JPH07155614A - Production of exhaust gas purifying catalyst - Google Patents

Production of exhaust gas purifying catalyst

Info

Publication number
JPH07155614A
JPH07155614A JP5306587A JP30658793A JPH07155614A JP H07155614 A JPH07155614 A JP H07155614A JP 5306587 A JP5306587 A JP 5306587A JP 30658793 A JP30658793 A JP 30658793A JP H07155614 A JPH07155614 A JP H07155614A
Authority
JP
Japan
Prior art keywords
sapo
catalytic metal
catalyst
ion exchange
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5306587A
Other languages
Japanese (ja)
Inventor
Shinji Tsuji
慎二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5306587A priority Critical patent/JPH07155614A/en
Publication of JPH07155614A publication Critical patent/JPH07155614A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the support amt. of a catalytic metal by mixing silicoaluminophosphate(SAPO) with an aq. ammonia soln. to perform ion exchange to form NH4 type SAPO and adding this NH4 type SAPO to an aq. solution containing a catalytic metal to perform ion exchange to support the catalytic metal on SAPO. CONSTITUTION:Phosphate, hydrated alumina and a silica sol are used as starting materials to be uniformly mixed and an org. templating agent is mixed with the resulting mixture in order to prescribe a pore structure to be uniformly stirred to obtain a silicoaluminophosphate(SAPO) powder by hydrothermal reaction. This SAPO powder is mixed with an aq. ammonia soln. to exchange the proton bonded to SAPO with an ammonium ion to obtain NH4 type SAPO and the catalytic metal is exchanged with the ammonium ion to support the catalytic metal on the SAPO powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排気ガスの浄化用触媒
の製造方法に関し、さらに詳細に述べるならば、触媒金
属の担持量が高い排気ガス浄化用触媒の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a catalyst for purifying exhaust gas, and more specifically, it relates to a method for producing a catalyst for purifying exhaust gas having a high catalytic metal loading.

【0002】[0002]

【従来の技術】従来、自動車の排気ガス浄化用触媒とし
て、排気ガス中の一酸化炭素(CO)及び炭化水素(H
C)の酸化と窒素酸化物(NOx ) の還元とを同時に行
って排気ガスを浄化する排気ガス浄化用三元触媒が数多
く知られている。このような触媒としては、例えばコー
ジェライトなどの耐火性担体にγ−アルミナスラリーを
塗布し、焼成し、パラジウム、白金、ロジウムなどの貴
金属を担持させたものが典型的である(例えば、特公昭
56−27295 号公報など参照)。
2. Description of the Related Art Conventionally, carbon monoxide (CO) and hydrocarbon (H) in exhaust gas have been used as catalysts for purifying exhaust gas of automobiles.
There are many known three-way catalysts for purifying exhaust gas that simultaneously purify C) and reduce nitrogen oxides (NO x ) to purify exhaust gas. A typical example of such a catalyst is one in which a γ-alumina slurry is applied to a refractory carrier such as cordierite and baked to carry a noble metal such as palladium, platinum or rhodium (for example, Japanese Patent Publication No.
56-27295, etc.).

【0003】ところで、前記排気ガス浄化用触媒の性能
はエンジンの設定空燃比によって大きく左右され、希薄
混合比、すなわち空燃比の大きなリーン側では燃焼後の
排気ガス中の酸素量が大きくなり、酸化作用が活発に、
還元作用が不活発になる。逆に、空燃比の小さなリッチ
側では燃焼後の排気ガス中の酸素量が少なくなり、酸化
作用が不活発に、還元作用が活発になる。
By the way, the performance of the exhaust gas purifying catalyst is greatly influenced by the set air-fuel ratio of the engine. On the lean side where the lean mixture ratio, that is, the air-fuel ratio is large, the amount of oxygen in the exhaust gas after combustion becomes large, and oxidation occurs. Active action,
The reducing action becomes inactive. On the other hand, on the rich side where the air-fuel ratio is small, the amount of oxygen in the exhaust gas after combustion becomes small, the oxidizing action becomes inactive, and the reducing action becomes active.

【0004】近年、自動車等の内燃機関において、省エ
ネルギーの見地から低燃費化が要請されており、この低
燃費化の一つの手段として走行時に酸素過剰の混合気で
燃焼させることが従来より行われている。このような空
燃比がリーン側の酸素過剰雰囲気では、排気ガス中の有
害成分のうちHC及びCOは酸化除去可能であるが、N
x は触媒床に吸着したO2 により触媒金属との接触が
大幅に妨げられるため還元除去が困難であり、たとえ触
媒金属と接触でき、還元することができた場合であって
も、窒素は触媒床に吸着した酸素とただちに結合するた
め、浄化効率が著しく低くなるとうい問題があった。
In recent years, in an internal combustion engine of an automobile or the like, there has been a demand for low fuel consumption from the viewpoint of energy saving. As one of the means for reducing the fuel consumption, it has been conventionally performed to burn an air-fuel mixture with excess oxygen during traveling. ing. In such an oxygen excess atmosphere where the air-fuel ratio is lean, HC and CO, which are harmful components in the exhaust gas, can be removed by oxidation.
O x is difficult to reduce and remove because the O 2 adsorbed on the catalyst bed is contacted with the catalyst metal significantly inhibit, if possible contact with the catalyst metal, even if it is possible to be reduced, nitrogen Since it immediately binds to oxygen adsorbed on the catalyst bed, there is a problem that the purification efficiency becomes extremely low.

