JPH07155568A - Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane - Google Patents

Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane

Info

Publication number
JPH07155568A
JPH07155568A JP30790093A JP30790093A JPH07155568A JP H07155568 A JPH07155568 A JP H07155568A JP 30790093 A JP30790093 A JP 30790093A JP 30790093 A JP30790093 A JP 30790093A JP H07155568 A JPH07155568 A JP H07155568A
Authority
JP
Japan
Prior art keywords
hollow fiber
gas
membrane
hollow yarn
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30790093A
Other languages
Japanese (ja)
Inventor
Rinmei Ou
林明 王
Takanori Anazawa
孝典 穴澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP30790093A priority Critical patent/JPH07155568A/en
Publication of JPH07155568A publication Critical patent/JPH07155568A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a hollow yarn inhomogeneous membrane excellent in separation performance and having a non-porous layer formed on the inner surface by making the oxygen concn. of a gas used as a core agent higher than the oxygen concn. of a gas in contact with the outside of a hollow yarn precursor in fused state and below the oxygen concn. of air. CONSTITUTION:A hollow yarn like molding non-porous as the whole is obtained by melt-spinning a crystalline thermoplastic polymer into hollow yarn. That is, the hollow yarn is obtained by using a hollow yarn spinning nozzle, melt- extruding the polymer with the gas as the core and cooling to solidify while ventilating. At this case, the oxygen concn. of the gas used as the core agent is made higher than the oxygen concn. of the gas in contact with the outside of the hollow yarn precursor in fused state and below the oxygen concn. of air. As a result, the non-porous layer is easily formed on the inner surface of the hollow yarn inhonaogenious membrane and is used for an application for allowing the inside of the hollow yarn inhomogeneous membrane to contact with a liquid, such as a membrane type artificial lung and a pervaporation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、膜型人工肺、液体から
の脱気、液体への気体溶解、パーベ−パレ−ション、気
体分離、除湿などの用に供せられる、内表面に非多孔層
を有する中空糸不均質膜の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a membrane oxygenator, a degasser from a liquid, a gas dissolution into a liquid, a pervaporation, a gas separation, a dehumidification, etc. The present invention relates to a method for producing a hollow fiber heterogeneous membrane having a porous layer.

【0002】[0002]

【従来の技術】結晶性の熱可塑性重合体を中空糸状に溶
融紡糸し、次いで延伸して、中空糸の少なくとも一方の
表面を非多孔質に保ちつつ、それ以外の中空糸壁部を多
孔質化する中空糸不均質膜の製法(以下溶融法と称す
る)が知られている(例えば特開昭59−19670
6)。溶融法の溶融紡糸工程においては、ノズルから押
し出された溶融樹脂は気体により冷却され固化するが、
冷却用気体としては通常空気が用いられてきた。また中
空糸状に溶融紡糸するために、気体を芯剤として溶融紡
押し出しされるが、芯剤気体として空気や窒素が使用さ
れていた。
2. Description of the Related Art A crystalline thermoplastic polymer is melt-spun into a hollow fiber and then stretched to keep at least one surface of the hollow fiber non-porous while the other hollow fiber walls are made porous. A method for producing a hollow fiber heterogeneous membrane (hereinafter referred to as a melting method) is known (for example, JP-A-59-19670).
6). In the melt spinning process of the melting method, the molten resin extruded from the nozzle is cooled by gas and solidified,
Air has usually been used as the cooling gas. Further, in order to melt-spin into a hollow fiber shape, a gas is used as a core agent and melt-spun and extruded, but air and nitrogen have been used as the core agent gas.

【0003】[0003]

【発明が解決しようとする課題】中空糸不均質膜の内側
に液体を接触させる用途、例えば膜型人工肺、液体の脱
気、液体への気体の溶解、パーベ−パレ−ションなどの
用途に使用する場合や、中空糸不均質膜の内側から外側
へ気体や蒸気を透過させる用途、例えば窒素富化空気の
製造や気体の除湿などの用途に使用する場合には、中空
糸不均質膜の内表面に非多孔層が形成されていること
が、細孔内部への液体の充填や汚染物質による細孔の閉
塞がが生じにくいため好ましい。
For applications in which a liquid is brought into contact with the inside of a hollow fiber heterogeneous membrane, such as membrane oxygenator, deaeration of liquid, dissolution of gas in liquid, pervaporation, etc. When used or when used to permeate gas or vapor from the inside to the outside of the hollow fiber heterogeneous membrane, for example, when producing nitrogen-enriched air or dehumidifying gas, the hollow fiber heterogeneous membrane It is preferable that a non-porous layer is formed on the inner surface because it is difficult for the liquid to fill the inside of the pores and the clogging of the pores due to contaminants.

【0004】しかし溶融法による中空糸不均質膜の製造
においては、中空糸の外表面に非多孔層が成形され易
く、内表面に非多孔層が形成される場合には、非多孔層
の厚みが厚くなりがちであり、また、外表面にも同時に
非多孔層が形成されがちであり、合計の非多孔層厚みが
厚くなるため、分離膜として性能の劣ったものとなって
いた。従って本発明が解決しようとする課題は、分離性
能の優れた非多孔層が内表面に形成された中空糸不均質
膜を製造することにある。
However, in the production of a hollow fiber heterogeneous membrane by the melting method, a non-porous layer is easily formed on the outer surface of the hollow fiber, and when a non-porous layer is formed on the inner surface, the thickness of the non-porous layer is large. And the non-porous layer is likely to be formed on the outer surface at the same time, and the total thickness of the non-porous layer is large, resulting in poor performance as a separation membrane. Therefore, the problem to be solved by the present invention is to produce a hollow fiber heterogeneous membrane in which a non-porous layer having excellent separation performance is formed on the inner surface.

