JPH07153672A - Cylindrical reflecting mask, exposure method and aligner using the mask as well as semiconductor device manufactured by them - Google Patents

Cylindrical reflecting mask, exposure method and aligner using the mask as well as semiconductor device manufactured by them

Info

Publication number
JPH07153672A
JPH07153672A JP30150793A JP30150793A JPH07153672A JP H07153672 A JPH07153672 A JP H07153672A JP 30150793 A JP30150793 A JP 30150793A JP 30150793 A JP30150793 A JP 30150793A JP H07153672 A JPH07153672 A JP H07153672A
Authority
JP
Japan
Prior art keywords
exposure
mask
cylindrical
reflective mask
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30150793A
Other languages
Japanese (ja)
Inventor
Hideo Kato
日出夫 加藤
Masami Hayashida
雅美 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30150793A priority Critical patent/JPH07153672A/en
Publication of JPH07153672A publication Critical patent/JPH07153672A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain the aligner which reduces a driving part, whose temperature controllability is enhanced and whose illuminating region is fixed by a method wherein a cylindrical reflecting mask is turned by making use of its axis as a shaft and an object to be exposed is moved to a direction nearly at right angles to the shaft of the cylindrical reflecting mask. CONSTITUTION:A cylindrical reflecting mask 101 is formed on a cylindrical support body 103, and the cylindrical support body 103 is connected to a rotation driving system. In addition, in order to prevent a temperature from being raised due to the heat of a substrate, constant-temperature cooling water and a gas substance are constituted so as to be capable of being circulated. Then, pattern light 105 which is reflected on the face of the mask on the cylindrical support body 103 is reduced via reflecting mirrors M1, M2, M3 which constitute a reduction-type projection optical system, and it is projected onto the face of a resist film on a silicon wafer 102. In addition, the silicon wafer 102 is moved to a direction perpendicular to the length of a slit by means of a movement mechanism which is interlocked with the rotation of the cylindrical reflecting mask 101.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はIC、LSI等の半導体
デバイス製造用の露光方法および露光装置に関し、特
に、波長5Å〜300Å程度のX線や300Å〜200
0Å程度の真空紫外線(以下、X線等と称する)、紫外
線および反射型マスクを用いて高解像度の焼付けを行う
ための露光方法および露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure method and an exposure apparatus for manufacturing semiconductor devices such as IC and LSI, and more particularly to X-rays having wavelengths of 5Å to 300Å and 300Å to 200.
The present invention relates to an exposure method and an exposure apparatus for performing high-resolution printing using vacuum ultraviolet rays (hereinafter, referred to as X-rays, etc.) of about 0Å, ultraviolet rays and a reflection type mask.

【0002】[0002]

【従来の技術】近年、IC、LSI等の半導体素子製造
用の露光装置には半導体素子の高集積化に伴って高分解
能の焼付けが可能なX線等を利用した露光装置が注目さ
れている。このX線等を利用した露光装置は、大別して
プロキシミティー法と呼ばれる等倍用の露光装置と縮小
投影露光法と呼ばれる縮小用の露光装置に大別される。
2. Description of the Related Art In recent years, as an exposure apparatus for manufacturing semiconductor elements such as IC and LSI, an exposure apparatus using X-rays or the like capable of printing with high resolution has attracted attention as semiconductor elements become highly integrated. . The exposure apparatus using the X-ray or the like is roughly classified into an exposure apparatus for equal magnification called a proximity method and an exposure apparatus for reduction called a reduction projection exposure method.

【0003】プロキシミティー等倍用の焼付けに用いら
れるマスクは、一般にマスクメンブレンと呼ばれるX線
等透過薄膜と、該X線透過薄膜上のX線等吸収体パター
ンで構成される平板状のマスク構成体である。
A mask used for printing with the same magnification as the proximity is a flat plate mask structure composed of an X-ray transmissive thin film generally called a mask membrane and an X-ray transmissive absorber pattern on the X-ray transmissive thin film. It is the body.

【0004】一方、縮小露光用のマスクとしては、上記
プロキシミティー用と同様の透過型マスクのほかに反射
型のマスクが考えられている。当初はブラッグ反射を利
用したパターン表面をX線等反射体で構成したもの等が
考えられていたが、近年は多層積層反射膜を利用した反
射マスクが考えられている。これらではいくつかの縮小
光学系を用いて、二分の一〜十分の一程度の縮小焼付け
が提案されている。使用されるマスクの形状はいずれも
平板状である。このことはパターンの描画法、即ち、製
版カメラ、EB描画装置等に起因しているものと考えら
れる。
On the other hand, as a mask for reduction exposure, a reflective mask is considered in addition to the transmissive mask similar to the above-mentioned proximity mask. Initially, a pattern surface using Bragg reflection was considered with a reflector such as X-rays, but in recent years, a reflection mask using a multilayer laminated reflection film has been considered. In these, reduction printing of about 1/2 to 1/10 is proposed by using some reduction optical systems. The shape of the mask used is flat. This is considered to be due to the pattern drawing method, that is, the plate making camera, the EB drawing device, and the like.

【0005】X線等として用いられるSOR(シンクロ
トロン放射光)光線は、光源の特性上、シート状のビー
ム形で取り出される。したがって、面状にビームを拡げ
ることが必要となるが、ビームを拡げる際に光量の低
下、波長の分散等の問題が生じている。
The SOR (synchrotron radiation) light used as X-rays or the like is extracted in the form of a sheet beam due to the characteristics of the light source. Therefore, it is necessary to spread the beam in a planar manner, but when expanding the beam, problems such as a decrease in light quantity and wavelength dispersion occur.

【0006】また、ビームを拡げることなく、平板状マ
スクにシート状ビームを用いて照明してマスクパターン
を投影転写する場合には、マスクの移動のための駆動系
と対応して被転写体側の駆動系が必要となる。このた
め、マスクの温度制御等を含めて、より複雑な機構と高
精度の加工が要求される。
In the case where a sheet-shaped beam is used to illuminate a flat mask without projecting the beam and the mask pattern is projected and transferred, the transfer system on the transfer target side corresponds to the drive system for moving the mask. A drive system is required. Therefore, a more complicated mechanism and high-precision processing are required, including mask temperature control.

