JPH07153449A - Negative electrode zinc can for battery - Google Patents

Negative electrode zinc can for battery

Info

Publication number
JPH07153449A
JPH07153449A JP5300016A JP30001693A JPH07153449A JP H07153449 A JPH07153449 A JP H07153449A JP 5300016 A JP5300016 A JP 5300016A JP 30001693 A JP30001693 A JP 30001693A JP H07153449 A JPH07153449 A JP H07153449A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
weight
lead
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5300016A
Other languages
Japanese (ja)
Other versions
JP2918434B2 (en
Inventor
Yoshiteru Nakagawa
吉輝 中川
Takaaki Yasumura
隆明 安村
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP5300016A priority Critical patent/JP2918434B2/en
Publication of JPH07153449A publication Critical patent/JPH07153449A/en
Application granted granted Critical
Publication of JP2918434B2 publication Critical patent/JP2918434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a negative electrode zinc can having good corrosion resistance and mechanical strength without adding lead, cadmium, and mercury regarded noxious environmentally. CONSTITUTION:One or more kinds of bismuth, indium, gallium, and tin of 0.004-0.75wt.% in total are contained as the first added metal, and two or more kinds of aluminum, titanium, and magnesium of 0.001-0.25wt.% in total are contained as the second added metal. This negative electrode zinc can is made of a zinc base alloy containing no significant noxious materials such as mercury, cadmium, and lead.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、微量金属を添加した
亜鉛基合金からなり有底円筒形に成形された電池用負極
亜鉛缶に関し、特に、水銀やカドミウムおよび鉛といっ
た有害物質を添加せずに高性能な負極亜鉛缶を実現する
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode zinc can for a battery, which is made of a zinc-based alloy to which a trace amount of metal is added, and is formed into a cylindrical shape with a bottom. In particular, it does not add harmful substances such as mercury, cadmium and lead. The present invention relates to a technology for realizing a high-performance negative electrode zinc can.

【0002】[0002]

【従来の技術】[Prior art]

[負極亜鉛缶の製造方法について]よく知られているよ
うに、マンガン電池に使用されている負極亜鉛缶はつぎ
のような一連の工程で製造されている。 亜鉛地金に後述する適宜な微量金属を添加して溶解す
る。 溶解した亜鉛基合金を連続鋳造し、連続した帯状体を
得る。 連続鋳造された帯状体を連続熱間圧延して、所定厚み
の板状体を得る。 圧延された板状体から所定寸法の円形ペレットを打ち
抜く。 ペレットを金型内にセットしてパンチで衝撃的に加圧
し、有底円筒形に成形する(衝撃後方押出し法)。 有底円筒形に成形された亜鉛缶の開口部分を切断し
て、円筒の高さ寸法を揃える。
[Manufacturing Method of Negative Electrode Zinc Can] As is well known, the negative electrode zinc can used in the manganese battery is manufactured by the following series of steps. An appropriate trace metal described below is added to zinc ingot and dissolved. The molten zinc-based alloy is continuously cast to obtain a continuous strip. The continuously cast strip is continuously hot-rolled to obtain a plate having a predetermined thickness. A circular pellet having a predetermined size is punched out from the rolled plate. The pellets are set in a mold and impacted with a punch to form a cylinder with a bottom (impact backward extrusion method). The height of the cylinder is made uniform by cutting the opening of a zinc can that is formed into a bottomed cylinder.

【0003】例えば単一形マンガン電池の負極亜鉛缶の
場合、圧延工程では板状体の厚みを約5.2mmとし、
打ち抜き工程で直径30mmの円形ペレットを打ち抜
き、成缶工程で外径31.4mmで肉厚0.5mmの有底
円筒形に成形し、高さ切断工程で円筒の高さを53.
5mmにする。
For example, in the case of a negative electrode zinc can of a single manganese battery, the thickness of the plate-shaped body is about 5.2 mm in the rolling process,
In the punching process, circular pellets with a diameter of 30 mm were punched out, and in the forming process, a cylinder with a bottom having a diameter of 31.4 mm and a thickness of 0.5 mm was formed. In the height cutting process, the height of the cylinder was 53.
Make it 5 mm.