【0005】こうした問題を解決するため、ゼオライト
の表面に多数存在する細孔内に銅を担持させた触媒が開
発された(米国特許第 4297328号)。この触媒は酸化雰
囲気下においてNOx の還元除去が可能であるが、耐熱
性及び耐久性が劣っていた。
In order to solve these problems, a catalyst was developed in which copper was supported in the large number of pores present on the surface of zeolite (US Pat. No. 4,297,328). Although this catalyst is capable of reducing and removing NO x in an oxidizing atmosphere, it has poor heat resistance and durability.

【0006】このような問題を解決するため、結晶質シ
リコアルミノフォスフェート多孔質担体に触媒金属を担
持させた触媒が提案された(特開平2−251246)。この
触媒は、触媒金属を常法のイオン交換法により担持させ
たものであり、触媒金属の付着力が強く、かつ耐熱性及
び耐久性に優れている。しかし、常法のイオン交換では
担持させる触媒金属の量に限界があり、イオン交換を多
数回繰り返し行ってもある程度(2重量%)以上担持さ
せることができなかった。
In order to solve such a problem, a catalyst in which a catalytic metal is supported on a crystalline silicoaluminophosphate porous carrier has been proposed (JP-A-2-251246). This catalyst has a catalytic metal supported by a conventional ion exchange method, and has a strong catalytic metal adhesion and excellent heat resistance and durability. However, the amount of catalyst metal to be supported by the conventional ion exchange is limited, and even if ion exchange is repeated many times, it cannot be supported to a certain extent (2% by weight).

【0007】[0007]

【発明が解決しようとする課題】本発明は、自動車排気
ガス浄化用触媒の製造方法の有する前記の如き欠点を解
消し、金属触媒の担持量の高い触媒を提供することを目
的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned drawbacks of the method for producing a catalyst for purifying automobile exhaust gas and to provide a catalyst having a high metal catalyst loading.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記の自動
車排気ガス浄化用触媒の上記問題点を解決すべく鋭意研
究を重ねた結果、SAPOの固体酸点に存在するH+
オンをアンモニウムイオンとイオン交換させ、その後触
媒金属イオンとアンモニウムイオンとをイオン交換させ
ることにより、触媒金属の担持量を高くすることができ
ることを見出し、本発明を完成した。
As a result of intensive studies to solve the above problems of the above-mentioned catalyst for purifying automobile exhaust gas, the present inventor has found that H + ions existing at solid acid points of SAPO are ammonium. The present invention has been completed by finding that it is possible to increase the supported amount of the catalytic metal by performing ion exchange with the ions and then exchanging the catalytic metal ions with the ammonium ions.

【0009】すなわち、本発明の自動車排気ガス浄化用
触媒の製造方法は、(i) アンモニア水溶液にシリコアル
ミノフォスフェート(SAPO)を混合することによっ
てアンモニウムイオン(NH4 + ) によりイオン交換
し、NH4 型SAPOを形成すること、次いで(ii)前記
NH4 型SAPOを触媒金属を含む水溶液に添加するこ
とによって触媒金属イオンによりイオン交換し、SAP
Oに触媒金属を担持させること、を特徴とするものであ
る。
That is, according to the method for producing a catalyst for purifying automobile exhaust gas of the present invention, (i) ion exchange is performed with ammonium ions (NH 4 + ) by mixing silicoaluminophosphate (SAPO) with an aqueous ammonia solution, Forming type 4 SAPO, and then (ii) adding the NH 4 type SAPO to an aqueous solution containing the catalytic metal to ion-exchange with catalytic metal ions to form SAP
The catalytic metal is supported on O.

【0010】また、上記方法において、触媒金属を均一
なアンミン錯体の形状で用いイオン交換することによ
り、触媒金属の担持量をさらに高めることが可能である
ことを見出した。すなわち、本発明の自動車排気ガス浄
化用触媒の製造方法は、(i) アンモニア水溶液にシリコ
アルミノフォスフェート(SAPO)を混合することに
よってアンモニウムイオン(NH4 + ) によりイオン交
換し、NH4 型SAPOを形成すること、(ii)触媒金属
を含む水溶液にアンモニア水を添加することによってア
ンミン錯体均一分散液を形成し、この分散液に酸を添加
しpH6〜8の範囲に調整した分散液を形成すること、
次いで(iii) 前記NH4 型SAPOと前記分散液を混合
し、触媒金属をイオン交換によりSAPOに担持させる
こと、を特徴とするものである。
Further, in the above method, it was found that it is possible to further increase the supported amount of the catalytic metal by using the catalytic metal in the form of a uniform ammine complex and performing ion exchange. That is, the method for producing a catalyst for purifying automobile exhaust gas according to the present invention comprises: (i) mixing an aqueous ammonia solution with silicoaluminophosphate (SAPO) for ion exchange with ammonium ions (NH 4 + ), and NH 4 -type SAPO And (ii) adding ammonia water to an aqueous solution containing a catalytic metal to form an ammine complex uniform dispersion liquid, and adding an acid to this dispersion liquid to form a dispersion liquid adjusted to a pH range of 6 to 8. What to do,
Then, (iii) the NH 4 type SAPO is mixed with the dispersion, and the catalytic metal is supported on the SAPO by ion exchange.

【0011】本発明の方法において触媒の担体として用
いられるSAPOとしては、細孔が均一であり、約3Å
より大きな直径を有し、無水型であって、化学組成が下
式 (Six Aly z )O2 (上式中、x+y+z=1)で表されるものである。
The SAPO used as a catalyst carrier in the method of the present invention has uniform pores and has a pore size of about 3 Å.
Has a larger diameter, a anhydrous form, in which chemical composition is represented by the following formula (Si x Al y P z) O 2 ( In the above formula, x + y + z = 1 ).