【0005】[0005]

【課題を解決するための手段】本発明者等は、溶融法に
よる中空糸不均質膜の形成機構について鋭意研究した結
果、非多孔層の形成には、ノズルから押し出された溶融
状態にある中空糸前駆体に接触する気体の酸素濃度の影
響があることを見いだし、本発明に到達した。
Means for Solving the Problems As a result of intensive studies by the present inventors on the formation mechanism of a hollow fiber heterogeneous membrane by the melting method, the formation of a non-porous layer was found to be a hollow state in a molten state extruded from a nozzle. The inventors have found that there is an influence of the oxygen concentration of the gas that comes into contact with the yarn precursor, and arrived at the present invention.

【0006】即ち、本発明の要旨は、気体を芯剤として
中空糸ノズルから結晶性熱可塑性重合体を気体中に押し
出して中空糸状に溶融紡糸し、次いで延伸する内表面非
多孔層型中空糸不均質膜の製造方法であって、芯剤とし
て用いる気体の酸素濃度が、溶融状態にある中空糸前駆
体の外側に接触する気体の酸素濃度より高く、かつ空気
の酸素濃度以下であることを特徴とする内表面非多孔層
型中空糸不均質膜の製造方法にある。
That is, the gist of the present invention is to use an inner surface non-porous layer type hollow fiber in which a crystalline thermoplastic polymer is extruded into the gas from a hollow fiber nozzle using a gas as a core agent, melt-spun into a hollow fiber, and then stretched. A method for producing a heterogeneous membrane, wherein the oxygen concentration of the gas used as the core agent is higher than the oxygen concentration of the gas contacting the outside of the hollow fiber precursor in the molten state, and not more than the oxygen concentration of the air. A method for producing a hollow fiber heterogeneous membrane having a characteristic inner surface non-porous layer.

【0007】以下本発明をさらに詳細に説明する。不均
質膜は、強度を保つための支持体として働く多孔質層の
表面に、多孔質層と同一素材の非多孔層が一体成形され
た構造を有する膜である。本発明の製造方法により得ら
れる中空糸不均質膜は中空糸膜は、中空糸の内表面に非
多孔層(細孔を有さない層)を有し、内部及び外側が多
孔質層である内表面非多孔層型中空糸不均質膜である。
The present invention will be described in more detail below. The heterogeneous membrane is a membrane having a structure in which a non-porous layer made of the same material as the porous layer is integrally formed on the surface of the porous layer which functions as a support for maintaining strength. The hollow fiber heterogeneous membrane obtained by the production method of the present invention has a non-porous layer (a layer having no pores) on the inner surface of the hollow fiber, and the inner and outer sides are porous layers. It is an inner surface non-porous layer type hollow fiber heterogeneous membrane.

【0008】本発明に使用される重合体は結晶性熱可塑
性重合体である。重合体は到達結晶化度が30%以上の
ものであることが、優れた性能の不均質膜を製造する上
で好ましい。また、本発明の効果を十分発揮するために
は、本発明に使用される結晶性熱可塑性重合体は酸素に
よる酸化分解性を示す物であることが好ましい。
The polymer used in the present invention is a crystalline thermoplastic polymer. The polymer having an ultimate crystallinity of 30% or more is preferable for producing a heterogeneous film having excellent performance. Further, in order to fully exert the effects of the present invention, it is preferable that the crystalline thermoplastic polymer used in the present invention is a substance exhibiting oxidative decomposition by oxygen.

【0009】結晶性熱可塑性重合体の例としては、ポリ
エチレン、ポリプロピレン、ポリ−4−メチルペンテン
−1、ポリ−3−メチルブテン−1などのポリオレフィ
ン、ポリアセタ−ル、ポリオキシエチレン、ポリフェニ
レンオキサイドなどのポリエ−テル、ポリメチレンサル
ファイド、ポリエチレンサルファイド、などのポリチオ
エーテル、ポリ塩化ビニリデンなどの塩素含有ポリマ
ー、ポリフッ化ビニリデンなどのフッ素含有ポリマー、
ナイロン6、ナイロン66などのポリアミド、ポリエチ
レンテレフタレ−トなどのポリエステル、ポリスチレ
ン、などを挙げることができる。勿論これらの共重合体
であってもよい。
Examples of crystalline thermoplastic polymers include polyolefins such as polyethylene, polypropylene, poly-4-methylpentene-1 and poly-3-methylbutene-1, polyacetal, polyoxyethylene, polyphenylene oxide and the like. Polythioethers such as polyether, polymethylene sulfide, polyethylene sulfide, chlorine-containing polymers such as polyvinylidene chloride, fluorine-containing polymers such as polyvinylidene fluoride,
Examples thereof include polyamides such as nylon 6 and nylon 66, polyesters such as polyethylene terephthalate, polystyrene, and the like. Of course, these copolymers may be used.

【0010】これらの中でポリ−4−メチルペンテン−
1、および4−メチルペンテン−1を主要な成分とする
(50重量%以上含有する)共重合体が、気体透過速度
が高くかつ酸素/窒素の分離係数も高い上、到達結晶過
度が高く酸素による酸化分解性を示すため好ましい。4
−メチルペンテン−1を主要な成分とする共重合体の好
ましい共重合成分の例としては、エチレン、プロピレ
ン、ブテン−1、イソブチレン、ペンテン類、ヘキセン
類、その他のαオレフィンなどのオレフィン類が挙げら
れる。
Among these, poly-4-methylpentene-
A copolymer containing 1, and 4-methylpentene-1 as a main component (containing 50% by weight or more) has a high gas permeation rate and a high oxygen / nitrogen separation coefficient, and also has a high crystallinity excess. It is preferable because it exhibits oxidative decomposability. Four
-Examples of preferred copolymerization components of the copolymer having methylpentene-1 as a main component include olefins such as ethylene, propylene, butene-1, isobutylene, pentenes, hexenes, and other α-olefins. To be