【0007】[0007]

【発明が解決しようとする課題】上述した従来より行わ
れている露光方法のうち、シート状のビームを面状に拡
げる方法においては、ビームを拡げる際に光量が低下
し、波長分散が生じるという問題点がある。
Among the above-mentioned conventional exposure methods, in the method of expanding a sheet-like beam in a plane, the amount of light is reduced when the beam is expanded, which causes wavelength dispersion. There is a problem.

【0008】また、ビームを拡げることなく、平板状マ
スクにシート状ビームを用いて照明してマスクパターン
を投影転写する場合には、より複雑な機構と高精度の加
工が要求されるという問題点がある。
Further, when a sheet-shaped beam is used to illuminate a plate-shaped mask without projecting the beam to project and transfer a mask pattern, a more complicated mechanism and highly accurate processing are required. There is.

【0009】本発明は上述したような従来の技術が有す
る問題点に鑑みてなされたものであって、駆動部分を減
少し、温度制御性の向上および照明域の固定化等によ
り、光描画を簡素化することのできる露光方法および露
光装置を実現することを目的とする。
The present invention has been made in view of the problems of the above-mentioned conventional techniques, and reduces the number of driving parts, improves the temperature controllability, fixes the illumination area, and the like, thereby performing optical drawing. An object is to realize an exposure method and an exposure apparatus that can be simplified.

【0010】[0010]

【課題を解決するための手段】本発明の露光方法は、反
射型マスク面上に露光用の光を照射し、その反射光によ
り該反射型マスク面上の露光パターンを被露光物に形成
する露光方法において、前記露光用の光を反射する部材
を用いて外周壁に露光パターンが描かれた円柱状の反射
型マスクを用い、前記円柱状の反射型マスクをその軸を
回転軸として回転させるとともに、前記被露光物を円柱
状の反射型マスクの回転軸と略直交する方向に移動させ
て露光を行うことを特徴とする。
According to the exposure method of the present invention, light for exposure is applied to the reflective mask surface, and the reflected light forms an exposure pattern on the reflective mask surface on an object to be exposed. In the exposure method, a cylindrical reflective mask having an exposure pattern drawn on the outer peripheral wall using a member that reflects the exposure light is used, and the cylindrical reflective mask is rotated about its axis as a rotation axis. At the same time, the exposure is performed by moving the object to be exposed in a direction substantially orthogonal to the rotation axis of the cylindrical reflective mask.

【0011】この場合、円柱状反射型マスクの回転動作
および被露光物の移動動作を連続して行い、被露光物に
円柱状反射型マスクの外周壁に描かれた露光パターンを
連続形成してもよい。
In this case, the rotation operation of the cylindrical reflection type mask and the movement operation of the object to be exposed are continuously performed, and the exposure pattern drawn on the outer peripheral wall of the cylindrical reflection type mask is continuously formed on the object to be exposed. Good.

【0012】本発明の円柱状反射型マスクは、所定の露
光パターンを被露光物に露光するために照射された露光
用の光を反射させる反射型マスクにおいて、円柱状に形
成され、外周壁には前記露光用の光を反射する部材を用
いて露光パターンが描かれていること特徴とする。
The cylindrical reflection type mask of the present invention is a reflection type mask which reflects light for exposure applied to expose an object to be exposed with a predetermined exposure pattern and is formed in a columnar shape on the outer peripheral wall. Is characterized in that an exposure pattern is drawn using a member that reflects the light for exposure.

【0013】この場合、露光用の光を反射する部材が、
重元素金属と軽元素薄膜とを交互に積層した多層膜とし
てもよい。
In this case, the member that reflects the exposure light is
It may be a multilayer film in which heavy element metals and light element thin films are alternately laminated.

【0014】また、露光用の光を反射する多層膜を部分
的に除去することにより、露光パターンを形成してもよ
い。
The exposure pattern may be formed by partially removing the multilayer film that reflects the light for exposure.

【0015】また、露光用の光を反射する多層膜の上部
に、露光用の光が反射することを防止する反射防止膜を
部分的に設けることにより、露光パターンを形成しても
よい。
The exposure pattern may be formed by partially providing an antireflection film for preventing the exposure light from being reflected on the multilayer film which reflects the exposure light.

【0016】また、露光用の光を反射する多層膜の上部
に、露光用の光を吸収する吸収体を部分的に設けること
により、露光パターンを形成してもよい。
The exposure pattern may be formed by partially providing an absorber that absorbs the exposure light on the upper portion of the multilayer film that reflects the exposure light.

【0017】これらのいずれの円柱状反射型マスクにお
いても、内部を中空の円筒状に形成し、該中空部分に
は、冷却手段および恒温手段を設けてもよい。
In any of these cylindrical reflection type masks, the inside may be formed into a hollow cylindrical shape, and the hollow portion may be provided with a cooling means and a constant temperature means.

【0018】また、露光用の光を反射させる部材として
X線反射部材を用いてもよい。
An X-ray reflecting member may be used as the member for reflecting the exposure light.

【0019】さらに、露光用の光を反射させる部材とし
て真空紫外線または紫外線反射部材を用いてもよい。
Further, a vacuum ultraviolet ray or an ultraviolet ray reflecting member may be used as the member for reflecting the exposure light.

【0020】本発明の露光装置は、上記のように構成さ
れた円柱状反射型マスクを用いて露光を行う露光装置で
あって、前記円柱状反射型マスクを、その軸を回転軸と
して回転させる機構を備えたマスク支持手段と、被露光
物を、前記マスク支持手段による円柱状の反射型マスク
の回転軸と略直交する方向に移動させる機構を備えた被
露光物支持手段と、を有することを特徴とする。
The exposure apparatus of the present invention is an exposure apparatus that performs exposure using the cylindrical reflective mask having the above-described structure, and the cylindrical reflective mask is rotated about its axis. A mask supporting unit having a mechanism, and an object supporting unit having a mechanism for moving the object to be exposed in a direction substantially orthogonal to the rotation axis of the cylindrical reflective mask formed by the mask supporting unit. Is characterized by.