【0012】前記SAPOの細孔径としては、NOx
子径よりもわずかに大きい約5〜10Åが好ましい。SA
PO中のSiの割合は、0.01≦x<0.8 、好ましくは0.
05〜0.25である。この割合が0.05以下では担体の固体酸
性が低く、活性金属の担持能が低下してしまう。一方、
この割合が0.25以上になると、耐熱性が低下するため望
ましくない。
The pore diameter of the SAPO is preferably about 5 to 10 Å, which is slightly larger than the NO x molecular diameter. SA
The proportion of Si in PO is 0.01 ≦ x <0.8, preferably 0.
It is from 05 to 0.25. When this ratio is 0.05 or less, the solid acidity of the carrier is low, and the ability to support the active metal is reduced. on the other hand,
If this ratio is 0.25 or more, the heat resistance decreases, which is not desirable.

【0013】SAPOは通常の方法、例えば特公平3−
72010 号公報に記載の方法によって合成してよい。すな
わち、リン酸塩、水和アルミナ及びシリカゾル等を出発
原料として用い、これらを均一に混合し、該混合物に細
孔構造を規定するために有機テンプレート化剤を混入
し、均一になるように攪拌後、水熱合成によりSAPO
粉末を得る。SAPOとしては、特公平3−72010 号公
報に記載されているSAPO−34が、得られる触媒と
しての機能の点から好ましい。
SAPO is an ordinary method, for example, Japanese Patent Publication No.
It may be synthesized by the method described in 72010. That is, phosphate, hydrated alumina, silica sol, etc. are used as starting materials, these are uniformly mixed, and an organic templating agent is mixed into the mixture to define the pore structure, and the mixture is stirred to be uniform. Later, SAPO by hydrothermal synthesis
Get a powder. As SAPO, SAPO-34 described in Japanese Patent Publication No. 3-72010 is preferable from the viewpoint of the function as the obtained catalyst.

【0014】本発明の方法において、まず上記のSAP
O粉末をアンモニウム水溶液に混合することにより、S
APOに結合しているプロトンをアンモニウムイオンと
イオン交換させ、NH4 型SAPOを得る。この際、p
Hが4以上8未満の範囲内にあることが好ましい。pH
4未満ではH+ 濃度が高すぎ、イオン交換が進行しにく
く、pH8以上ではSAPOの結晶構造が破壊してしま
うことがあるからである。
In the method of the present invention, first, the above SAP
By mixing O powder with an aqueous ammonium solution, S
The proton bound to APO is ion-exchanged with ammonium ion to obtain NH 4 type SAPO. At this time, p
It is preferable that H is in the range of 4 or more and less than 8. pH
If it is less than 4, the H + concentration is too high, and ion exchange is difficult to proceed, and if the pH is 8 or more, the crystal structure of SAPO may be destroyed.

【0015】次いで、上記のSAPO粉末に通常のイオ
ン交換法により触媒金属を担持させる。すなわち、触媒
金属の塩の水溶液中に上記NH4 型SAPOを加え、触
媒金属とアンモニウムイオンをイオン交換させる。この
際もpHは上記と同様の理由により、4以上8未満の範
囲内にあることが好ましく、pH6であることが特に好
ましい。触媒金属の塩の濃度は0.01〜0.2 規定であるこ
とが好ましい。0.01規定未満では薄すぎてイオン交換の
反応が進みにくく、0.2 規定より高いと塩が完全に溶解
せず、イオン交換ではなく触媒金属の凝集物が吸着して
しまうことがあるからである。触媒金属としては、イオ
ン半径がSAPOの細孔より小さく、好ましくは4オン
グストローム未満であるものであり、例えば1A〜7A
族、8族、1B〜2B族の元素であり、好ましくはこれ
らの族の第4及び第5周期の元素である。銅、コバル
ト、ニッケル及びマンガンが特に好ましい。また、塩と
しては酢酸塩が好ましい。それは弱酸であるためpH調
整が容易であるからである。
Then, a catalytic metal is supported on the above SAPO powder by a usual ion exchange method. That is, the above-mentioned NH 4 type SAPO is added to the aqueous solution of the salt of the catalytic metal to ion-exchange the catalytic metal with ammonium ions. In this case also, the pH is preferably in the range of 4 or more and less than 8 for the same reason as above, and particularly preferably pH 6. The concentration of the salt of the catalytic metal is preferably 0.01 to 0.2 N. If it is less than 0.01 N, the ion exchange reaction is difficult to proceed because it is too thin, and if it is more than 0.2 N, the salt may not be completely dissolved and the aggregate of the catalyst metal may be adsorbed instead of ion exchange. The catalyst metal has an ionic radius smaller than that of the pores of SAPO, and preferably less than 4 angstrom, for example, 1A to 7A.
It is an element of Group 8, Group 1B to 2B, and is preferably an element of the 4th and 5th periods of these groups. Copper, cobalt, nickel and manganese are particularly preferred. In addition, acetate is preferable as the salt. This is because the pH is easy to adjust because it is a weak acid.