【0011】本発明の製造方法は、まず結晶性熱可塑性
重合体(以下単に重合体と称する場合もある)を使用し
て中空糸を溶融紡糸し、全体が非多孔質の中空糸状成形
物を得る(以下これを中空糸と称する)。即ち、中空糸
紡糸ノズルを用いて、気体を芯として重合体を溶融押し
出しし、ドラフト(溶融状態での延伸)を掛けながら冷
却固化させることで中空糸を得る。本発明は、この際、
芯剤として用いる気体の酸素濃度を、溶融状態にある中
空糸前駆体の外側に接触する気体の酸素濃度より高く
し、かつ芯剤が空気の酸素濃度(約21モル%)以下と
することが特徴である。ここでいう溶融状態にある中空
糸前駆体とは、ノズルから押し出されて中空糸状になっ
ているが、まだ固化していない溶融重合体を言う。芯剤
として用いる気体の酸素濃度自体は空気の酸素濃度以下
であれば比較的任意に選択できるが、酸素濃度が低すぎ
ると内側非多孔層の形成が不十分となるため10モル%
以上、即ち10〜21モル%が好ましい。芯剤気体の酸
素以外の成分は任意である。例えば、窒素、炭酸ガス、
アルゴンなどが挙げられるが、窒素が好ましい。工業的
には芯剤気体は空気であることが好ましい。芯剤の酸素
濃度が空気の酸素濃度以下であっても、溶融状態にある
中空糸前駆体の外側に接触する気体の酸素濃度が芯剤の
酸素濃度以上である場合は、中空糸不均質膜の外側若し
くは両側が非多孔層となり易いため不適当である。
In the production method of the present invention, a hollow fiber is first melt-spun by using a crystalline thermoplastic polymer (which may be simply referred to as a polymer hereinafter) to form a hollow fiber-like molded article which is entirely non-porous. Obtained (hereinafter referred to as hollow fiber). That is, a hollow fiber spinning nozzle is used to melt and extrude a polymer with a gas as a core, and the polymer is cooled and solidified while being drafted (stretched in a molten state) to obtain a hollow fiber. The present invention is
The oxygen concentration of the gas used as the core may be higher than the oxygen concentration of the gas contacting the outside of the molten hollow fiber precursor, and the core may be equal to or lower than the oxygen concentration of air (about 21 mol%). It is a feature. The hollow fiber precursor in a molten state as used herein refers to a molten polymer which has been extruded from a nozzle to form a hollow fiber, but has not yet solidified. The oxygen concentration itself of the gas used as the core agent can be relatively arbitrarily selected as long as it is equal to or lower than the oxygen concentration of air. However, if the oxygen concentration is too low, the formation of the inner non-porous layer becomes insufficient, so that 10 mol%
Above, that is, 10 to 21 mol% is preferable. The components other than oxygen of the core agent gas are arbitrary. For example, nitrogen, carbon dioxide,
Argon and the like can be mentioned, but nitrogen is preferable. Industrially, the core gas is preferably air. Even if the oxygen concentration of the core agent is equal to or lower than that of air, if the oxygen concentration of the gas contacting the outside of the molten hollow fiber precursor is equal to or higher than the oxygen concentration of the core agent, the hollow fiber heterogeneous membrane It is unsuitable because a non-porous layer is likely to be formed on the outer side or both sides of.

【0012】溶融状態にある中空糸前駆体の外側に接触
する気体とは、ノズルから押し出された樹脂が固化する
までの部分に接触する気体のことであり、通常は冷却用
気体である。本発明に於てはその酸素濃度が芯剤気体の
酸素濃度より低い必要がある。酸素以外の成分としては
これもまた溶融重合体と非反応性の気体であれば任意で
ある。例えば、窒素、炭酸ガス、アルゴンなどが挙げら
れる。溶融状態にある中空糸前駆体の外側に接触する気
体としては窒素または窒素富化空気が好ましい。窒素富
化空気は、分離膜式やPSA(吸着式)により製造する
ことができる。
The gas contacting the outside of the hollow fiber precursor in a molten state is the gas contacting the portion of the resin extruded from the nozzle until the resin is solidified, and is usually a cooling gas. In the present invention, the oxygen concentration needs to be lower than the oxygen concentration of the core gas. As a component other than oxygen, any component which is also non-reactive with the molten polymer may be used. For example, nitrogen, carbon dioxide gas, argon, etc. may be mentioned. Nitrogen or nitrogen-enriched air is preferable as the gas that comes into contact with the outside of the molten hollow fiber precursor. Nitrogen-enriched air can be produced by a separation membrane system or PSA (adsorption system).

【0013】固化後のまだ高温にある中空糸をさらに冷
却する気体の種類や組成を、ノズルから押し出された樹
脂が固化するまでの部分に接触する気体の組成と違える
ことも可能である。即ち固化後のまだ高温にある中空糸
をさらに冷却する気体については任意である。例えば、
ノズルから押し出された樹脂が固化するまでの部分に窒
素または窒素富化空気を接触させ、固化後のまだ高温に
ある中空糸をさらに冷却する気体として空気を使用する
ことも、製造の経済面から好ましい。
The type and composition of the gas that further cools the hollow fiber, which is still hot after solidification, can be different from the composition of the gas that contacts the portion of the resin extruded from the nozzle until it solidifies. That is, the gas for further cooling the hollow fiber which is still hot after solidification is optional. For example,
From the economical aspect of manufacturing, it is also possible to contact nitrogen or nitrogen-enriched air to the part where the resin extruded from the nozzle is solidified, and to use air as a gas to further cool the still hot hollow fiber after solidification. preferable.

