic chamber are connected to each other on the same axis, in order to obtain a pressure receiving portion of a predetermined size, the axial dimension of the device (usually There is also a problem that the height of the device becomes extremely large.

【0009】ところで、これらの問題点を解決する方法
の一つとして、圧媒室内に音響レンズを配設して衝撃波
を屈折させ、その伝播方向を制御することが考えられ
る。しかしこの方法は、比較的微小かつ複雑な制御には
適するものの、大幅な方向制御は困難である。
By the way, as one of the methods for solving these problems, it is possible to arrange an acoustic lens in the pressure medium chamber to refract the shock wave and control its propagation direction. However, although this method is suitable for relatively minute and complicated control, it is difficult to control the direction to a large extent.

【0010】本発明は、かかる従来装置の問題を解決
し、被加工部材の各部位の加工度に適合した圧力分布を
得られ、装置の小型化を図る爆轟による衝撃圧発生方法
及び装置を提供することを目的とする。
The present invention solves the problems of the conventional device and provides a method and an apparatus for generating an impact pressure by detonation, which is capable of obtaining a pressure distribution suitable for the degree of processing of each part of a member to be processed and downsizing the apparatus. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】本発明によれば、燃焼室
における収束デトネーションによる衝撃高圧を直接、も
しくは交換可能な膜体を介して流体又はゴム状の弾性体
に伝達して液圧又は弾圧に変換する衝撃圧発生方法にお
いて、液体又は弾性体内に衝撃波の反射体を配して到達
液圧又は弾圧分布を調整することにより達成される。
According to the present invention, the impact high pressure due to the convergent detonation in the combustion chamber is transmitted to the fluid or the rubber-like elastic body directly or through the exchangeable membrane body to the hydraulic pressure or the elastic pressure. In the impact pressure generation method of converting to, the effect is achieved by arranging a reflector for shock waves in a liquid or an elastic body to adjust the reaching hydraulic pressure or elastic pressure distribution.

【0012】また、その装置に関しては一端部から他端
部に向け断面積が小さくなる燃焼室と、燃料の供給を受
け点火栓が配設された着火室と、着火室から分岐して延
び上記燃焼室の一端部へ連通する路程の等しい複数の誘
導路と、上記燃焼室の最小通路断面積部たる他端部の開
口に接続されかつ内部に液体又はゴム状の弾性体を収容
せる圧媒室とを備えた衝撃圧発生装置において、圧媒室
内に衝撃波の反射体が設けられていることにより達成さ
れる。
Further, regarding the apparatus, a combustion chamber having a smaller cross-sectional area from one end to the other end, an ignition chamber in which a spark plug is provided for receiving fuel, and a branch extending from the ignition chamber. A plurality of guide paths having the same path length communicating with one end of the combustion chamber, and a pressure medium which is connected to the opening of the other end which is the minimum passage cross-sectional area of the combustion chamber and accommodates a liquid or rubber-like elastic body inside In a shock pressure generating device including a chamber, a shock wave reflector is provided in the pressure medium chamber.

【0013】上記の衝撃波の反射体とは、圧力媒体より
も音響インピーダンス(密度と音速の積で定義される)
が大きい物質を適当な形状に加工した媒体である。この
反射体に周囲から衝撃波が入射すると、大部分は圧縮波
として反射し、一部が屈折して反射体中を進行する。こ
の際、反射波と屈折波それぞれの強度は、反射体と圧力
媒体との音響インピーダンスの比で決まる。反射波を強
くするためには、圧力媒体よりも十分音響インピーダン
スが大きい物質で反射体を構成すれば良い。例えば圧力
媒体として天然ゴムを用いた場合、ポリテトラフルオロ
エチレン,ポリ塩化ビニル,ポリスチレン等の高分子材
料や、あるいは氷などが反射体として使用可能である。
The shock wave reflector is an acoustic impedance (defined by the product of density and sound velocity) rather than a pressure medium.
It is a medium in which a large material is processed into an appropriate shape. When a shock wave is incident on this reflector from the surroundings, most of it is reflected as a compression wave, and part of it is refracted and travels in the reflector. At this time, the intensities of the reflected wave and the refracted wave are determined by the acoustic impedance ratio between the reflector and the pressure medium. In order to strengthen the reflected wave, the reflector may be made of a material having a sufficiently higher acoustic impedance than the pressure medium. For example, when natural rubber is used as the pressure medium, a polymer material such as polytetrafluoroethylene, polyvinyl chloride, polystyrene, or ice can be used as the reflector.