【0016】また、本発明の他の態様において、触媒金
属の塩の水溶液にアンモニア水を添加することによりp
Hを10以上に調整して均一に分散したアンミン錯体を形
成させる。このアンミン錯体分散液に酸、例えば酢酸も
しくは硝酸を加えpHを6〜7に調整し、この分散液を
前記NH4 型SAPOと混合することにより、触媒金属
とアンモニウムイオンをイオン交換させる。
In another embodiment of the present invention, by adding aqueous ammonia to the aqueous solution of the salt of the catalytic metal, p
The H is adjusted to 10 or more to form a uniformly dispersed ammine complex. An acid, for example, acetic acid or nitric acid is added to the ammine complex dispersion liquid to adjust the pH to 6 to 7, and the dispersion liquid is mixed with the NH 4 type SAPO to ion-exchange the catalyst metal and ammonium ions.

【0017】以上のようにして得られた粉末状の触媒
は、そのまま用いてよく、又は該触媒粉末にアルミナゾ
ルやシリカゾル等のバインダーを添加し、所定の形状に
成形したり、水を加えてスラリー状として、ハニカム等
の形状の耐火性基体上に塗布して用いてもよい。
The powdery catalyst obtained as described above may be used as it is, or a binder such as alumina sol or silica sol may be added to the catalyst powder to form a desired shape, or water may be added to form a slurry. As a shape, it may be applied on a refractory substrate in the shape of a honeycomb or the like and used.

【0018】[0018]

【作用】SAPOはSi、Al、P及びOから構成さ
れ、孔径4Åの3次元構造を有する人造のマイクロポア
クリスタルである。これはZSM−5のゼオライトと同
様に固体酸点を有しており、この固体酸点にH+ 、Na
+ 等のイオンが存在している。このプロトンは直に触媒
金属とイオン交換することが困難であるため、本発明で
はこのプロトンをまずアンモニウムイオンとイオン交換
させ、次いでこのアンモニウムイオンを触媒金属とイオ
ン交換させることにより、触媒金属の担持量を高くする
ことができるのである。触媒金属をイオン交換させる際
に、触媒金属の塩溶液にアンモニア水を加えてpHを10
以上にすることにより、触媒金属は均一なアンミン錯体
の形状をとり、この錯体を用いることによりさらに触媒
金属の担持量を高めることが可能になる。
FUNCTION SAPO is an artificial micropore crystal composed of Si, Al, P and O and having a three-dimensional structure with a pore diameter of 4Å. Like ZSM-5 zeolite, it has a solid acid point, and H + and Na are added to this solid acid point.
Ions such as + are present. Since it is difficult to directly ion-exchange this proton with the catalyst metal, in the present invention, this proton is first ion-exchanged with ammonium ion, and then this ammonium ion is ion-exchanged with the catalyst metal to support the catalyst metal. The quantity can be increased. When ion-exchanging the catalytic metal, pH is adjusted to 10 by adding aqueous ammonia to the catalytic metal salt solution.
By the above, the catalytic metal takes the form of a uniform ammine complex, and by using this complex, the supported amount of the catalytic metal can be further increased.

【0019】触媒金属イオンとアンモニウムイオンと
は、アンミン錯体を形成しやすいため、SAPOの細孔
の固体酸点にイオン交換させることができる。その際、
アンモニウムイオンが消費され、イオン交換液のpHが
酸性側となるので、pH6〜8に調整し、アンモニウム
イオンを補給させ、イオン交換を促進する。これによ
り、触媒金属を細孔内の固体酸点に吸引でき、イオン交
換反応が促進される。
Since the catalytic metal ion and the ammonium ion easily form an ammine complex, they can be ion-exchanged with the solid acid sites in the pores of SAPO. that time,
Since the ammonium ions are consumed and the pH of the ion exchange solution is on the acidic side, the pH is adjusted to 6 to 8 to replenish the ammonium ions and promote the ion exchange. As a result, the catalytic metal can be attracted to the solid acid points in the pores, and the ion exchange reaction is promoted.

【0020】[0020]

【実施例】本発明を下記実施例により更に詳細に説明す
るが、本発明はこれらに制限されるものではない。
The present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the invention.

【0021】実施例1 200 ℃×7日間で水熱合成し、600 ℃×6時間の仮焼に
より得たSAPO−34の粉末10g を、アンモニア水を添
加することによりpH6に調整した水溶液200ml に加
え、攪拌機により均一に混合した。均一になった後、ア
ンモニア水を加えpH6に調整し、室温において24時間
攪拌した。その後3000rpm ×5分の遠心分離により固形
物を回収し、室温において乾燥し、NH4 型SAPO−
34粉末を得た。
Example 1 10 g of SAPO-34 powder hydrothermally synthesized at 200 ° C. for 7 days and calcined at 600 ° C. for 6 hours was added to 200 ml of an aqueous solution adjusted to pH 6 by adding aqueous ammonia. In addition, the mixture was uniformly mixed with a stirrer. After the mixture became homogeneous, aqueous ammonia was added to adjust the pH to 6, and the mixture was stirred at room temperature for 24 hours. Then, the solid matter was recovered by centrifugation at 3000 rpm for 5 minutes, dried at room temperature, and NH 4 type SAPO-
34 powders were obtained.

【0022】次に、酢酸銅を水に溶解し、0.03規定の酢
酸銅水溶液を製造し、これにアンモニア水を添加しpH
6に調整した。この溶液に上記NH4 型SAPO−34粉
末を10g 加え、混合し、再びpHを6に調整した。この
状態で室温において24時間攪拌し、遠心分離を行い、次
いで真空乾燥し、最後に500 ℃×3時間の仮焼を行い、
Cu型SAPO−34を得た。
Next, copper acetate is dissolved in water to prepare a 0.03N copper acetate aqueous solution, to which aqueous ammonia is added to adjust the pH.
Adjusted to 6. To this solution, 10 g of the above NH 4 type SAPO-34 powder was added, mixed, and the pH was adjusted to 6 again. In this state, the mixture is stirred at room temperature for 24 hours, centrifuged, dried in vacuum, and finally calcined at 500 ° C for 3 hours.
Cu type SAPO-34 was obtained.