【0014】本発明は、溶融紡糸において、芯剤として
用いる気体の酸素濃度を、溶融状態にある中空糸前駆体
の外側に接触する気体の酸素濃度より高くし、かつ空気
の酸素濃度以下にすることを特徴とすることで、内表面
が非多孔層である中空糸不均質膜を製造することが出来
るものであるが、その効果を十分にするためには、芯剤
として用いる気体の酸素濃度と、溶融状態にある中空糸
前駆体の外側に接触する気体の酸素濃度の比を十分大き
くすることが好ましい。即ち、芯剤として用いる気体の
酸素濃度が、溶融状態にある中空糸前駆体の外側に接触
する気体の酸素濃度より2倍以上高いことが好ましく、
3倍以上高いことがさらに好ましい。この比を大きくす
ることにより、製造条件の許容幅が広くなるとともに、
中空糸の外表面には非多孔層が全く無く、内表面に欠陥
のない非多孔層を形成することが容易となる。
In the present invention, in melt spinning, the oxygen concentration of the gas used as the core agent is made higher than the oxygen concentration of the gas in contact with the outside of the hollow fiber precursor in the molten state, and below the oxygen concentration of the air. It is possible to produce a hollow fiber heterogeneous membrane whose inner surface is a non-porous layer, by which the oxygen concentration of the gas used as the core agent is sufficient to achieve the effect. It is preferable to sufficiently increase the oxygen concentration ratio of the gas contacting the outside of the molten hollow fiber precursor. That is, it is preferable that the oxygen concentration of the gas used as the core agent is at least twice as high as the oxygen concentration of the gas contacting the outside of the molten hollow fiber precursor,
More preferably, it is 3 times or more higher. By increasing this ratio, the allowable range of manufacturing conditions becomes wider, and
There is no non-porous layer on the outer surface of the hollow fiber, and it becomes easy to form a defect-free non-porous layer on the inner surface.

【0015】溶融紡糸の条件は、芯剤として用いる気体
の酸素濃度を、溶融状態にある中空糸前駆体の外側に接
触する気体の酸素濃度より高くし、かつ芯剤が空気の酸
素濃度以下とすることを除いて、公知の溶融法不均質膜
の製造方法と同様であり、用いる重合体の種類により形
成しようとする膜に最適な条件を選べば良い。即ち、溶
融押出し温度は重合体の結晶融点(Tm)以上の温度、
好ましくは(Tm+20)℃〜(Tm+200)℃であ
り、ドラフトは50〜10000、好ましくは200〜
1500である。冷却は気体中での冷却であり、冷却用
気体の温度や風速は、押出された中空糸の固化点が、好
ましくはノズルから5〜200mm、さらに好ましくは
10〜50mmになる様に調節する。
The melt spinning conditions are such that the oxygen concentration of the gas used as the core agent is higher than the oxygen concentration of the gas contacting the outside of the hollow fiber precursor in the molten state, and the core agent is below the oxygen concentration of the air. Other than that, the method is the same as the known method for producing a heterogeneous film by the melting method, and the optimum conditions for the film to be formed may be selected depending on the kind of the polymer used. That is, the melt extrusion temperature is a temperature above the crystalline melting point (Tm) of the polymer,
The temperature is preferably (Tm + 20) ° C. to (Tm + 200) ° C., and the draft is 50 to 10,000, preferably 200 to
It is 1500. The cooling is cooling in a gas, and the temperature and the wind speed of the cooling gas are adjusted so that the solidification point of the extruded hollow fiber is preferably 5 to 200 mm, more preferably 10 to 50 mm from the nozzle.

【0016】溶融紡糸された中空糸を不均質膜化する工
程についても、公知の溶融法不均質膜の製造方法の場合
と同様である。以下、その工程について述べる。溶融紡
糸された中空糸は、必要に応じて熱処理される。熱処理
温度は重合体のTg(ガラス転移点)以上、Tm(結晶
融点)以下である。熱処理を施すことにより重合体の結
晶化度の増加や結晶欠陥の減少を計り、中空糸壁内部を
多孔質化し易くすることができる。
The step of forming the melt-spun hollow fiber into a heterogeneous film is the same as in the known method for producing a heterogeneous film by the melting method. The process will be described below. The melt-spun hollow fiber is heat-treated if necessary. The heat treatment temperature is not lower than Tg (glass transition point) and not higher than Tm (crystal melting point) of the polymer. By performing the heat treatment, the crystallinity of the polymer can be increased and the crystal defects can be reduced, and the inside of the hollow fiber wall can be easily made porous.

【0017】溶融紡糸されたまたは熱処理された中空糸
は、延伸することにより中空糸壁内部が多孔質化され
る。中空糸壁内部が多孔質化される機構は、溶融押し出
しした結晶性重合体を、ドラフトによる適当な張力下、
かつ適当な温度勾配下で冷却すると、繊維軸に直角な面
内に積層ラメラ結晶が発達し、それを延伸と結晶間が開
裂し多孔質体となる機構によるといわれている。
The melt-spun or heat-treated hollow fiber is stretched to make the inside of the hollow fiber wall porous. The mechanism by which the inside of the hollow fiber wall is made porous is the melt-extruded crystalline polymer under appropriate tension by drafting,
It is said that when cooled under an appropriate temperature gradient, a laminated lamella crystal develops in a plane perpendicular to the fiber axis, and when the lamella crystal is stretched and the crystals are cleaved to form a porous body.