【0004】[負極亜鉛缶およびその材料に要求される
諸特性について]衝撃後方押出し法による成缶工程に
おいて、材料の塑性加工性(展延性)が十分でないと、
缶に亀裂やヒビあるいはバリ等が生じ、電池の負極亜鉛
缶としては通用しない。このような不良を生じないで歩
留り良く円筒缶に成形できることが基本的な必須の要件
である(これを成缶加工性と称する)。
[Regarding Properties Required for Negative Electrode Zinc Can and Material Thereof] If the plastic workability (spreadability) of the material is not sufficient in the can forming step by the impact backward extrusion method,
Cracks, cracks, burrs, etc. occur in the can, and it cannot be used as a negative electrode zinc can for batteries. It is a fundamental and essential requirement that a cylindrical can can be molded with a good yield without causing such a defect (this is referred to as processability for forming a container).

【0005】完成した負極亜鉛缶はつぎに電池の組み立
てラインに進み、正極やセパレータおよび電解液などを
この缶内に収納し、さらに正極端子板と封口ガスケット
を缶の開口部にはめ込んで缶を密封する。ここで亜鉛缶
の缶としての機械的強度が低過ぎると、電池組み立て中
および後に缶が変形してしまい、さまざまな不都合を生
じる。そのため、成缶後の亜鉛缶にはある程度以上の機
械的強度が必要である。この成缶後の強度は前記の成缶
加工性(展延性)と相反する関係にある。
The completed negative electrode zinc can then proceeds to the battery assembly line, the positive electrode, the separator, the electrolytic solution, etc. are stored in this can, and the positive terminal plate and the sealing gasket are fitted into the opening of the can to seal the can. To do. If the mechanical strength of the zinc can as a can is too low, the can will be deformed during and after battery assembly, causing various problems. Therefore, the zinc can after being formed needs a certain level of mechanical strength. The strength after forming the can is in a relationship contradictory to the workability (spreadability) of the above-mentioned can.

【0006】完成した電池では負極亜鉛缶は内部の電解
液と常時接しているが、電池の保存中の自己放電を防止
するために、亜鉛缶は電解液に対して十分な耐食性を備
えていなければならない。
In the completed battery, the negative electrode zinc can is always in contact with the internal electrolytic solution, but in order to prevent self-discharge during storage of the battery, the zinc can must have sufficient corrosion resistance to the electrolytic solution. I have to.

【0007】以上のように、電池の負極亜鉛缶には、成
缶加工性と成缶後の機械的強度と電解液に対する耐食性
といった特性が要求される。これらの特性には、亜鉛基
合金の組成だけでなく、前記製造プロセスにおける溶解
工程の溶解温度、鋳造工程の鋳型の温度、圧延工程
の温度と圧延率、ペレット打ち抜き工程の温度、成
缶工程の温度と加工率(これらをプロセスファクター
と呼ぶ)などの多くの要因が係わっている。
As described above, the negative electrode zinc can of a battery is required to have properties such as workability for forming a container, mechanical strength after forming, and corrosion resistance to an electrolytic solution. These characteristics include not only the composition of the zinc-based alloy, but also the melting temperature of the melting process in the manufacturing process, the temperature of the casting process mold, the rolling process temperature and rolling rate, the pellet punching process temperature, and the forming container process temperature. Many factors are involved, such as temperature and processing rate (these are called process factors).