【0023】こうして得られたCu型SAPO−34の組
成をIPCの定量分析により調べ、Cuの担持量を測定
した。また、このCu型SAPO−34粉末を直径1mmの
ペレットに圧縮成形し、このペレット触媒を石英管にセ
ットし、以下の表1に示すモデルガスを、図1に示すモ
デルガス評価装置において、7リットル/分、SV=10
万/hで流し、触媒入口と出口のNO濃度を測定すること
によりNO浄化率を求めた。結果を表2に示す。なお、
NO浄化率は下式より計算した。 NO浄化率(%)=100 ×(入りガス濃度−出ガス濃
度)/入りガス濃度
The composition of the Cu-type SAPO-34 thus obtained was investigated by quantitative analysis of IPC, and the amount of Cu supported was measured. Further, this Cu-type SAPO-34 powder was compression-molded into pellets having a diameter of 1 mm, the pellet catalyst was set in a quartz tube, and the model gas shown in Table 1 below was used in the model gas evaluation apparatus shown in FIG. L / min, SV = 10
The NO purification rate was determined by measuring the NO concentration at the catalyst inlet and outlet at a flow rate of 10,000 / h. The results are shown in Table 2. In addition,
The NO purification rate was calculated by the following formula. NO purification rate (%) = 100 x (inlet gas concentration-outlet gas concentration) / inlet gas concentration

【0024】[0024]

【表1】 [Table 1]

【0025】実施例2 実施例1と同様にしてSAPO−34にアンモニア水を加
え、pHを6に調整し室温において24時間攪拌し、これ
を遠心分離せず引き続いて酢酸銅を0.03規定となるよう
に加え、実施例1と同様にしてCu型SAPO−34を得
た。このCu型SAPO−34について、実施例1と同様
にしてCu担持量及びNO浄化率を測定した。結果を表
2に示す。
Example 2 In the same manner as in Example 1, aqueous ammonia was added to SAPO-34 to adjust the pH to 6, and the mixture was stirred at room temperature for 24 hours, which was subsequently not centrifuged and copper acetate was adjusted to 0.03N. In the same manner as above, Cu-type SAPO-34 was obtained in the same manner as in Example 1. For this Cu-type SAPO-34, the amount of supported Cu and the NO purification rate were measured in the same manner as in Example 1. The results are shown in Table 2.

【0026】実施例3 実施例1と同様にして真空乾燥後のNH4 型SAPO−
34粉末を製造した。次に酢酸銅を0.02規定及び酢酸コバ
ルトを0.02規定の濃度となるように酢酸銅及び酢酸コバ
ルトの水溶液を調製し、これにアンモニア水を添加しp
Hを6に調整し、この溶液に前記NH4 型SAPO−34
粉末を10g 加え、実施例1と同様にしてCu、Co型S
APO−34を得た。これについて実施例1と同様にして
Cu及びCo担持量及びNO浄化率を測定した。結果を
表2に示す。
Example 3 NH 4 SAPO-after vacuum drying in the same manner as in Example 1
34 powders were produced. Next, an aqueous solution of copper acetate and cobalt acetate is prepared so that the concentration of copper acetate is 0.02 N and the concentration of cobalt acetate is 0.02 N.
H was adjusted to 6 and the NH 4 type SAPO-34 was added to this solution.
Add 10 g of the powder, and in the same manner as in Example 1, Cu, Co type S
APO-34 was obtained. For this, the amounts of Cu and Co carried and the NO purification rate were measured in the same manner as in Example 1. The results are shown in Table 2.

【0027】比較例1〜6 実施例において使用したSAPO−34の粉末を用い、表
2に示す条件においてあるいは直接酢酸銅溶液にSAP
O−34の粉末を加えpH調整することなくイオン交換を
行った。得られた触媒について実施例1と同様にして評
価し、結果を表2に示す。
Comparative Examples 1 to 6 Using the powder of SAPO-34 used in Examples, SAP was directly added to the copper acetate solution under the conditions shown in Table 2.
O-34 powder was added to carry out ion exchange without adjusting the pH. The obtained catalyst was evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】実施例1〜3ではCu及びCoの担持量が
2重量%以上であり、X線回折、FE−SEMによる観
察によってもすべてイオン交換されていた。担持量が増
加するに従いNO浄化率が向上した。これに対し比較例
では担持量が2重量%未満であり、又は比較例4のよう
にイオン交換ではなく凝集した金属元素の吸着が13.5重
量%と多くなり、触媒表面が覆われ、NO浄化率が低下
した。
In Examples 1 to 3, the supported amounts of Cu and Co were 2% by weight or more, and all were ion-exchanged by observation with X-ray diffraction and FE-SEM. The NO purification rate improved as the supported amount increased. On the other hand, in Comparative Example, the supported amount is less than 2% by weight, or as in Comparative Example 4, adsorption of aggregated metal elements instead of ion exchange increases to 13.5% by weight, the catalyst surface is covered, and the NO purification rate is increased. Has dropped.