【0021】本発明の半導体デバイスは上記の各露光方
法および露光装置により製造されている。
The semiconductor device of the present invention is manufactured by each of the above-described exposure methods and exposure apparatuses.

【0022】[0022]

【作用】本発明では反射型マスクとして円柱状のものを
用い、これを回転させながら被露光物を移動させる。
In the present invention, a cylindrical mask is used as the reflective mask, and the object to be exposed is moved while rotating the mask.

【0023】円柱状反射型マスクの回転速度および被露
光物の移動速度を調整することにより、露光パターンの
拡大縮小が可能となる。
The exposure pattern can be enlarged or reduced by adjusting the rotational speed of the cylindrical reflective mask and the moving speed of the object to be exposed.

【0024】露光用の光は、円柱状反射型マスクの反射
面に線状に照射されればよい。シート形状のSOR光に
ついてもビームを拡げる必要はなく、そのまま照射する
ことができるので、当然ながら光量の低下や波長分散は
発生しない。
The light for exposure may be linearly applied to the reflecting surface of the cylindrical reflective mask. It is not necessary to expand the beam of the sheet-shaped SOR light, and the SOR light can be directly irradiated. Therefore, naturally, the light amount does not decrease and the wavelength dispersion does not occur.

【0025】一方、複数のマスクパターンを被露光物に
転写することはマスクの回転動作や被露光物の移動動作
を連続して行えばよい。この転写動作は連続動作である
ため、従来より行われているステップアンドリピート等
の往復動作に比較すると高い移動精度を容易に達成する
ことができ、正確なパターン転写がなされる。
On the other hand, in order to transfer a plurality of mask patterns to the object to be exposed, the rotating operation of the mask and the moving operation of the object to be exposed may be continuously performed. Since this transfer operation is a continuous operation, it is possible to easily achieve high movement accuracy as compared with the reciprocating operation such as step and repeat which is conventionally performed, and accurate pattern transfer is performed.

【0026】[0026]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0027】図1は本発明の一実施例の露光装置の要部
の概略構成を示す模式図である。
FIG. 1 is a schematic diagram showing a schematic structure of a main part of an exposure apparatus according to an embodiment of the present invention.

【0028】本実施例は、SOR光源(不図示)から放
射された照明光104を、全反射ミラー、スリット、シ
ャッター等からなる光学系(不図示)を介して円筒状反
射マスク101の表面MOに照射し、該円筒状反射マス
ク101表面の反射光を縮小投影してシリコンウェハ1
02を露光するものである。
In this embodiment, the illumination light 104 emitted from an SOR light source (not shown) is passed through an optical system (not shown) including a total reflection mirror, a slit, a shutter, etc., and the surface MO of the cylindrical reflection mask 101 is moved. And the reflected light on the surface of the cylindrical reflection mask 101 is reduced and projected to produce a silicon wafer 1
02 is exposed.

【0029】円筒状反射マスク101は円筒状支持体1
03上に形成されており、円筒状支持体103は円筒状
反射マスク101を構成する基板と同様の材質、また
は、熱伝導性の良い、機械加工精度の良い材料から選ば
れる。一例を挙げると、黄銅、ステンレス、銅、ニッケ
ル等が使用出来る。
The cylindrical reflection mask 101 is a cylindrical support 1.
03, the cylindrical support 103 is selected from the same material as the substrate forming the cylindrical reflection mask 101, or a material having good thermal conductivity and good machining accuracy. As an example, brass, stainless steel, copper, nickel or the like can be used.

【0030】円筒状支持体103は、回転駆動系(不図
示)と連結され、さらに、基板の温度、即ち、X線等の
照射により発生する熱、環境および接続から受ける熱に
よる温度上昇を防ぐことを目的として恒温冷却水および
ガス体が流通出来る様に構成されている。
The cylindrical support 103 is connected to a rotary drive system (not shown), and further prevents the temperature from rising due to the temperature of the substrate, that is, the heat generated by the irradiation of X-rays and the like and the heat received from the environment and the connection. For that purpose, the constant temperature cooling water and the gas body are allowed to flow.

【0031】円筒状反射マスク101は、照射されるX
線等を、回転する円筒状支持体103上の定位置で受け
る。このとき、マスクパターンの移動は回転動作につれ
て行なわれる。
The cylindrical reflection mask 101 is irradiated with X.
A wire or the like is received at a fixed position on the rotating cylindrical support 103. At this time, the movement of the mask pattern is performed along with the rotating operation.

【0032】円筒状支持体103のマスク面上にて反射
されたパターン光105は、縮小投影光学系を構成する
反射ミラーM1、M2、M3を経て縮小され、シリコン
ウェハ102上のレジスト膜面に投射される。
The pattern light 105 reflected on the mask surface of the cylindrical support 103 is reduced through the reflection mirrors M1, M2, M3 which constitute the reduction projection optical system, and is reflected on the resist film surface on the silicon wafer 102. Is projected.

【0033】シリコンウェハ102は、円筒状反射マス
ク101の回転と連動する移動機構(不図示)によりス
リット長さと直行する方向に移動するため、シリコンウ
ェハ102のレジスト膜面上にパターンが縮小転写され
る。
Since the silicon wafer 102 is moved in a direction perpendicular to the slit length by a moving mechanism (not shown) interlocking with the rotation of the cylindrical reflection mask 101, the pattern is reduced and transferred onto the resist film surface of the silicon wafer 102. It

【0034】この場合、円筒状マスクとシリコンウェハ
102の回転速度、移動速度を変化させることにより縮
小率、線幅の変更および補正が可能である。
In this case, the reduction rate and line width can be changed and corrected by changing the rotational speed and the moving speed of the cylindrical mask and the silicon wafer 102.

【0035】円筒状反射マスク101について、説明を
簡単とするために水平基板として図2に示し、その構造
について以下に説明する。
The cylindrical reflection mask 101 is shown in FIG. 2 as a horizontal substrate for the sake of simplicity, and its structure will be described below.

【0036】図2(a)に示すように、円筒状反射マス
ク101は、照明光に関して非反射性の基板201上
に、光学定数の異なる2種類の物質が交互に積層された
反射型ミラーを部分的に形成してパターン描画されたも
のである。
As shown in FIG. 2A, the cylindrical reflection mask 101 is a reflection type mirror in which two kinds of substances having different optical constants are alternately laminated on a substrate 201 which is non-reflective with respect to illumination light. It is partially formed and pattern-drawn.