【0018】延伸温度、延伸倍率、延伸速度などは特に
限定する必要はなく、重合体に応じて適当な値を選ぶこ
とができる。例えば、延伸温度は(Tm−10)℃以下
であることが好ましく、(Tg+50)℃以下であるこ
とが好ましい。延伸温度の下限は特に設ける必要はな
く、液体窒素温度(マイナス196℃)でも可能であ
る。延伸倍率は1.3〜6が好ましく、2〜4がさらに
好ましい。延伸温度が高いほど延伸倍率を高くすること
好ましい。
The stretching temperature, the stretching ratio, the stretching speed, etc. are not particularly limited, and an appropriate value can be selected according to the polymer. For example, the stretching temperature is preferably (Tm-10) ° C or lower, and preferably (Tg + 50) ° C or lower. It is not necessary to set the lower limit of the stretching temperature, and the liquid nitrogen temperature (minus 196 ° C.) is also possible. The stretch ratio is preferably 1.3 to 6, and more preferably 2 to 4. The higher the stretching temperature, the higher the stretching ratio is preferably.

【0019】延伸は多段延伸であってよく、温度を順次
上昇させた多段延伸であることが好ましい。多段延伸の
場合には、延伸温度が(Tg+50)℃以下での延伸を
含むことが好ましい。多段延伸の場合には、各段の延伸
倍率は1.1以上であることが好ましく、かつトータル
の延伸倍率が1.3〜6であることが好ましく、2〜4
がさらに好ましい。延伸温度の高い段ほど、その段の延
伸倍率を高くすることが好ましい。
The stretching may be multi-stage stretching, preferably multi-stage stretching in which the temperature is successively increased. In the case of multi-stage stretching, it is preferable that the stretching temperature includes (Tg + 50) ° C. or less. In the case of multi-stage drawing, the draw ratio of each stage is preferably 1.1 or more, and the total draw ratio is preferably 1.3 to 6, and 2 to 4
Is more preferable. The higher the drawing temperature, the higher the draw ratio of that step.

【0020】延伸された中空糸不均質膜は熱固定を施す
ことにより寸法安定性と耐熱性を付与する事が好まし
い。熱処理温度は重合体のTg以上Tm以下でありかつ
延伸温度より高い温度である。
The stretched hollow fiber heterogeneous membrane is preferably heat-fixed to impart dimensional stability and heat resistance. The heat treatment temperature is not lower than Tg and not higher than Tm of the polymer and higher than the stretching temperature.

【0021】本発明においては、紡糸時に芯剤として用
いる気体の酸素濃度を、溶融状態にある中空糸前駆体の
外側に接触する気体の酸素濃度より高くすることによっ
て、中空糸内表面がその他の部分より多孔質化しにくい
構造になっている。そのため、紡糸、熱処理、延伸など
の条件を選定することにより、内表面は多孔質化せず、
その他の部分即ち中空糸壁内部や外表面は多孔質化する
クリティカルな条件を見つけることができる。例えば、
紡糸温度を高めるに従い、中空糸壁内部および中空糸内
外両表面層ともに多孔質化しにくくなる。そこで、紡糸
温度を順次上昇させる実験を行うことにより、内表面は
すでに多孔質化しなくなるものの、まだその他の部分即
ち中空糸壁内部や外表面は多孔質化する紡糸温度を見つ
けることができる。紡糸ドラフト、紡糸冷却条件、熱処
理、延伸、熱固定などの条件についても同様である。
In the present invention, by making the oxygen concentration of the gas used as the core agent during spinning higher than the oxygen concentration of the gas contacting the outside of the molten hollow fiber precursor, the inner surface of the hollow fiber is It has a structure that is less likely to become porous than the part. Therefore, by selecting conditions such as spinning, heat treatment, and stretching, the inner surface does not become porous,
It is possible to find a critical condition that the other part, that is, the inside and the outside of the hollow fiber wall, becomes porous. For example,
As the spinning temperature is increased, it becomes difficult to make both the inside and outside surface layers of the hollow fiber wall porous. Therefore, by conducting an experiment in which the spinning temperature is sequentially increased, it is possible to find a spinning temperature at which the inner surface is not made porous yet, but the other portions, that is, the inside of the hollow fiber wall and the outer surface are made porous. The same applies to conditions such as spinning draft, spinning cooling conditions, heat treatment, drawing, and heat setting.

【0022】形成された内表面に非多孔層を有する中空
糸不均質膜(以下単に中空糸膜と称する)の寸法は任意
であるが、外径0.1〜3mm、多孔質層の厚み0.0
1〜1mm、非多孔質層の厚み0.05〜5μm、多孔
質層における細孔の平均孔径0.01〜10μmである
ことが好ましい。
The formed hollow fiber heterogeneous membrane having a non-porous layer on its inner surface (hereinafter simply referred to as hollow fiber membrane) may have any dimensions, but the outer diameter is 0.1 to 3 mm and the thickness of the porous layer is 0. .0
The thickness is preferably 1 to 1 mm, the thickness of the non-porous layer is 0.05 to 5 μm, and the average pore size of the pores in the porous layer is 0.01 to 10 μm.

【0023】[0023]

【実施例】以下実施例により本発明をさらに具体的に説
明するが、これにより本発明が制約されるものではな
い。 [実施例1] <中空糸膜の製造>結晶性熱可塑性重合体としてポリ−
4−メチルペンテン−1(三井石油化学工業(株)製、
TPX−RT−18)を使用し、6ホ−ルの外径6mm
円環型紡糸ノズルを用いて、紡糸温度285℃にて溶融
紡糸した。この時、円環型紡糸ノズルから重合体を押し
出し、円環の内側に設けられた芯剤導入孔から空気を導
入して、ドラフト700で引き取りつつ、酸素濃度5%
の窒素富化空気の0.1m/秒の気流により冷却して巻
き取った。得られた中空糸は全体が非多孔質であった。
EXAMPLES The present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the present invention. [Example 1] <Production of hollow fiber membrane> Poly- as a crystalline thermoplastic polymer
4-methylpentene-1 (manufactured by Mitsui Petrochemical Industry Co., Ltd.,
TPX-RT-18), 6-hole outer diameter 6 mm
Melt spinning was performed at a spinning temperature of 285 ° C. using a circular spinning nozzle. At this time, the polymer was extruded from the annular spinning nozzle, air was introduced from the core agent introducing hole provided inside the annular ring, and the air was taken in by the draft 700 while the oxygen concentration was 5%.
The sample was cooled by a 0.1 m / sec air flow of nitrogen-enriched air, and wound up. The resulting hollow fiber was entirely non-porous.