【0014】[0014]

【作用】かかる本発明の爆轟による衝撃圧の発生装置に
あっては、燃焼室で生じた爆轟圧は他端部にて収束され
高圧となり圧媒室にて次第にその伝播方向の通路断面積
が拡大されながら伝播される。ここで、圧媒室内の圧力
媒体として液体を用いれば、圧媒室の形状が複雑あるい
は大型な場合にも容易に充填が可能である。一方、ゴム
状の弾性体を圧力媒体とすれば、例えば材料加工におい
て、錆防止のための加工後の拭き取り作業が不要になる
ので工程の高速化が可能になる。なお、通常圧力媒体は
燃焼室に直接面しているが、圧力媒体が液体で、燃焼室
側へ流出する恐れがある場合(例えば、圧媒室が傾いて
いる場合)や、圧力媒体が弾性体で、その損傷を防止し
たい場合には強靱かつ変形容易な膜体を間に挿入する。
In the apparatus for generating an impact pressure by the detonation according to the present invention, the detonation pressure generated in the combustion chamber is converged at the other end to become a high pressure and the passage in the propagation direction is gradually cut off in the pressure medium chamber. The area is expanded and propagated. Here, if a liquid is used as the pressure medium in the pressure medium chamber, it is possible to easily fill even when the shape of the pressure medium chamber is complicated or large. On the other hand, when the rubber-like elastic body is used as the pressure medium, for example, in the material processing, it is not necessary to perform a wiping operation after the processing for the purpose of preventing rust, so that the process speed can be increased. Although the pressure medium normally faces the combustion chamber directly, if the pressure medium is a liquid and may flow out to the combustion chamber side (for example, when the pressure medium chamber is tilted) or the pressure medium is elastic. If it is desired to prevent damage to the body, insert a strong and easily deformable membrane body between them.

【0015】圧媒室内には、所定位置に所定の反射体が
配置されており、上記高圧は反射体と周囲圧力媒体との
間で複数回反射を繰り返し、例えば圧媒室の下流に配さ
れた加工室に到達するときには、適当な強弱分布を持っ
た高衝撃圧となって被加工部材に印加される。
A predetermined reflector is arranged at a predetermined position in the pressure medium chamber, and the high pressure is repeatedly reflected a plurality of times between the reflector and the surrounding pressure medium, and is arranged, for example, downstream of the pressure medium chamber. When reaching the processing chamber, a high impact pressure having an appropriate strength and weakness distribution is applied to the workpiece.

【0016】印加された衝撃圧はいったん被加工部材の
運動エネルギーに変換され、被加工部材は高速飛翔体と
なって加工室下流側に設置された成形金型に衝突する。
しかる後に上記運動エネルギーが変形エネルギーに変換
され、被加工部材が上記成形金型に圧せられることによ
り、成形が行われる。
The applied impact pressure is once converted into kinetic energy of the member to be processed, and the member to be processed becomes a high-speed flying object and collides with a molding die installed on the downstream side of the processing chamber.
After that, the kinetic energy is converted into deformation energy, and the member to be processed is pressed against the molding die, whereby molding is performed.

【0017】[0017]

【実施例】以下、添付図面にもとづき本発明の実施例を
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0018】図1は本発明の第一実施例装置の縦断面図
である。
FIG. 1 is a vertical sectional view of a first embodiment device of the present invention.

【0019】本実施例装置は燃焼室1を有し、該燃焼室
1は下方に向け狭くなる逆円錐状をなし横断面における
通路断面積は上端部1Aで最大で、下端部1Bにて最小
となって収束部を形成するようになっている。
The apparatus of the present embodiment has a combustion chamber 1, which has an inverted conical shape that narrows downward and has a passage cross-sectional area at the upper end 1A which is the maximum and at the lower end 1B which is the minimum. To form a converging portion.