【0037】上記の積層物質について一例を挙げると、
第一層202として厚さ27ÅのMoを21層、第二層
203として厚さ38ÅのSiを20層の計41層をそ
れぞれ交互に積層させ、その上に保護層204として厚
さ10Åの炭素を積層している。
As an example of the above-mentioned laminated material,
A total of 41 layers of 21 layers of Mo having a thickness of 27 Å as the first layer 202 and 20 layers of Si having a thickness of 38 Å as the second layer 203 are alternately laminated, and a carbon layer having a thickness of 10 Å is formed on the protective layer 204. Are stacked.

【0038】図2(b)は、上記のように形成された多
層反射膜に対して、EBリソグラフィー法とRIEドラ
イエッチング法とによりパターンが形成されたマスクを
示してある。
FIG. 2B shows a mask in which a pattern is formed on the multilayer reflective film formed as described above by the EB lithography method and the RIE dry etching method.

【0039】図2(c)は、図2(a)に示すように形
成された多層反射膜上にX線等を吸収する吸収体パター
ン205を設けたマスクである。吸収体パターン205
の一例を挙げると、材質は厚さ10nm〜200nmの
Ta、Mo、W等による薄膜パターンである。
FIG. 2C is a mask in which an absorber pattern 205 for absorbing X-rays and the like is provided on the multilayer reflective film formed as shown in FIG. 2A. Absorber pattern 205
For example, the material is a thin film pattern made of Ta, Mo, W or the like having a thickness of 10 nm to 200 nm.

【0040】円筒状反射マスクの基板201は、X線等
の非反射材とすることが好ましく、Si、SiC、Si
N等のセラミックス類、Ta、Mo、W等の重金属が使
用できる。
The substrate 201 of the cylindrical reflection mask is preferably made of a non-reflective material such as X-ray, and is made of Si, SiC, Si.
Ceramics such as N and heavy metals such as Ta, Mo and W can be used.

【0041】上記のように構成される本実施例による製
造例について以下に記す。
A manufacturing example according to this embodiment configured as described above will be described below.

【0042】[実施例1]上記実施例の円筒状反射マス
ク101の基板201および円筒状支持体103とし
て、表面を高精度に研磨加工した石英5mm厚の管体を
用いた。該管体の内部は、5mm厚の銅管が接触するよ
うに構成し、回転駆動部および冷却用送水管と接続し
た。
Example 1 As the substrate 201 and the cylindrical support 103 of the cylindrical reflection mask 101 of the above example, a tube body of quartz having a thickness of 5 mm and having a highly polished surface was used. The inside of the tube was constructed so that a copper tube having a thickness of 5 mm was in contact therewith, and was connected to the rotation drive section and the cooling water supply tube.

【0043】石英基板上には、回転駆動部および冷却用
送水管と接続する前に予めスパッタ蒸着法を用いて厚さ
27ÅのMoを21層、厚さ38ÅのSiを20層の計
41層をそれぞれ交互に積層した。さらに上層に10Å
のカーボンをスパッタ法にて積層した。
On the quartz substrate, 21 layers of Mo having a thickness of 27 Å and 20 layers of Si having a thickness of 38 Å were used in advance by a sputter deposition method before connecting to the rotary drive unit and the water pipe for cooling, for a total of 41 layers. Were alternately laminated. 10 Å in the upper layer
Of carbon was laminated by a sputtering method.

【0044】この基板上にPMMAレジストを0.5μ
m塗工し、さらに、EB露光機を用いてパターン描画を
行なった。所定の現像等の処理を行ない基板上にレジス
トパターンを形成した。
0.5 μm of PMMA resist is applied on this substrate.
m coating, and pattern drawing was performed using an EB exposure machine. The resist pattern was formed on the substrate by performing a predetermined development process.

【0045】次に、レジストをエッチングマスクとして
RIEドライエッチング装置で図2(b)に示したよう
な多層膜反射型マスクを形成した。
Next, using the resist as an etching mask, a multilayer film reflection type mask as shown in FIG. 2B was formed by an RIE dry etching apparatus.

【0046】続いて、上記のように構成された円筒状反
射マスク101を露光装置にセットした後、SOR−X
線(波長124Å)と上記実施例の縮小光学系を用いて
シリコンウェハ102上のレジスト面にスリット状に照
射した。このとき、シリコンウェハ102については、
円筒状反射マスク101の回転に連動させてスリット状
のSOR−X線の長さ方向と直行方向に移動させ、面上
に5分の1の縮小レジストパターンを形成した。
Subsequently, after the cylindrical reflection mask 101 having the above-described structure is set in the exposure apparatus, SOR-X is used.
The resist surface on the silicon wafer 102 was irradiated in a slit shape by using a line (wavelength 124 Å) and the reduction optical system of the above-mentioned embodiment. At this time, regarding the silicon wafer 102,
By interlocking with the rotation of the cylindrical reflection mask 101, the slit-shaped SOR-X-rays were moved in the length direction and the orthogonal direction to form a reduced resist pattern of ⅕ on the surface.

【0047】[実施例2]図2(a)に示した構成の多
層膜をSiC管状基板上に形成した。さらに、表面にレ
ジストAZ−1350を0.5μm塗工した。続いて、
光ステッパーを用いてパターン描画を行ない、現像等所
定のプロセスを経て最小線幅1μmのレジストパターン
を形成した。
Example 2 A multilayer film having the structure shown in FIG. 2A was formed on a SiC tubular substrate. Further, 0.5 μm of resist AZ-1350 was applied on the surface. continue,
A pattern was drawn using an optical stepper, and a resist pattern having a minimum line width of 1 μm was formed through a predetermined process such as development.

【0048】次に、スパッター蒸着法を用いてW(タン
グステン)を0.1μm厚堆積させた後、レジストをア
セトンを用いて除去、多層膜上に図2(c)に示したよ
うなW膜のマスクパターンを形成した。
Next, after depositing W (tungsten) to a thickness of 0.1 μm by the sputter deposition method, the resist was removed by using acetone, and the W film as shown in FIG. 2C was formed on the multilayer film. Was formed.