【0024】この中空糸を195℃の空気浴中で1分間
熱処理したのち、25℃にて延伸倍率1.4、次いで1
30℃にて延伸倍率1.4だけ延伸し、その後195℃
の空気浴中に1分間滞留させることにより熱固定を行っ
た。
This hollow fiber was heat treated in an air bath at 195 ° C. for 1 minute, and then stretched at 25 ° C. with a draw ratio of 1.4 and then 1
Draw at a draw ratio of 1.4 at 30 ° C, then 195 ° C
Heat setting was performed by allowing the sample to stay in the air bath for 1 minute.

【0025】得られた中空糸膜の寸法は外径254μ
m、内径198μmであり、走査型電子顕微鏡(SE
M)にて観察したところ、内表面には細孔は全く認めら
れず、外表面には孔径約0.05μmの多数の細孔が存
在し、中空糸を斜めに切断した断面には全体に孔径約
0.03μmの細孔が存在した。
The obtained hollow fiber membrane has an outer diameter of 254 μ.
m, inner diameter 198 μm, scanning electron microscope (SE
As a result of observation with M), no pores were observed on the inner surface, and a large number of pores having a pore size of about 0.05 μm were present on the outer surface. There were pores with a pore size of about 0.03 μm.

【0026】この中空糸膜の気体透過特性をASTM、
D−1434圧力法に基づいて測定したところ、酸素透
過速度が1.6×10-5[cm3(STP)/cm2(内
表面積),s,cmHg)、窒素透過速度が3.8×1
-6[cm3(STP)/cm2(内表面積),s,cm
Hg)、酸素/窒素分離係数が4.2であった。
The gas permeability of this hollow fiber membrane is determined by ASTM,
The oxygen permeation rate was 1.6 × 10 −5 [cm 3 (STP) / cm 2 (inner surface area), s, cmHg), and the nitrogen permeation rate was 3.8 ×, as measured by the D-1434 pressure method. 1
0 -6 [cm 3 (STP) / cm 2 (inner surface area), s, cm
Hg), and the oxygen / nitrogen separation coefficient was 4.2.

【0027】なお、重合体(TPX−RT−18)につ
いて、300℃で作製した溶融プレスフィルムを190
℃にて30分熱処理したサンプルの、X線回折法により
測定された結晶化度は約55%であった。
Regarding the polymer (TPX-RT-18), a melt press film produced at 300 ° C.
The crystallinity of the sample heat-treated at 30 ° C. for 30 minutes was about 55% as measured by X-ray diffractometry.

【0028】<脱気試験>この中空糸膜10000本を
束状にして筒型ハウジングに装填し、中空糸膜の両端を
樹脂封止して、膜面積(中空糸内表面積)3.0m2
膜モジュールを作成した。このモジュールの中空糸膜外
部を水流アスピレ−タで約30torrに減圧しつつ、
中空糸膜内側に溶存酸素濃度8重量ppmの、水道水を
100l/hrで流したところ、モジュールから流出す
る水の溶存酸素濃度は0.49重量ppmであった。さ
らに、水道水の代わりに、溶存酸素濃度8.1重量pp
mの、アルキルベンゼンスルホン酸ナトリウム系界面活
性剤0.5重量%を含有する水道水の脱気試験を行った
ところ、流出溶液の溶存酸素濃度は0.48重量ppm
と、水道水の場合とほぼ同様の値であった。
<Deaeration Test> 10,000 hollow fiber membranes were bundled and loaded into a cylindrical housing, and both ends of the hollow fiber membrane were sealed with a resin to obtain a membrane area (hollow fiber inner surface area) of 3.0 m 2. The membrane module of While depressurizing the outside of the hollow fiber membrane of this module to about 30 torr with a water flow aspirator,
When tap water having a dissolved oxygen concentration of 8 ppm by weight was flowed inside the hollow fiber membrane at 100 l / hr, the dissolved oxygen concentration of water flowing out from the module was 0.49 ppm by weight. Furthermore, instead of tap water, the dissolved oxygen concentration is 8.1 wtpp
m was subjected to a degassing test of tap water containing 0.5% by weight of sodium alkylbenzenesulfonate-based surfactant, the dissolved oxygen concentration of the outflow solution was 0.48 ppm by weight.
The value was almost the same as that of tap water.

【0029】[実施例2] <中空糸膜の製造>紡糸温度が295℃であること、芯
材として、酸素濃度10%の窒素富化空気を使用したこ
と、ノズル下10cmまでの部分に窒素濃度99.99
%の窒素を風速0.1m/秒で流し、それより下部には
空気を風速0.1m/秒で流したこと以外は実施例1と
同様にして中空糸膜を作製した。
[Example 2] <Production of hollow fiber membrane> The spinning temperature was 295 ° C, nitrogen-enriched air with an oxygen concentration of 10% was used as the core material, and nitrogen was added to a portion up to 10 cm below the nozzle. Concentration 99.99
% Nitrogen was flown at a wind speed of 0.1 m / sec, and a hollow fiber membrane was prepared in the same manner as in Example 1 except that air was blown below it at a wind speed of 0.1 m / sec.