【0030】実施例4 実施例1と同様にしてNH4 型SAPO−34粉末を製造
した。次に、酢酸銅を水に溶解し、0.03規定の酢酸銅水
溶液を製造し、これにアンモニア水を添加しpHを10.5
にし、銅アンミン錯体を生成させた。これに酢酸を添加
し、pHを7に調整した後、この溶液に上記NH4 型S
APO−34粉末を10g 加え、混合し、再びpHを7に調
整した。この状態で室温において24時間攪拌し、遠心分
離を行い、次いで真空乾燥し、最後に500 ℃×3時間の
仮焼を行い、Cu型SAPO−34を得た。
Example 4 NH 4 type SAPO-34 powder was produced in the same manner as in Example 1. Next, copper acetate is dissolved in water to produce a 0.03N copper acetate aqueous solution, and ammonia water is added to adjust the pH to 10.5.
To produce a copper ammine complex. Acetic acid was added to this to adjust the pH to 7, and then the above NH 4 type S was added to this solution.
10 g of APO-34 powder was added, mixed and the pH was adjusted to 7 again. In this state, the mixture was stirred at room temperature for 24 hours, centrifuged, dried in vacuum, and finally calcined at 500 ° C. for 3 hours to obtain Cu-type SAPO-34.

【0031】このCu型SAPO−34について、実施例
1と同様にしてCu担持量及びNO浄化能を測定した。
結果を表3に示す。
With respect to this Cu-type SAPO-34, the amount of supported Cu and the NO purifying ability were measured in the same manner as in Example 1.
The results are shown in Table 3.

【0032】実施例5 酢酸銅の0.03規定水溶液を製造し、これにアンモニアを
添加し、pHを10に調整し、これに硝酸を加えてpHを
6.5 に調整した。これを、実施例1と同様にしてSAP
O−34にアンモニア水を加え、pHを6に調整し室温に
おいて24時間攪拌し、遠心分離しない混合液に加え、実
施例4と同様にしてCu型SAPO−34を得た。そして
実施例1と同様にしてCu担持量及びNO浄化能を測定
した。結果を表3に示す。
Example 5 A 0.03N aqueous solution of copper acetate was prepared, ammonia was added to this to adjust the pH to 10, and nitric acid was added to this to adjust the pH.
Adjusted to 6.5. This is the same as in the first embodiment, SAP
Aqueous ammonia was added to O-34 to adjust the pH to 6, and the mixture was stirred at room temperature for 24 hours, added to the mixed solution without centrifugation, and Cu-type SAPO-34 was obtained in the same manner as in Example 4. Then, the amount of supported Cu and the NO purifying ability were measured in the same manner as in Example 1. The results are shown in Table 3.

【0033】実施例6 実施例1と同様にしてNH4 型SAPO−34粉末を製造
した。次いで0.02規定酢酸銅及び0.02規定酢酸コバルト
の水溶液を製造し、これにアンモニア水を添加しpHを
11に調整し、実施例4 と同様にしてCu、Co型SAP
O−34を製造し、実施例4と同様にして評価した。結果
を表3に示す。
Example 6 In the same manner as in Example 1, an NH 4 type SAPO-34 powder was produced. Next, an aqueous solution of 0.02N copper acetate and 0.02N cobalt acetate is produced, and ammonia water is added to this to adjust the pH.
Adjusted to 11, and in the same manner as in Example 4, Cu, Co type SAP
O-34 was produced and evaluated in the same manner as in Example 4. The results are shown in Table 3.

【0034】比較例7〜12 実施例において使用したSAPO−34の粉末を用い、表
3に示す条件においてあるいは直接酢酸銅溶液にSAP
O−34の粉末を加えpH調整することなくイオン交換を
行った。得られた触媒について実施例4と同様にして評
価し、結果を表3に示す。
Comparative Examples 7 to 12 Using the powder of SAPO-34 used in Examples, SAP was directly added to the copper acetate solution under the conditions shown in Table 3.
O-34 powder was added to carry out ion exchange without adjusting the pH. The obtained catalyst was evaluated in the same manner as in Example 4, and the results are shown in Table 3.

【0035】[0035]

【表3】 [Table 3]

【0036】実施例1〜3と同様に、実施例4〜6では
Cu及びCoの担持量が2重量%以上であり、X線回
折、FE−SEMによる観察によってもすべてイオン交
換されていた。担持量が増加するに従いNO浄化率が向
上した。これに対し比較例では担持量が2重量%未満で
あり、又は比較例10のようにイオン交換ではなく凝集し
た金属元素の吸着が14.3重量%と多くなり、触媒表面が
覆われ、NO浄化率が低下した。
Similar to Examples 1 to 3, in Examples 4 to 6, the supported amounts of Cu and Co were 2% by weight or more, and all were ion-exchanged by observation with X-ray diffraction and FE-SEM. The NO purification rate improved as the supported amount increased. On the other hand, in Comparative Example, the supported amount is less than 2% by weight, or as in Comparative Example 10, adsorption of aggregated metal elements instead of ion exchange increases to 14.3% by weight, the catalyst surface is covered, and the NO purification rate is increased. Has dropped.