【0049】実施例−1と同様の操作を経てシリコンウ
エハー上のレジスト面上にパターン露光を行ない、5分
の1に縮小された0.2μm線幅のレジストバターンを
得た。
By performing the same operation as in Example-1, pattern exposure was performed on the resist surface on the silicon wafer to obtain a resist pattern having a line width of 0.2 μm reduced to one fifth.

【0050】[実施例3]円筒状反射マスク101の基
板201および円筒状支持体103として、表面を高精
度に研磨加工されたパイレックスガラス5mm厚の管体
を用いた。該管体の内部は、5mm厚の銅管が接触する
ように構成し、回転駆動部および冷却用送水管と接続し
た。
[Embodiment 3] As the substrate 201 and the cylindrical support 103 of the cylindrical reflection mask 101, a 5 mm-thick tube body of Pyrex glass whose surface was highly accurately polished was used. The inside of the tube was constructed so that a copper tube having a thickness of 5 mm was in contact therewith, and was connected to the rotation drive section and the cooling water supply tube.

【0051】ガラス基板上には接続前に予めスパッター
蒸着法を用いてAl(アルミニウム)を500Å堆積成
膜した。
Before the connection, Al (aluminum) was deposited on the glass substrate in advance by sputtering to form 500 Å.

【0052】この基板上にPMMAレジストを0.5μ
m塗工し、さらに、EB露光機を用いてパターン描画を
行なった。所定の現像等の処理を行ない基板上にレジス
トパターンを形成した。
0.5 μm of PMMA resist is applied on this substrate.
m coating, and pattern drawing was performed using an EB exposure machine. The resist pattern was formed on the substrate by performing a predetermined development process.

【0053】次に、レジストをエッチングマスクとしC
l(クロル)系のガスを用いてRIEドライエッチング
装置でエッチング、レジストを除去して紫外線反射型マ
スクを形成した。続いて露光装置に接続、セットした
後、エキシマレーザー紫外線(KrF:248nm)と
上記実施例と同様の縮小光学系を用いてシリコンウェハ
上のレジスト面にスリット状に照射、マスクの回転に連
動してスリット長さ方向と直行した方向に移動させて面
上に5分の1の縮小レジストパターンを形成した。この
際、一方向に連続して(エンドレス)に焼き付けを行な
うことにより、繋ぎ目のないレジストパターンを得た。
Next, using the resist as an etching mask, C
Etching was performed with an RIE dry etching apparatus using a 1 (chlorine) -based gas, and the resist was removed to form an ultraviolet reflective mask. Then, after connecting and setting to an exposure device, the resist surface on the silicon wafer is irradiated in a slit shape using an excimer laser ultraviolet ray (KrF: 248 nm) and the same reduction optical system as in the above-mentioned embodiment, interlocking with the rotation of the mask. And moved in a direction perpendicular to the slit length direction to form a ⅕ reduced resist pattern on the surface. At this time, a seamless resist pattern was obtained by continuously (endless) baking in one direction.

【0054】[実施例4]実施例3において、露光光線
に波長193nmのArFエキシマレーザを用いて同様
の焼き付けを行ない、同様に連続して一方向に続ぎ目の
ない縮小レジストパターンを得た。
[Embodiment 4] The same exposure as in Embodiment 3 was carried out by using an ArF excimer laser having a wavelength of 193 nm to obtain a reduced resist pattern which was continuously continuous in one direction. .

【0055】また、この装置を用いてCCDラインセン
サーを試作したところ位置精度に優れた良好なデパイス
を作成することが出来た。
Further, when a CCD line sensor was prototyped using this apparatus, a good device having excellent positional accuracy could be produced.

【0056】次に、上記説明した露光装置を利用したデ
バイスの製造方法の実施例を説明する。
Next, an embodiment of a device manufacturing method using the above-described exposure apparatus will be described.

【0057】図3は微小デバイス(ICやLSI等の半
導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マ
イクロマシン等)の製造のフローを示す。
FIG. 3 shows a flow of manufacturing microdevices (semiconductor chips such as IC and LSI, liquid crystal panels, CCDs, thin film magnetic heads, micromachines, etc.).

【0058】ステップS301(回路設計)では半導体
デバイスの回路設計を行なう。ステップS302(マス
ク製作)では設計した回路パターンを形成したマスクを
製作する。一方、ステップS303(ウエハ製造)では
シリコン等の材料を用いてウエハを製造する。ステップ
S304(ウエハプロセス)は前工程と呼ばれ、上記用
意したマスクとウエハを用いて、リソグラフィ技術によ
ってウエハ上に実際の回路を形成する。次のステップS
305(組み立て)は後工程と呼ばれ、ステップS30
4によって作製されたウエハを用いて半導体チップ化す
る工程であり、アッセンブリエ程(ダイシング、ボンデ
ィング)、パッケージングエ程(チップ封入)等の工程
を含む。ステップS306(検査)ではステップS30
5で作製された半導体デバイスの動作確認テスト、耐久
性テスト等の検査を行なう。こうした工程を経て半導体
デバイスが完成し、これが出荷(ステップS307)さ
れる。
In step S301 (circuit design), a semiconductor device circuit is designed. In step S302 (mask manufacturing), a mask having the designed circuit pattern is manufactured. On the other hand, in step S303 (wafer manufacturing), a wafer is manufactured using a material such as silicon. Step S304 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the mask and wafer prepared above. Next step S
305 (assembly) is called a post-process, and step S30
This is a process of forming a semiconductor chip using the wafer manufactured in No. 4 and includes a process of assembly process (dicing, bonding), a process of packaging process (chip encapsulation) and the like. In step S306 (inspection), step S30
Inspections such as an operation confirmation test and a durability test of the semiconductor device manufactured in 5 are performed. Through these steps, the semiconductor device is completed and shipped (step S307).

【0059】図4は上記ウエハプロセスの詳細なフロー
を示す。
FIG. 4 shows the detailed flow of the wafer process.