【0030】得られた中空糸膜の寸法は、外径約245
μm、内径約186μmであった。SEMにて観察した
ところ、内表面には細孔は認められず、外表面には全体
に孔径約0.04μmの細孔が認められ、中空糸を斜め
に切断した断面には孔径約0.03μmの細孔が観察さ
れた。
The size of the obtained hollow fiber membrane has an outer diameter of about 245.
The inner diameter was about 186 μm. As a result of SEM observation, no pores were observed on the inner surface, and pores with a pore size of about 0.04 μm were recognized on the entire outer surface. The cross section of the hollow fiber cut obliquely had a pore size of about 0. A 03 μm pore was observed.

【0031】この中空糸膜の酸素透過速度は8.8×1
-6(cm3(STP)/cm2(内表面積),s,cm
Hg)、窒素透過速度は2.1×10-6[cm3(ST
P)/cm2(内表面積),s,cmHg)、酸素/窒
素分離係数は4.3であった。
The oxygen permeation rate of this hollow fiber membrane was 8.8 × 1.
0 -6 (cm 3 (STP) / cm 2 (inner surface area), s, cm
Hg), nitrogen permeation rate is 2.1 × 10 -6 [cm 3 (ST
P) / cm 2 (inner surface area), s, cmHg), and the oxygen / nitrogen separation coefficient was 4.3.

【0032】<脱気試験>この中空糸膜を使用して実施
例1と同様の膜モジュールを作成し、実施例1と同様の
脱気試験を行ったところ、水道水の残存溶存酸素濃度は
0.50重量ppm、界面活性剤水溶液の残存溶存酸素
濃度は0.49重量ppmであった。
<Deaeration test> Using this hollow fiber membrane, a membrane module similar to that of Example 1 was prepared and a deaeration test similar to that of Example 1 was conducted. The residual dissolved oxygen concentration of the surfactant aqueous solution was 0.50 ppm by weight and 0.49 ppm by weight.

【0033】[比較例1] <中空糸膜の製造>芯剤として濃度99.99%の窒素
を使用したこと、および冷却用気体として空気を使用し
たこと以外は実施例1と同様にして中空糸膜を作製し
た。
Comparative Example 1 <Production of Hollow Fiber Membrane> Hollow fiber membrane was produced in the same manner as in Example 1 except that nitrogen having a concentration of 99.99% was used as the core agent and air was used as the cooling gas. A thread film was prepared.

【0034】得られた中空糸膜の寸法は、外径約257
μm、内径約201μmであった。SEMにて観察した
ところ、内表面には全体に孔径約0.03μmの細孔が
認められ、外表面には細孔は認められず、中空糸を斜め
に切断した断面には孔径約0.03μmの細孔が観察さ
れた。
The size of the obtained hollow fiber membrane has an outer diameter of about 257.
The inner diameter was about 201 μm. As a result of SEM observation, pores having a pore size of about 0.03 μm were found on the entire inner surface, and no pores were found on the outer surface, and the cross section obtained by obliquely cutting the hollow fiber had a pore size of about 0. A 03 μm pore was observed.

【0035】この中空糸膜の酸素透過速度は1.5×1
-5[cm3(STP)/cm2(外表面積),s,cm
Hg)、窒素透過速度は3.6×10-6[cm3(ST
P)/cm2(外表面積),s,cmHg)、酸素/窒
素分離係数は4.2であった。
The oxygen permeation rate of this hollow fiber membrane is 1.5 × 1.
0 -5 [cm 3 (STP) / cm 2 (external surface area), s, cm
Hg), nitrogen permeation rate is 3.6 × 10 -6 [cm 3 (ST
P) / cm 2 (external surface area), s, cmHg) and the oxygen / nitrogen separation coefficient were 4.2.

【0036】<脱気試験>この中空糸膜を使用して実施
例1と同様の膜モジュールを作成し、実施例1と同様の
脱気試験を行ったところ、水道水の残存溶存酸素濃度は
0.49重量ppmと実施例1と同様の値であったが、
界面活性剤水溶液の残存溶存酸素濃度は1.1重量pp
mであった。実施例1に比べ、界面活性剤含有水の脱気
性能が悪いことが分かる。
<Deaeration test> Using this hollow fiber membrane, a membrane module similar to that of Example 1 was prepared and a deaeration test similar to that of Example 1 was conducted. 0.49 weight ppm and the same value as in Example 1, but
The residual dissolved oxygen concentration of the aqueous surfactant solution is 1.1 weight pp.
It was m. It can be seen that, as compared with Example 1, the deaeration performance of the surfactant-containing water is poor.

【0037】[0037]

【発明の効果】中空糸不均質膜の内表面に非多孔層を形
成することが容易であり、非多孔層が内表面に形成され
た中空糸不均質膜が得られる。このため、中空糸不均質
膜の内側に液体を接触させる用途、例えば膜型人工肺、
液体の脱気、液体への気体の溶解、パーベ−パレ−ショ
ンなどの用途に於て、細孔内部への液体の充填が生じな
いため長期間安定して使用でき、界面活性剤含有水や有
機溶剤(およびその水溶液)と接する場合でも高性能が
発揮できる。
EFFECT OF THE INVENTION It is easy to form a non-porous layer on the inner surface of a hollow fiber heterogeneous membrane, and a hollow fiber heterogeneous membrane having a non-porous layer formed on the inner surface can be obtained. Therefore, the application of contacting the liquid inside the hollow fiber heterogeneous membrane, for example, membrane oxygenator,
In applications such as degassing of liquid, dissolution of gas in liquid, pervaporation, etc., it can be used stably for a long period of time because the liquid does not fill the inside of the pores. High performance can be exhibited even when contacting with an organic solvent (and its aqueous solution).