【0020】上記燃焼室1の上端部1Aの内壁はやや上
方に弯曲形成せられ、ここに複数の孔状の誘導路2が連
通している。該複数の誘導路2は上方にて、円板空間状
の分散室3に収束せられている。該分散室3には上方に
延びる着火室4が連通接続されている。そして、該着火
室4の上部には、着火装置6により作動する点火栓5が
設けられていると共に、流量計7,8を経て燃料供給源
9、酸化剤供給源10がそれぞれ接続されている。な
お、11は着火室4内の充填圧力を確認するための圧力
計である。
The inner wall of the upper end portion 1A of the combustion chamber 1 is curved slightly upward, and a plurality of hole-shaped guide paths 2 communicate therewith. The plurality of guide paths 2 are converged at the upper side into a disk-shaped dispersion chamber 3. An ignition chamber 4 extending upward is connected to the dispersion chamber 3 so as to communicate therewith. An ignition plug 5 which is operated by an ignition device 6 is provided above the ignition chamber 4, and a fuel supply source 9 and an oxidant supply source 10 are connected via flowmeters 7 and 8, respectively. . Reference numeral 11 is a pressure gauge for confirming the filling pressure in the ignition chamber 4.

【0021】上記燃焼室1の下端部1Bは開口されてお
り、ここに圧媒室12が接続され、そしてその直下に衝
撃圧を使用する装置の一例として成形装置13が設けら
れている。上記圧媒室12には圧力媒体としての水やゴ
ム状の圧力媒体Gが収容されており、圧媒室12の内に
反射体Rが設置されている。また圧力媒体Gの上端面
は、図示のごとく上記燃焼室1の下端部1Bに直接面し
ているか、或は必要な場合には、強靱かつ変形容易な膜
体で界面を形成している。
A lower end portion 1B of the combustion chamber 1 is opened, a pressure medium chamber 12 is connected to the lower end portion 1B, and a molding device 13 is provided immediately below the pressure medium chamber 12 as an example of a device using impact pressure. The pressure medium chamber 12 contains water or a rubber-like pressure medium G as a pressure medium, and a reflector R is installed in the pressure medium chamber 12. Further, the upper end surface of the pressure medium G directly faces the lower end portion 1B of the combustion chamber 1 as shown in the figure, or forms an interface with a strong and easily deformable film body if necessary.

【0022】上記成形装置13は上記圧媒室12の直下
に配設されており、該成形装置13は内部に、上面が成
形用の三次元形状をもった金型16を交換可能に収容し
ている。該成形装置13は必要に応じ、上記圧媒室12
との間にて、例えば両者のフランジの間で成形を受ける
べき板材等Pの周縁を保持している。上記成形装置13
には、上記金型16を貫通してその上部空間に連通して
該空間を真空とするための真空ポンプ装置17が接続さ
れている。該真空ポンプ装置17は既述の着火室4にも
接続されている。
The molding device 13 is arranged directly below the pressure medium chamber 12, and the molding device 13 accommodates a mold 16 having an upper surface having a three-dimensional shape for molding in a replaceable manner. ing. The molding device 13 is provided with the pressure medium chamber 12 if necessary.
Between the two flanges, for example, holds the peripheral edge of the plate material or the like P to be molded. The molding device 13
A vacuum pump device 17 for penetrating the mold 16 and communicating with the upper space thereof to create a vacuum in the space is connected to. The vacuum pump device 17 is also connected to the ignition chamber 4 described above.

【0023】かかる本実施例装置において、高圧液圧又
は弾圧の発生そしてこれを利用した成形は次のごとくな
される。
In the apparatus of this embodiment, the generation of high-pressure hydraulic pressure or elastic pressure and the molding utilizing this are performed as follows.

【0024】先ず、成形すべき板材Pを金型16上に
セットする。
First, the plate material P to be molded is set on the die 16.

【0025】次に、真空ポンプ装置17によって着火
室4、分散室3、誘導路2そして燃焼室1内が所定の真
空度とされる。また、これと同時に金型16と板材Pと
の間の空間も同様に所定の真空度となるように吸引され
る。
Next, the vacuum pump device 17 brings the ignition chamber 4, the dispersion chamber 3, the guide passage 2 and the combustion chamber 1 to a predetermined vacuum degree. At the same time, the space between the mold 16 and the plate material P is also sucked so as to have a predetermined degree of vacuum.