【0060】ステップS401(酸化)ではウエハの表
面を酸化させる。ステップS402(CVD)ではウエ
ハ表面に絶縁膜を形成する。ステップS403(電極形
成)ではウエハ上に電極を蒸着によって形成する。ステ
ップS404(イオン打込み)ではウエハにイオンを打
ち込む。ステップS405(レジスト処理)ではウエハ
に感光剤を塗布する。ステップS406(露光)では上
記説明した露光装置によってマスクの回路パターンをウ
エハに焼付露光する。ステップS407(現像)では露
光したウエハを現像する。ステップS408(エッチン
グ)では現像したレジスト像以外の部分を削り取る。ス
テップS409(レジスト剥離)ではエッチングが済ん
で不要となったレジストを取り除く。これらのステップ
を繰り返し行なうことによって、ウエハ上に多重に回路
パターンが形成される。本実施例の製造方法を用いれ
ば、従来は製造が難しかった高集積度の半導体デバイス
を製造することができる。
In step S401 (oxidation), the surface of the wafer is oxidized. In step S402 (CVD), an insulating film is formed on the wafer surface. In step S403 (electrode formation), electrodes are formed on the wafer by vapor deposition. In step S404 (ion implantation), ions are implanted in the wafer. In step S405 (resist processing), a photosensitive agent is applied to the wafer. In step S406 (exposure), the circuit pattern of the mask is printed and exposed on the wafer by the exposure apparatus described above. In step S407 (development), the exposed wafer is developed. In step S408 (etching), parts other than the developed resist image are scraped off. In step S409 (resist stripping), the unnecessary resist after etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer. By using the manufacturing method of this embodiment, it is possible to manufacture a highly integrated semiconductor device, which has been difficult to manufacture in the past.

【0061】[0061]

【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載するような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0062】回転EBおよび光描画等による簡素化を目
的として多層膜反射マスクを円筒状の回転基板上に形成
したことにより、駆動部分の減少、温度制御性向上、照
明域固定化することができる効果がある。
By forming the multilayer film reflection mask on the cylindrical rotating substrate for the purpose of simplification by the rotation EB and optical drawing, it is possible to reduce the driving portion, improve the temperature controllability, and fix the illumination area. effective.

【0063】そして、関連して多層膜の基板回転成膜に
よる膜厚精度を向上することができる効果がある。
In addition, there is an effect that it is possible to improve the film thickness accuracy by the rotational film formation of the multilayer film on the substrate.

【0064】また、同様に紫外線、遠紫外線、近紫外線
等のリソグラフィーに関しても有効であり、特に、連続
(エンドレス)焼き付けによる精度向上等従来考えられ
なかった効果が期待出来る。
Similarly, it is also effective for lithography of ultraviolet rays, far ultraviolet rays, near ultraviolet rays, etc. In particular, it is possible to expect an effect which has not been considered in the past such as an improvement in accuracy due to continuous (endless) printing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の要部の概略構成を示す図で
ある。
FIG. 1 is a diagram showing a schematic configuration of a main part of an embodiment of the present invention.

【図2】(a)〜(c)のそれぞれは、図1中の円筒状
反射マスク101の構造を説明するための図である。
2A to 2C are views for explaining the structure of the cylindrical reflection mask 101 in FIG.

【図3】本発明による微小デバイスの製造のフローを示
す図である。
FIG. 3 is a diagram showing a flow of manufacturing a micro device according to the present invention.

【図4】図3に示したウエハプロセスの詳細なフローを
示す図である。
4 is a diagram showing a detailed flow of the wafer process shown in FIG.

【符号の説明】[Explanation of symbols]

101 円柱状反射マスク 102 ウエハ 103 円柱状支持体 104 照明光 105 パターン光 201 基板 202 第一層 203 第二層 204 炭素 205 吸収体パターン S301〜S307,S401〜S409 ステップ 101 Cylindrical Reflection Mask 102 Wafer 103 Cylindrical Support 104 Illumination Light 105 Pattern Light 201 Substrate 202 First Layer 203 Second Layer 204 Carbon 205 Absorber Pattern S301 to S307, S401 to S409 Steps