【0037】[0037]

【発明の効果】本発明の方法は、触媒担体であるSAP
Oをまずアンモニアでイオン交換し、次いでこのアンモ
ニアを触媒金属でイオン交換し、2段階でイオン交換を
行うことにより触媒金属の担持量を高めることが可能と
なった。また触媒金属をアンミン錯体形状で用いてイオ
ン交換することにより、さらに担持量を高めることが可
能となった。
INDUSTRIAL APPLICABILITY The method of the present invention uses SAP as a catalyst carrier
By carrying out ion exchange of O with ammonia first, then ion exchange of this ammonia with catalyst metal, and performing ion exchange in two stages, it became possible to increase the amount of catalyst metal supported. In addition, by carrying out ion exchange using a catalytic metal in the form of an ammine complex, it became possible to further increase the supported amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の触媒の評価に用いる装置の略図であ
る。
FIG. 1 is a schematic diagram of an apparatus used to evaluate the catalyst of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 102 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B01D 53/36 102 D

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (i) アンモニア水溶液にシリコアルミノ
フォスフェート(SAPO)を混合することによってア
ンモニウムイオン(NH4 + ) によりイオン交換し、N
4 型SAPOを形成すること、次いで (ii)前記NH4 型SAPOを触媒金属を含む水溶液に添
加することによって触媒金属イオンによりイオン交換
し、SAPOに触媒金属を担持させること、を特徴とす
る排気ガス浄化用触媒の製造方法。
1. (i) A mixture of silicoaluminophosphate (SAPO) is mixed with an aqueous ammonia solution to carry out ion exchange with ammonium ions (NH 4 + ).
Forming H 4 type SAPO, and then (ii) adding the NH 4 type SAPO to an aqueous solution containing the catalytic metal to cause ion exchange with catalytic metal ions and to support the catalytic metal on SAPO. Exhaust gas purification catalyst manufacturing method.
【請求項2】 (i) アンモニア水溶液にシリコアルミノ
フォスフェート(SAPO)を混合することによってア
ンモニウムイオン(NH4 + ) によりイオン交換し、N
4 型SAPOを形成すること、 (ii)触媒金属を含む水溶液にアンモニア水を添加するこ
とによってアンミン錯体均一分散液を形成し、この分散
液に酸を添加しpH6〜8の範囲に調整した分散液を形
成すること、次いで (iii) 前記NH4 型SAPOと前記分散液を混合し、触
媒金属をイオン交換によりSAPOに担持させること、 を特徴とする排気ガス浄化用触媒の製造方法。
2. (i) Ion-exchange with ammonium ion (NH 4 + ) by mixing silicoaluminophosphate (SAPO) with an aqueous ammonia solution,
Forming H 4 type SAPO, and (ii) adding ammonia water to an aqueous solution containing a catalytic metal to form an ammine complex uniform dispersion liquid, and adding an acid to this dispersion liquid to adjust the pH to a range of 6 to 8. A method for producing an exhaust gas purifying catalyst, comprising forming a dispersion liquid, and then (iii) mixing the NH 4 -type SAPO and the dispersion liquid and supporting the catalytic metal on the SAPO by ion exchange.
JP5306587A 1993-12-07 1993-12-07 Production of exhaust gas purifying catalyst Pending JPH07155614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5306587A JPH07155614A (en) 1993-12-07 1993-12-07 Production of exhaust gas purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5306587A JPH07155614A (en) 1993-12-07 1993-12-07 Production of exhaust gas purifying catalyst

Publications (1)

Publication Number Publication Date
JPH07155614A true JPH07155614A (en) 1995-06-20

Family

ID=17958867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5306587A Pending JPH07155614A (en) 1993-12-07 1993-12-07 Production of exhaust gas purifying catalyst

Country Status (1)