【0038】また、中空糸不均質膜の内側から外側へ気
体や蒸気を透過させる用途、例えば窒素富化空気の製造
や気体の除湿などの用途に使用する場合に、汚染物質に
よる細孔の閉塞が生じにくい。
When the hollow fiber heterogeneous membrane is used for permeating gas or vapor from the inside to the outside, for example, for producing nitrogen-enriched air or dehumidifying gas, the pores are clogged with contaminants. Is less likely to occur.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 気体を芯剤として中空糸ノズルから結晶
性熱可塑性重合体を気体中に押し出して中空糸状に溶融
紡糸し、次いで延伸する内表面非多孔層型中空糸不均質
膜の製造方法であって、芯剤として用いる気体の酸素濃
度が、溶融状態にある中空糸前駆体の外側に接触する気
体の酸素濃度より高く、かつ空気の酸素濃度以下である
ことを特徴とする内表面非多孔層型中空糸不均質膜の製
造方法。
1. A method for producing an inner surface non-porous layer type hollow fiber heterogeneous membrane in which a crystalline thermoplastic polymer is extruded from a hollow fiber nozzle into a gas by using gas as a core agent, melt-spun into a hollow fiber, and then stretched. The oxygen concentration of the gas used as the core agent is higher than the oxygen concentration of the gas contacting the outside of the hollow fiber precursor in the molten state, and is less than or equal to the oxygen concentration of the air. A method for producing a porous layer type hollow fiber heterogeneous membrane.
【請求項2】 芯剤として用いる気体の酸素濃度が、溶
融状態にある中空糸前駆体の外側に接触する気体の酸素
濃度より2倍以上高い請求項1記載の製造方法。
2. The method according to claim 1, wherein the oxygen concentration of the gas used as the core agent is at least twice as high as the oxygen concentration of the gas contacting the outside of the molten hollow fiber precursor.
【請求項3】 芯剤として用いる気体の酸素濃度が、1
0〜21モル%である請求項1記載の製造方法。
3. The oxygen concentration of the gas used as the core agent is 1
The production method according to claim 1, which is 0 to 21 mol%.
【請求項4】 芯剤として用いる気体が、空気である請
求項1記載の製造方法。
4. The method according to claim 1, wherein the gas used as the core agent is air.
【請求項5】 重合体が、4−メチルペンテン−1系重
合体である請求項1〜4何れか1項に記載の製造方法。
5. The production method according to claim 1, wherein the polymer is a 4-methylpentene-1 type polymer.
JP30790093A 1993-12-08 1993-12-08 Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane Pending JPH07155568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30790093A JPH07155568A (en) 1993-12-08 1993-12-08 Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30790093A JPH07155568A (en) 1993-12-08 1993-12-08 Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane

Publications (1)

Publication Number Publication Date
JPH07155568A true JPH07155568A (en) 1995-06-20

Family

ID=17974530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30790093A Pending JPH07155568A (en) 1993-12-08 1993-12-08 Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane

Country Status (1)

Country Link
JP (1) JPH07155568A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275015B1 (en) * 2011-05-11 2013-06-17 (주)세프라텍 Polyolefin hollow fiber membrane and thermal induced phase separation process therefor
KR20170033419A (en) 2014-08-26 2017-03-24 미쯔비시 레이온 가부시끼가이샤 Hollow fiber membrane and hollow fiber membrane module
JP2017516652A (en) * 2014-03-13 2017-06-22 スリーエム イノベイティブ プロパティズ カンパニー Asymmetric membranes and related methods
CN109351209A (en) * 2018-12-20 2019-02-19 天津工业大学 A kind of the film formula and preparation method of perfluoroethylene-propylene hollow-fibre membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275015B1 (en) * 2011-05-11 2013-06-17 (주)세프라텍 Polyolefin hollow fiber membrane and thermal induced phase separation process therefor
JP2017516652A (en) * 2014-03-13 2017-06-22 スリーエム イノベイティブ プロパティズ カンパニー Asymmetric membranes and related methods
KR20170033419A (en) 2014-08-26 2017-03-24 미쯔비시 레이온 가부시끼가이샤 Hollow fiber membrane and hollow fiber membrane module
US10537856B2 (en) 2014-08-26 2020-01-21 Mitsubishi Chemical Corporation Hollow fiber membrane and hollow fiber membrane module
CN109351209A (en) * 2018-12-20 2019-02-19 天津工业大学 A kind of the film formula and preparation method of perfluoroethylene-propylene hollow-fibre membrane

Similar Documents

Publication Publication Date Title
US8523981B2 (en) Hydrophobic ozone-stable membrane made of polyvinylidene fluoride
EP0124028B1 (en) Heterogeneous membrane and process for production thereof
US5181940A (en) Hollow fiber membranes
JP4987471B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
JPS6335726B2 (en)
JPH0211619B2 (en)
JPH1043505A (en) Device for degassing liquid and method therefor
EP0206354A2 (en) Multilayer composite hollow fibers and method of making same
JPH07116483A (en) Manufacture of hollow fiber dual membrane
JP2000093768A (en) Composite porous hollow fiber membrane
JPH06246139A (en) Heterogeneous hollow fiber membrane and its production
JP4269576B2 (en) Method for producing microporous membrane
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
JPH07155568A (en) Production of inner surface nonporous layer type hollow yarn inhomogeneous membrane
JPS6245318A (en) Preparation of gas separation membrane
KR101308998B1 (en) The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment
JPS6342006B2 (en)
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JP3383926B2 (en) Manufacturing method of hollow fiber type heterogeneous membrane
JP3475363B2 (en) Method for producing porous membrane
JP2001190940A (en) Method of manufacturing polyethylene hollow fiber porous membrane
KR101415040B1 (en) Manufacturing method of PVDF asymmetric porous hollow fiber membrane
JPH0468010B2 (en)
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
KR101308996B1 (en) The Preparation method of hollow fiber membrane with high permeation using hydrophilic polyvinylidenefluoride composites for water treatment