【0026】しかる後、着火室4、分散室3、誘導路
2そして燃焼室1内に、ほぼ理論混合比の可燃性ガス
が、燃料供給源9、酸化剤供給源10により充填され
る。
After that, the ignition chamber 4, the dispersion chamber 3, the guide passage 2 and the combustion chamber 1 are filled with the fuel supply source 9 and the oxidant supply source 10 with a combustible gas having a substantially theoretical mixing ratio.

【0027】かかる設定の完了後、着火装置6によっ
て点火栓5を作動させる。着火室4内では着火により爆
轟が起こりその火炎が分散室3そして誘導路2を経て燃
焼室1の上端部1Aに伝播される。その際、複数の誘導
路2の路程はそれぞれ等しく設定されているので、複数
の誘導路2の火炎は同時に上記上端部1Aに達する。
After the setting is completed, the ignition device 6 operates the spark plug 5. Detonation occurs due to ignition in the ignition chamber 4, and the flame is propagated to the upper end 1A of the combustion chamber 1 through the dispersion chamber 3 and the guide passage 2. At this time, since the path lengths of the plurality of guideways 2 are set to be equal to each other, the flames of the plurality of guideways 2 simultaneously reach the upper end portion 1A.

【0028】燃焼室1内では火炎は上端部1Aから下
端部1Bへと進行するが、燃焼室1の断面積は下方に向
け次第に小さくなっているために、その圧力は上昇し下
端部1Bではきわめて高圧となる。
In the combustion chamber 1, the flame progresses from the upper end portion 1A to the lower end portion 1B, but since the cross-sectional area of the combustion chamber 1 gradually decreases downward, its pressure rises and at the lower end portion 1B. It becomes extremely high pressure.

【0029】上記燃焼室1の下端部1Bの開口部に
は、交換可能なノズル12’がセットされ圧媒室12内
の圧力媒体Gの端面が臨んでいるため、上記高圧は該端
面から圧力媒体Gの内部へと伝播される。
A replaceable nozzle 12 'is set at the opening of the lower end 1B of the combustion chamber 1 and the end face of the pressure medium G in the pressure medium chamber 12 faces the high pressure. It is propagated inside the medium G.

【0030】上記高圧は衝撃波として上記圧力媒体G
中を伝播するが、圧媒室12中に設置された反射体Rに
より該衝撃波が反射し、適当な強弱分布をもった圧力と
なって成形装置13に達する。
The high pressure acts as a shock wave on the pressure medium G.
Although propagating through the inside, the shock wave is reflected by the reflector R installed in the pressure medium chamber 12, and reaches the forming device 13 with a pressure having an appropriate intensity distribution.

【0031】上記圧力分布を形成する高圧は成形装置
13において板材を金型16に圧して所定の成形が行わ
れる。
The high pressure for forming the above pressure distribution is obtained by pressing the plate material against the mold 16 in the molding device 13 to perform a predetermined molding.

【0032】しかる後、成形品としての板材をとり出
すと共に、上記〜の工程を繰り返すことによって、
次々と製品の成形を行うことができる。
Thereafter, the plate material as a molded product is taken out and the above steps (1) to (5) are repeated to obtain
Products can be molded one after another.

【0033】次に、図2に基づき本発明の第二実施例装
置を説明する。なお、図において図1に示した前実施装
置と共通部分には同一符号を付してその説明は省略す
る。
Next, a second embodiment device of the present invention will be described with reference to FIG. In the drawing, the same parts as those of the previous embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

【0034】本実施例では燃焼室1’は半径方向に広が
る横型に形成されている。該燃焼室1’は下方にふくら
む略球面の一部の上壁面によって中心に向かってその伝
播方向通路の断面積が減ずる形になっている。燃焼室1
は中心部にて弾圧室12に連通している。
In the present embodiment, the combustion chamber 1'is formed in a horizontal shape that expands in the radial direction. The combustion chamber 1'has a shape in which the cross-sectional area of the passage in the propagation direction decreases toward the center by the upper wall surface of a part of a substantially spherical surface which bulges downward. Combustion chamber 1
Communicates with the suppression chamber 12 at the center.