Country Link
JP (1) JPH07155614A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059849A1 (en) * 2002-01-03 2003-07-24 Exxonmobil Chemical Patents Inc. Stabilisation of acid catalysts
JP2006247460A (en) * 2005-03-08 2006-09-21 Catalysts & Chem Ind Co Ltd Manufacturing method of adsorbent
WO2010084930A1 (en) * 2009-01-22 2010-07-29 三菱化学株式会社 Catalyst for removing nitrogen oxides and method for producing same
JP2011510899A (en) * 2008-01-31 2011-04-07 ビー・エイ・エス・エフ、コーポレーション Catalysts, systems and methods utilizing non-zeolitic metals comprising molecular sieves having a CHA crystal structure
WO2011061841A1 (en) * 2009-11-19 2011-05-26 イビデン株式会社 Honeycomb structure and exhaust gas purification apparatus
JP2011125852A (en) * 2009-11-19 2011-06-30 Ibiden Co Ltd Honeycomb structure and exhaust gas cleaning apparatus
JP2011125793A (en) * 2009-12-18 2011-06-30 Jgc Catalysts & Chemicals Ltd Method for manufacturing metal-bearing crystalline silica aluminophosphate catalyst, and metal-bearing crystalline silica aluminophosphate catalyst
WO2012029159A1 (en) * 2010-09-02 2012-03-08 イビデン株式会社 Silicoalumina phosphate salt, honeycomb structure, and exhaust gas purification device
WO2012158239A1 (en) * 2011-02-28 2012-11-22 Johnson Matthey Public Limited Company High-temperature scr catalyst
JP2014504255A (en) * 2010-12-22 2014-02-20 クラリアント プロダクツ (ドイチェランド) ゲーエムベーハー Method for producing titano- (silico) -alumino-phosphate
JP2015062874A (en) * 2013-09-26 2015-04-09 株式会社豊田中央研究所 NOx SELECTIVE REDUCTION CATALYST, METHOD FOR PRODUCING THE SAME AND NOx PURIFICATION METHOD USING THE SAME
US9138732B2 (en) 2007-02-27 2015-09-22 Basf Corporation Copper CHA zeolite catalysts
US9802182B2 (en) 2013-03-13 2017-10-31 Basf Corporation Stabilized metal-exchanged SAPO material
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059849A1 (en) * 2002-01-03 2003-07-24 Exxonmobil Chemical Patents Inc. Stabilisation of acid catalysts
US6897180B2 (en) 2002-01-03 2005-05-24 Exxonmobil Chemical Patents Inc. Stabilization of acid catalysts
US7193122B2 (en) 2002-01-03 2007-03-20 Exxonmobil Chemical Patents Inc. Stabilization of acid catalysts
JP2006247460A (en) * 2005-03-08 2006-09-21 Catalysts & Chem Ind Co Ltd Manufacturing method of adsorbent
US9839905B2 (en) 2007-02-27 2017-12-12 Basf Corporation Copper CHA zeolite catalysts
US11845067B2 (en) 2007-02-27 2023-12-19 Basf Corporation Copper CHA zeolite catalysts
US11529619B2 (en) 2007-02-27 2022-12-20 Basf Corporation Copper CHA zeolite catalysts
US10654031B2 (en) 2007-02-27 2020-05-19 Basf Corporation Copper CHA zeolite catalysts
US9138732B2 (en) 2007-02-27 2015-09-22 Basf Corporation Copper CHA zeolite catalysts
US9656254B2 (en) 2007-02-27 2017-05-23 Basf Corporation Copper CHA zeolite catalysts
US9162218B2 (en) 2007-02-27 2015-10-20 Basf Corporation Copper CHA zeolite catalysts
JP2011510899A (en) * 2008-01-31 2011-04-07 ビー・エイ・エス・エフ、コーポレーション Catalysts, systems and methods utilizing non-zeolitic metals comprising molecular sieves having a CHA crystal structure
US10105649B2 (en) 2008-01-31 2018-10-23 Basf Corporation Methods utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure
US11660585B2 (en) 2008-11-06 2023-05-30 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
WO2010084930A1 (en) * 2009-01-22 2010-07-29 三菱化学株式会社 Catalyst for removing nitrogen oxides and method for producing same
US8961886B2 (en) 2009-11-19 2015-02-24 Ibiden Co., Ltd. Honeycomb structure
US8691157B2 (en) 2009-11-19 2014-04-08 Ibiden Co., Ltd. Honeycomb structure and exhaust gas converter
JP2011125852A (en) * 2009-11-19 2011-06-30 Ibiden Co Ltd Honeycomb structure and exhaust gas cleaning apparatus
WO2011061841A1 (en) * 2009-11-19 2011-05-26 イビデン株式会社 Honeycomb structure and exhaust gas purification apparatus
JP2011125793A (en) * 2009-12-18 2011-06-30 Jgc Catalysts & Chemicals Ltd Method for manufacturing metal-bearing crystalline silica aluminophosphate catalyst, and metal-bearing crystalline silica aluminophosphate catalyst
US8808633B2 (en) 2010-09-02 2014-08-19 Ibiden Co., Ltd. Silico-alumino phosphate, honeycomb structural body and exhaust gas conversion apparatus
WO2012029159A1 (en) * 2010-09-02 2012-03-08 イビデン株式会社 Silicoalumina phosphate salt, honeycomb structure, and exhaust gas purification device
JP2014504255A (en) * 2010-12-22 2014-02-20 クラリアント プロダクツ (ドイチェランド) ゲーエムベーハー Method for producing titano- (silico) -alumino-phosphate
WO2012158239A1 (en) * 2011-02-28 2012-11-22 Johnson Matthey Public Limited Company High-temperature scr catalyst
US9802182B2 (en) 2013-03-13 2017-10-31 Basf Corporation Stabilized metal-exchanged SAPO material
US9931620B2 (en) 2013-03-13 2018-04-03 Basf Corporation Stabilized metal-exchanged SAPO material
JP2015062874A (en) * 2013-09-26 2015-04-09 株式会社豊田中央研究所 NOx SELECTIVE REDUCTION CATALYST, METHOD FOR PRODUCING THE SAME AND NOx PURIFICATION METHOD USING THE SAME

Similar Documents

Publication Publication Date Title
CA2032799C (en) Catalyst for and method of purifying oxygen-excess exhaust gas
JP3086015B2 (en) Exhaust gas purification catalyst
US5270024A (en) Process for reducing nitrogen oxides from exhaust gas
JP2660411B2 (en) Method for reducing and removing nitrogen oxides in exhaust gas
EP0396085B1 (en) Catalyst for purification of exhaust gases
JPH0763631B2 (en) Exhaust gas purification catalyst manufacturing method
JPH07155614A (en) Production of exhaust gas purifying catalyst
JPH01135541A (en) Catalyst for purifying exhaust gas
JP2529739B2 (en) Exhaust gas purification catalyst and method
JP2000024505A (en) Catalyst for selective nitrogen oxide reduction having wide active temperature range
JPH04219141A (en) Exhaust gas purification catalyst
JPH07100386A (en) Catalyst for purification of exhaust gas
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
JP2851444B2 (en) Exhaust gas purification method
JP3114982B2 (en) Exhaust gas purification catalyst and method of using the same
JP3362401B2 (en) Exhaust gas purification catalyst
JP2939484B2 (en) Exhaust gas purification method
JP3221706B2 (en) Nitrogen oxide removal catalyst and exhaust gas purification method using the same
JP2921130B2 (en) Exhaust gas purification catalyst
JP3482661B2 (en) Nitrogen oxide removal method
JPH0557196A (en) Production of catalyst for purifying exhaust gas
JP2901295B2 (en) Exhaust gas purification catalyst and method of using the same
JP2802335B2 (en) Method for producing exhaust purification catalyst
JP3026355B2 (en) Exhaust gas purification catalyst
JPH05103949A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide with the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term