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 反射型マスク面上に露光用の光を照射
し、その反射光により該反射型マスク面上の露光パター
ンを被露光物に形成する露光方法において、 前記露光用の光を反射する部材を用いて外周壁に露光パ
ターンが描かれた円柱状の反射型マスクを用い、 前記円柱状の反射型マスクをその軸を回転軸として回転
させるとともに、前記被露光物を円柱状の反射型マスク
の回転軸と略直交する方向に移動させて露光を行うこと
を特徴とする円柱状反射型マスクを用いる露光方法。
1. An exposure method of irradiating a light for exposure on a reflective mask surface and forming an exposure pattern on the reflective mask surface on an object to be exposed by the reflected light, wherein the light for exposure is reflected. Using a cylindrical reflective mask with an exposure pattern drawn on the outer peripheral wall using a member, the cylindrical reflective mask is rotated about its axis, and the exposed object is cylindrically reflected. An exposure method using a columnar reflective mask, wherein the exposure is performed by moving the mold mask in a direction substantially orthogonal to the rotation axis of the mask.
【請求項2】 請求項1記載の露光方法において、 円柱状反射型マスクの回転動作および被露光物の移動動
作を連続して行い、被露光物に円柱状反射型マスクの外
周壁に描かれた露光パターンを連続形成することを特徴
とする露光方法。
2. The exposure method according to claim 1, wherein the rotating operation of the cylindrical reflective mask and the moving operation of the exposed object are continuously performed, and the exposed object is drawn on the outer peripheral wall of the cylindrical reflective mask. An exposure method comprising continuously forming an exposed pattern.
【請求項3】 所定の露光パターンを被露光物に露光す
るために照射された露光用の光を反射させる反射型マス
クにおいて、 円柱状に形成され、外周壁には前記露光用の光を反射す
る部材を用いて露光パターンが描かれていること特徴と
する円柱状反射型マスク。
3. A reflection type mask for reflecting exposure light irradiated to expose an object to be exposed with a predetermined exposure pattern, which is formed in a columnar shape and reflects the exposure light on an outer peripheral wall. An exposure pattern is drawn using a member for forming a cylindrical reflective mask.
【請求項4】 請求項3に記載の円柱状反射型マスクに
おいて、 露光用の光を反射する部材が、重元素金属と軽元素薄膜
とを交互に積層した多層膜であることを特徴とする円柱
状反射型マスク。
4. The cylindrical reflective mask according to claim 3, wherein the light-reflecting member for exposure is a multilayer film in which heavy element metals and light element thin films are alternately laminated. Cylindrical reflective mask.
【請求項5】 請求項4に記載の円柱状反射型マスクに
おいて、 露光用の光を反射する多層膜を部分的に除去することに
より、露光パターンが形成されることを特徴とする円柱
状反射型マスク。
5. The cylindrical reflection mask according to claim 4, wherein the exposure pattern is formed by partially removing the multilayer film that reflects the light for exposure. Type mask.
【請求項6】 請求項4に記載の円柱状反射型マスクに
おいて、 露光用の光を反射する多層膜の上部に、露光用の光が反
射することを防止する反射防止膜を部分的に設けること
により、露光パターンが形成されることを特徴とする円
柱状反射型マスク。
6. The columnar reflective mask according to claim 4, wherein an antireflection film for preventing the exposure light from being reflected is partially provided on an upper portion of the multilayer film that reflects the exposure light. Thus, a columnar reflective mask, wherein an exposure pattern is formed.
【請求項7】 請求項4に記載の円柱状反射型マスクに
おいて、 露光用の光を反射する多層膜の上部に、露光用の光を吸
収する吸収体を部分的に設けることにより、露光パター
ンが形成されることを特徴とする円柱状反射型マスク。
7. The cylindrical reflective mask according to claim 4, wherein an absorber that absorbs the exposure light is partially provided on an upper part of the multilayer film that reflects the exposure light. A cylindrical reflection-type mask, wherein:
【請求項8】 請求項3乃至請求項7のいずれかに記載
の円柱状反射型マスクにおいて、 内部が中空の円筒状に形成され、該中空部分には、冷却
手段および恒温手段が設けられていることを特徴とする
円柱状反射型マスク。
8. The cylindrical reflective mask according to claim 3, wherein the inside is formed into a hollow cylindrical shape, and the hollow portion is provided with cooling means and constant temperature means. A cylindrical reflective mask characterized in that
【請求項9】 請求項3乃至請求項8のいずれかに記載
の円柱状反射型マスクにおいて、 露光用の光を反射させる部材としてX線反射部材が用い
られることを特徴とする円柱状反射型マスク。
9. The cylindrical reflection type mask according to claim 3, wherein an X-ray reflection member is used as a member for reflecting light for exposure. mask.
【請求項10】 請求項3乃至請求項8のいずれかに記
載の円柱状反射型マスクにおいて、 露光用の光を反射させる部材として真空紫外線または紫
外線反射部材が用いられることを特徴とする円柱状反射
型マスク。
10. The columnar reflective mask according to claim 3, wherein a vacuum ultraviolet ray or an ultraviolet ray reflecting member is used as a member for reflecting light for exposure. Reflective mask.
【請求項11】 請求項3乃至請求項10のいずれかに
記載の円柱状反射型マスクを用いて露光を行う露光装置
であって、 前記円柱状反射型マスクを、その軸を回転軸として回転
させる機構を備えたマスク支持手段と、 被露光物を、前記マスク支持手段による円柱状の反射型
マスクの回転軸と略直交する方向に移動させる機構を備
えた被露光物支持手段と、を有することを特徴とする露
光装置。
11. An exposure apparatus that performs exposure using the cylindrical reflective mask according to claim 3, wherein the cylindrical reflective mask is rotated about its axis. A mask supporting unit having a mechanism for moving the object to be exposed, and an object supporting unit having a mechanism for moving the object to be exposed in a direction substantially orthogonal to the rotation axis of the cylindrical reflective mask formed by the mask supporting unit. An exposure apparatus characterized by the above.
【請求項12】 請求項1または請求項2に記載の露光
方法により製造された半導体デバイス。
12. A semiconductor device manufactured by the exposure method according to claim 1.
【請求項13】 請求項11記載の露光装置により製造
された半導体デバイス。
13. A semiconductor device manufactured by the exposure apparatus according to claim 11.
JP30150793A 1993-12-01 1993-12-01 Cylindrical reflecting mask, exposure method and aligner using the mask as well as semiconductor device manufactured by them Pending JPH07153672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30150793A JPH07153672A (en) 1993-12-01 1993-12-01 Cylindrical reflecting mask, exposure method and aligner using the mask as well as semiconductor device manufactured by them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30150793A JPH07153672A (en) 1993-12-01 1993-12-01 Cylindrical reflecting mask, exposure method and aligner using the mask as well as semiconductor device manufactured by them

Publications (1)

Publication Number Publication Date
JPH07153672A true JPH07153672A (en) 1995-06-16

Family

ID=17897755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30150793A Pending JPH07153672A (en) 1993-12-01 1993-12-01 Cylindrical reflecting mask, exposure method and aligner using the mask as well as semiconductor device manufactured by them

Country Status (1)