【0035】かかる本実施装置によれば、装置寸法を高
くできない場合又は圧力持続時間を短くしたい場合に都
合が良い。作用に関しては、前実施例の場合と同様であ
り、火炎は誘導路2から燃焼室1’の一端部たる周囲部
1’Aに到達した後、他端部たる中心部1’Bに向かっ
て進行する。その進行の際、断面積の減少に伴い、圧力
は極めて高くなる。そして、その高圧は圧媒室12内の
圧力媒体Gに伝播され、圧力媒室12中に設置された反
射体Rにより分布パターンを調整された後、成形装置1
3にて板材Pを金型16に圧して成形が行われる。
The apparatus of the present embodiment is convenient when the size of the apparatus cannot be increased or when the pressure duration is desired to be shortened. The operation is the same as in the case of the previous embodiment, after the flame reaches the peripheral portion 1'A which is one end of the combustion chamber 1'from the guide passage 2 and then toward the central portion 1'B which is the other end. proceed. In the process, the pressure becomes extremely high as the cross-sectional area decreases. Then, the high pressure is propagated to the pressure medium G in the pressure medium chamber 12, and after the distribution pattern is adjusted by the reflector R installed in the pressure medium chamber 12, the molding device 1
At 3, the plate material P is pressed against the mold 16 to perform molding.

【0036】本発明においては、反射体の形状・寸法あ
るいは物性値を変更することにより、該圧力分布を被加
工物に適したパターンに制御することができる。以下、
この点について説明する。
In the present invention, the pressure distribution can be controlled to a pattern suitable for the workpiece by changing the shape / dimension or the physical property value of the reflector. Less than,
This point will be described.

【0037】図3は圧媒室の周辺部に反射体Rを設置し
た場合の衝撃波の反射方向を示す図である。この場合、
図に示すごとく衝撃波は反射体との界面で大部分が反射
し、圧媒室内に入射した衝撃波のエネルギーの大部分が
中央部Aに残留するので、各部A,B,C,のうち、図
4に示すように受圧面の中央部Aでの圧力が上昇する。
従って、材料中央部Aで成形力を高めたい場合に適した
圧力分布が得られる。一方、図5に示すごとく反射体R
を圧媒室中央部に設置した場合には、衝撃波は反射体と
圧媒室の内壁面の間の空間に集中するので、図6のよう
に受圧面外周部B〜Cの圧力が上昇する。従って、トリ
ミング加工(成形後に周辺の不要部材を切除する加工)
のように材料外周部の成形力を高めたい場合に適した圧
力分布が得られる。また、反射体の寸法あるいは物性値
を変更することにより、圧力分布を調整することができ
る。例えば、図3において反射体がゴムで構成されてい
る場合、より軟質のゴム(音響インピーダンスが小さく
なる)で作った反射体に交換すれば、境界面での衝撃波
の反射率が下がり、反射体内部に伝播していく割合が増
加するので、受圧面での圧力分布は図4に示すよりも均
一に近くなる。逆により硬質のゴム(音響インピーダン
スが大きくなる)で作った反射体に交換すれば、受圧面
中央部の圧力ピークをより高くすることが可能となる。
FIG. 3 is a diagram showing the reflection direction of a shock wave when the reflector R is installed in the peripheral portion of the pressure medium chamber. in this case,
As shown in the figure, most of the shock wave is reflected at the interface with the reflector, and most of the energy of the shock wave incident on the pressure medium chamber remains in the central part A. Therefore, among the parts A, B, C, As shown in 4, the pressure at the central portion A of the pressure receiving surface rises.
Therefore, a pressure distribution suitable for increasing the forming force at the material central portion A can be obtained. On the other hand, as shown in FIG.
When the pressure wave is installed in the central portion of the pressure medium chamber, the shock wave concentrates in the space between the reflector and the inner wall surface of the pressure medium chamber, so that the pressure at the outer peripheral portions B to C of the pressure receiving surface rises as shown in FIG. . Therefore, trimming processing (processing to remove unnecessary parts around after molding)
As described above, a pressure distribution suitable for increasing the forming force of the outer peripheral portion of the material can be obtained. Further, the pressure distribution can be adjusted by changing the size or the physical property value of the reflector. For example, when the reflector is made of rubber in FIG. 3, if it is replaced with a reflector made of a softer rubber (acoustic impedance becomes smaller), the reflectance of the shock wave at the interface decreases and the reflector Since the rate of propagation to the inside increases, the pressure distribution on the pressure receiving surface becomes more uniform than that shown in FIG. On the contrary, by replacing with a reflector made of hard rubber (increasing acoustic impedance), the pressure peak at the center of the pressure receiving surface can be made higher.

【0038】以上の効果は、先に述べたように圧媒室内
に音響レンズを配設することによっても得られる。しか
し、音響レンズを利用する場合、屈折角を大きくするに
はレンズの形状を特殊なものにするか、特殊な物性値を
有する物質でレンズを構成する必要があるため、大幅な
パターンの調整を必要とする場合には技術面、コスト面
で反射体を利用する方が有利である。
The above effects can also be obtained by disposing the acoustic lens in the pressure medium chamber as described above. However, when using an acoustic lens, in order to increase the refraction angle, it is necessary to make the shape of the lens special or to construct the lens with a substance having a special physical property value. If necessary, it is advantageous to use the reflector in terms of technology and cost.

【0039】なお、圧力媒体を構成する物質として、水
より音響インピーダンスの小さいもの(例えば軟質ゴ
ム)を選定すれば、反射体Rを水で構成することも可能
であり、その場合、反射体の耐久性を考慮する必要がな
くなる(水を追加・交換する機器を配設しておけばよ
い)。
If a substance having a smaller acoustic impedance than water (for example, soft rubber) is selected as the substance constituting the pressure medium, the reflector R can be made of water. In that case, It is no longer necessary to consider durability (providing a device for adding and exchanging water).

【0040】本発明では、かかる反射体を用いることに
より、装置全体を交換しなくとも、圧媒室内の圧力媒体
のみを適当な反射体を設置したものに交換することによ
り、到達弾圧分布を被加工物の加工性状に適するよう変
更できる。
According to the present invention, by using such a reflector, the ultimate elastic pressure distribution can be controlled by exchanging only the pressure medium in the pressure medium chamber with a suitable reflector, without exchanging the entire apparatus. It can be changed to suit the workability of the work piece.

【0041】以上の実施例では高圧弾圧の利用方法とし
て金型による成形を挙げたが、他に材料合成、焼結或い
は食品加工の分野においても利用可能である。これらの
分野においては加工の均一性が重要となるので、受圧面
上の各部での最高到達圧力が均一であることが望まし
い。これは、図5に示した反射体の構成物質を、圧力媒
体との音響インピーダンスの差がより小さい物質(例え
ば反射体がゴムならば、硬度をより下げることで得られ
る)に代えることで達成できる。このときの受圧面上で
の到達圧力分布を図7に示す。なお、図中の破線は反射
体を設置しない場合の圧力分布である。図から分かるよ
うに、反射体を設置したことにより中心部での圧力集中
が抑えられ、かつ図5の例よりも外部への反射率が下が
るので図6に示したような外周部の圧力集中も起きな
い。こうして、圧媒室内部の影響が避けられない最外周
部を除いて、受圧面上でほぼ均一の圧力分布を得ること
ができる。
In the above-mentioned embodiments, molding using a mold is mentioned as a method of utilizing high pressure elastic pressure, but it can also be used in the field of material synthesis, sintering or food processing. Since uniformity of processing is important in these fields, it is desirable that the maximum ultimate pressure at each part on the pressure receiving surface be uniform. This is achieved by replacing the constituent material of the reflector shown in FIG. 5 with a material having a smaller difference in acoustic impedance from the pressure medium (for example, if the reflector is rubber, it can be obtained by lowering the hardness). it can. FIG. 7 shows the ultimate pressure distribution on the pressure receiving surface at this time. The broken line in the figure is the pressure distribution when the reflector is not installed. As can be seen from the figure, the pressure concentration in the central part is suppressed by installing the reflector, and the reflectance to the outside is lower than in the example of FIG. 5, so the pressure concentration in the outer peripheral part as shown in FIG. Does not happen. In this way, a substantially uniform pressure distribution can be obtained on the pressure receiving surface, except for the outermost peripheral portion where the influence of the pressure medium chamber interior cannot be avoided.