Country Link
JP (1) JPH07153672A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093318A (en) * 2004-09-22 2006-04-06 Tohoku Univ Euv exposure device, euv exposure method and reflection type mask
JP2007273668A (en) * 2006-03-31 2007-10-18 Toppan Printing Co Ltd Reflecttion type phototmask blank, method of manufacturing same, reflection type phototmask, method of manufacturing same and exposure method of extreme ultraviolet light
JP2007299918A (en) * 2006-04-28 2007-11-15 Nikon Corp Exposure system and method, exposure mask, and manufacturing method of device
WO2008029917A1 (en) * 2006-09-08 2008-03-13 Nikon Corporation Mask, exposure apparatus and device manufacturing method
JP2011221538A (en) * 2010-04-13 2011-11-04 Nikon Corp Mask case, mask unit, exposure equipment, substrate processing apparatus and device manufacturing method
JP2012248864A (en) * 2012-07-19 2012-12-13 Nikon Corp Exposure equipment, exposure method, and device manufacturing method
US9213231B2 (en) 2013-07-10 2015-12-15 Canon Kabushiki Kaisha Reflective original, exposure method, and device manufacturing method
US9651868B2 (en) 2012-03-26 2017-05-16 Nikon Corporation Substrate processing apparatus, processing apparatus, and method for manufacturing device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093318A (en) * 2004-09-22 2006-04-06 Tohoku Univ Euv exposure device, euv exposure method and reflection type mask
JP2007273668A (en) * 2006-03-31 2007-10-18 Toppan Printing Co Ltd Reflecttion type phototmask blank, method of manufacturing same, reflection type phototmask, method of manufacturing same and exposure method of extreme ultraviolet light
JP2007299918A (en) * 2006-04-28 2007-11-15 Nikon Corp Exposure system and method, exposure mask, and manufacturing method of device
US9563116B2 (en) 2006-09-08 2017-02-07 Nikon Corporation Mask, exposure apparatus and device manufacturing method
WO2008029917A1 (en) * 2006-09-08 2008-03-13 Nikon Corporation Mask, exposure apparatus and device manufacturing method
JPWO2008029917A1 (en) * 2006-09-08 2010-01-21 株式会社ニコン Mask, exposure apparatus, and device manufacturing method
JP2012032837A (en) * 2006-09-08 2012-02-16 Nikon Corp Mask, exposure apparatus and device manufacturing method
US8609301B2 (en) 2006-09-08 2013-12-17 Nikon Corporation Mask, exposure apparatus and device manufacturing method
KR101419195B1 (en) * 2006-09-08 2014-07-15 가부시키가이샤 니콘 Mask, exposure apparatus and device manufacturing method
KR101422298B1 (en) * 2006-09-08 2014-08-13 가부시키가이샤 니콘 Mask, exposure apparatus and device manufacturing method
JP2011221538A (en) * 2010-04-13 2011-11-04 Nikon Corp Mask case, mask unit, exposure equipment, substrate processing apparatus and device manufacturing method
JP2015143873A (en) * 2010-04-13 2015-08-06 株式会社ニコン Mask case, exposure apparatus, substrate processing apparatus, and device manufacturing method
US10156795B2 (en) 2012-03-26 2018-12-18 Nikon Corporation Substrate processing apparatus, processing apparatus, and method for manufacturing device
KR20190057161A (en) 2012-03-26 2019-05-27 가부시키가이샤 니콘 Substrate processing device, processing device, and method for manufacturing device
US9651868B2 (en) 2012-03-26 2017-05-16 Nikon Corporation Substrate processing apparatus, processing apparatus, and method for manufacturing device
KR20170124648A (en) 2012-03-26 2017-11-10 가부시키가이샤 니콘 Substrate processing device, processing device, and method for manufacturing device
US10007190B2 (en) 2012-03-26 2018-06-26 Nikon Corporation Substrate processing apparatus, processing apparatus, and method for manufacturing device
KR20180097778A (en) 2012-03-26 2018-08-31 가부시키가이샤 니콘 Substrate processing device, processing device, and method for manufacturing device
US11073767B2 (en) 2012-03-26 2021-07-27 Nikon Corporation Substrate processing apparatus, processing apparatus, and method for manufacturing device
KR20200075030A (en) 2012-03-26 2020-06-25 가부시키가이샤 니콘 Pattern forming device
KR20190107758A (en) 2012-03-26 2019-09-20 가부시키가이샤 니콘 Pattern forming device
US10527945B2 (en) 2012-03-26 2020-01-07 Nikon Corporation Substrate processing apparatus, processing apparatus, and method for manufacturing device
KR20200016409A (en) 2012-03-26 2020-02-14 가부시키가이샤 니콘 Pattern forming device
US10591827B2 (en) 2012-03-26 2020-03-17 Nikon Corporation Substrate processing apparatus, processing apparatus, and method for manufacturing device
US10691027B2 (en) 2012-03-26 2020-06-23 Nikon Corporation Substrate processing apparatus, processing apparatus, and method for manufacturing device
JP2012248864A (en) * 2012-07-19 2012-12-13 Nikon Corp Exposure equipment, exposure method, and device manufacturing method
US9213231B2 (en) 2013-07-10 2015-12-15 Canon Kabushiki Kaisha Reflective original, exposure method, and device manufacturing method

Similar Documents

Publication Publication Date Title
US6549270B1 (en) Exposure apparatus, exposure method and method for manufacturing devices
US6867843B2 (en) Debris removing system for use in X-ray light source
US20080259439A1 (en) Multilayer-film reflective mirror, exposure apparatus, device manufacturing method, and manufacturing method of multilayer-film reflective mirror
TW530333B (en) Exposure method and exposure apparatus
JP2004064076A (en) Deformable mirror structure,its control method and exposure device
TWI643243B (en) Lithographic method and apparatus
TWI574099B (en) Flash measurement mask, flash measurement method, and exposure method
JP5223921B2 (en) Illumination optical system, exposure apparatus, and exposure method
TW567534B (en) Lithographic projection apparatus, method of manufacturing integrated circuits, method of manufacturing a reflector, and phase shift mask
JP2000029202A (en) Production of mask
TWI284252B (en) Lithographic projection apparatus, method and the device manufacturing method
JP2006165576A (en) Calibration substrate and method for calibrating lithographic apparatus
US20070211352A1 (en) Aperture changing apparatus and method
JPH07153672A (en) Cylindrical reflecting mask, exposure method and aligner using the mask as well as semiconductor device manufactured by them
JP2000286191A (en) Projection aligner, exposure method, and device- manufacturing method
JPH09232203A (en) Reflection-type x-ray mask structure, apparatus for x-ray exposure and method therefor, and device manufactured by using the reflection-type x-ray mask structure
US7027227B2 (en) Three-dimensional structure forming method
JP2008205377A (en) Aligner and device manufacturing method
JP2005166778A (en) Aligner and method of manufacturing device
JP2011077480A (en) Reflection type mask, exposure apparatus, exposure method, and device manufacturing method
TWI280935B (en) Substrate carrier and method for making a substrate carrier
WO1999028957A1 (en) Substrate retaining apparatus and exposure apparatus using the same
JP2004273926A (en) Aligner
JP2009162851A (en) Mask, method for manufacturing the same, exposure method and apparatus, and device manufacturing method
TWI295577B (en) Exposure apparatus and method