【0042】[0042]

【発明の効果】本発明は以上のごとく構成されるので、
その方法にあっては、従来の方法に比して、安価,かつ
容易に立ち上がりが急峻で特性の優れた衝撃圧が得られ
ると共に、反射体の形状・寸法あるいは物性値を変更す
ることにより、衝撃圧を被加工物に適合した種々のパタ
ーンに調整できるという効果を得る。
Since the present invention is constructed as described above,
In that method, compared to the conventional method, an impact pressure that is cheaper and easier to rise and has excellent characteristics can be obtained, and by changing the shape / dimension or the physical property value of the reflector, The effect that the impact pressure can be adjusted to various patterns suitable for the workpiece is obtained.

【0043】また、本発明装置によれば、単純な形状の
反射体を採用することにより、圧力媒体の製作が容易に
なり、これに伴って設備コストの低減を図れ、また、従
来の弾丸打ち込み式、爆発方式のように火薬を用いない
ため、設定上の制約を受けない装置となり、さらには、
連続的に種々の分布パターンを有する衝撃圧を発生させ
ることができるようになるという効果を得る。そして、
容易かつ安全に衝撃圧を得ることができるので、加工分
野等の広い工業分野での本格的な応用が可能となる。
Further, according to the device of the present invention, by adopting the reflector having a simple shape, the pressure medium can be easily manufactured, and accordingly, the equipment cost can be reduced, and the conventional bullet driving can be applied. Since it does not use explosives like the formula and the explosion method, it becomes a device that is not restricted by settings.
The effect that it becomes possible to continuously generate the impact pressure having various distribution patterns is obtained. And
Since the impact pressure can be easily and safely obtained, full-scale application in a wide industrial field such as a processing field becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例装置の縦断面図である。FIG. 1 is a vertical cross-sectional view of a first embodiment device of the present invention.

【図2】第二実施例装置の縦断面図である。FIG. 2 is a vertical sectional view of a second embodiment device.

【図3】第一実施例装置及び第二実施例装置に使用可能
な反射体を備えた圧媒室の断面図である。
FIG. 3 is a cross-sectional view of a pressure medium chamber provided with a reflector that can be used in the first embodiment device and the second embodiment device.

【図4】図3に示される圧媒室受圧面での衝撃波到達時
の圧力分布図である。
FIG. 4 is a pressure distribution diagram when a shock wave arrives at the pressure receiving surface of the pressure medium chamber shown in FIG.

【図5】円錐状反射体を備えた圧媒室の断面図である。FIG. 5 is a sectional view of a pressure medium chamber provided with a conical reflector.

【図6】図5に示される圧媒室受圧面での衝撃波到達時
の圧力分布図である。
6 is a pressure distribution diagram when a shock wave arrives at the pressure medium chamber pressure receiving surface shown in FIG.

【図7】図5に示される圧媒室において反射体の構成物
質を変更した場合の受圧面での衝撃波到達時の圧力分布
図である。
7 is a pressure distribution diagram when a shock wave arrives at the pressure receiving surface when the constituent material of the reflector is changed in the pressure medium chamber shown in FIG.

【符号の説明】[Explanation of symbols]

1 燃焼室 1A 一端部 1B 他端部 2 誘導路 4 着火室 5 点火栓 12 圧媒室 13 成形室(成形装置) 16 成形金型 G 圧力媒体 R 反射体 DESCRIPTION OF SYMBOLS 1 Combustion chamber 1A 1st end 1B 2nd end 2 Guideway 4 Ignition chamber 5 Spark plug 12 Pressure medium chamber 13 Molding chamber (molding device) 16 Molding mold G Pressure medium R Reflector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室における収束デトネーションによ
る衝撃高圧を直接、もしくは交換可能な膜体を介して流
体又はゴム状の弾性体に伝達して液圧又は弾圧に変換す
る衝撃圧発生方法において、液体又は弾性体内に衝撃波
の反射体を配して到達液圧又は弾圧分布を調整すること
を特徴とする爆轟による衝撃圧発生方法。
1. A method for generating an impact pressure, wherein an impact high pressure due to convergent detonation in a combustion chamber is transmitted to a fluid or a rubber-like elastic body directly or via an exchangeable membrane to convert into a hydraulic pressure or an elastic pressure. Alternatively, a shock pressure generation method by detonation, which comprises arranging a shock wave reflector in an elastic body to adjust the reaching hydraulic pressure or elastic pressure distribution.
【請求項2】 一端部から他端部に向け断面積が小さく
なる燃焼室と、燃料の供給を受け点火栓が配設された着
火室と、着火室から分岐して延び上記燃焼室の一端部へ
連通する路程の等しい複数の誘導路と、上記燃焼室の最
小通路断面積部たる他端部の開口に接続されかつ内部に
液体又はゴム状の弾性体を収容せる圧媒室とを備えた衝
撃圧発生装置において、圧媒室内に衝撃波の反射体が設
けられていることを特徴とする爆轟による衝撃圧発生装
置。
2. A combustion chamber having a smaller cross-sectional area from one end to the other end, an ignition chamber in which a spark plug is arranged for receiving a fuel supply, and one end of the combustion chamber branching from and extending from the ignition chamber. And a pressure medium chamber that is connected to the opening of the other end that is the minimum passage cross-sectional area of the combustion chamber and that accommodates a liquid or rubber-like elastic body inside. In the impact pressure generator, a shock wave reflector by a detonation is provided in the pressure medium chamber.
JP5323448A 1993-11-30 1993-11-30 Impact pressure generating method and device by detonation Pending JPH07155859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5323448A JPH07155859A (en) 1993-11-30 1993-11-30 Impact pressure generating method and device by detonation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5323448A JPH07155859A (en) 1993-11-30 1993-11-30 Impact pressure generating method and device by detonation

Publications (1)

Publication Number Publication Date
JPH07155859A true JPH07155859A (en) 1995-06-20

Family

ID=18154786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5323448A Pending JPH07155859A (en) 1993-11-30 1993-11-30 Impact pressure generating method and device by detonation

Country Status (1)

Country Link
JP (1) JPH07155859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147800A (en) * 2005-03-17 2012-08-09 Kumamoto Univ Processing method of food

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147800A (en) * 2005-03-17 2012-08-09 Kumamoto Univ Processing method of food
US8507024B2 (en) 2005-03-17 2013-08-13 National University Corporation Kumamoto University Method of treating food and food obtained by this method

Similar Documents

Publication Publication Date Title
US4207154A (en) Wave generating apparatus and method
JPH07155859A (en) Impact pressure generating method and device by detonation
JP3208934B2 (en) Method and apparatus for generating impact pressure by detonation
JP2560591B2 (en) Detonation liquid pressure generation method and apparatus therefor
JP2505137B2 (en) Detonation hydraulic pressure generation method and device
JPH05329696A (en) Detonation working method and device by using simple mold
JP2737602B2 (en) Method and apparatus for generating impact pressure by detonation
JP2560590B2 (en) Method of generating detonation pressure and device therefor
US4986461A (en) Method of constructing tools intended for use in work carried out with the aid of shock-wave generating energy sources
JP2611606B2 (en) Method of generating detonation bomb pressure using variable pressure medium and apparatus therefor
JP2560576B2 (en) Molding method and device by detonation pressure
JPH0751761A (en) Production of panel parts by detonation pressure
JPH05115926A (en) Striking method and device by explosion liquid pressure
JP2768227B2 (en) Detonation trimming device
JPH05337694A (en) Molding method by detonation elastic pressure and device for the method
JPH05305361A (en) Method and device for forming hard-to-work formings with explosive pressure
JP3491091B2 (en) Static pressure combined impact pressure generator
JPH05305100A (en) Molding method for denture floor by detonation and device
JP2713111B2 (en) Detonation molding method and apparatus
JPH06344045A (en) Method for forming duplicate of formed product
NZ215360A (en) Dynamic compaction of material; stress wave reflector between material and compactor
JPH05285550A (en) Method and device for generating elastic pressure by detonation
JP2755110B2 (en) Detonation pressure processing equipment
JPH0557367A (en) Method and device for punching by detonation elastic pressure
JPH06344046A (en) Method and device for molding by detonation and simultaneous blanking