【0008】[亜鉛基合金の微量金属について]前記の
加工性、機械的強度、耐食性などの諸特性を向上させる
ために、旧来のマンガン電池では0.15重量%程度の
鉛と0.05重量%程度のカドミウムを添加した亜鉛基
合金で負極亜鉛缶を構成し、また亜鉛缶表面をアマルガ
ム化していた。ところが周知のように、電池の構成材料
から有害物質をできるだけ排除するという技術思想の下
で、まず無水銀化が達成され、つぎにカドミウムの非使
用が達成された。つまり、古くから使われてきた特性向
上効果の大きな添加金属を排除し、しかも電池の性能を
低下させない、という技術改良が重ねられてきた(例え
ば特開昭61−273861号、特公平4−30712
号、特開平4−198441号など)。
[About trace amount metal of zinc-based alloy] In order to improve various properties such as workability, mechanical strength, and corrosion resistance, the conventional manganese battery contains about 0.15% by weight of lead and 0.05% by weight. % Of cadmium was added to form a negative electrode zinc can, and the zinc can surface was amalgamated. However, as is well known, under the technical idea of removing harmful substances from the constituent materials of batteries as much as possible, first, the anhydrous silver was achieved, and then the non-use of cadmium was achieved. In other words, technical improvements have been made to eliminate the added metal which has been used for a long time and which has a great effect of improving the characteristics, and also does not deteriorate the performance of the battery (for example, JP-A-61-273861 and JP-B-4-30712).
No., JP-A-4-198441, etc.).

【0009】しかし最近のマンガン電池においても、負
極亜鉛缶には0.4重量%程度の鉛が依然として含まれ
ているのが実情であり、この鉛の添加を廃止することが
つぎの技術課題となっている。
However, even in recent manganese batteries, it is the actual situation that the negative electrode zinc can still contains about 0.4% by weight of lead, and the next technical problem is to abolish the addition of lead. Has become.

【0010】[0010]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

[純亜鉛で形成した亜鉛缶の試作評価について]0.4
重量%の鉛を含み良好な特性を示す従来の負極亜鉛缶に
対し、純亜鉛の缶を試作して比較評価した。
[Evaluation of trial production of zinc can made of pure zinc] 0.4
A pure zinc can was experimentally manufactured and compared with a conventional negative electrode zinc can which contained lead by weight and showed good characteristics.

【0011】亜鉛純度が99.9986重量%の地金を
原料とし、他の金属をまったく添加せずに前述した製造
プロセスで亜鉛缶を製作する。その際にプロセスファク
ター(溶解工程の溶解温度、鋳造工程の鋳型の温
度、圧延工程の温度と圧延率、ペレット打ち抜き工程
の温度、成缶工程の温度と加工率)をさまざまに変
化させて試作を繰り返す。そして、欠陥のない缶を歩留
り良く成形できるという基本の要件(成缶加工性)を満
たす範囲で、プロセスファクターを変えた試作品を作
り、それぞれの試作品について成缶後の機械的強度およ
び電解液に対する耐食性を以下の条件で調べ、従来品と
比較した。
A zinc can is manufactured by using the above-mentioned manufacturing process without using any other metal at all, by using a base metal having a zinc purity of 99.9986% by weight as a raw material. At that time, various process factors (melting temperature of melting process, mold temperature of casting process, temperature and rolling rate of rolling process, temperature of pellet punching process, temperature and processing rate of forming container process) are variously changed to make a prototype. repeat. Prototypes with different process factors were made within the range that satisfied the basic requirement (formability of cans) that defect-free cans could be formed with good yield, and the mechanical strength and electrolysis after the cans were formed for each prototype. The corrosion resistance to the liquid was examined under the following conditions and compared with the conventional product.

【0012】(a)比較試験は単一形マンガン電池用の
負極亜鉛缶について行った。成形した缶の外側中央部か
ら20mm角の試料片を切り出し、試料片のビッカース硬
度を各5点測定し、10個のサンプルについての平均値
を求めた。これを機械的強度の評価とした。
(A) A comparative test was conducted on a negative electrode zinc can for a single type manganese battery. A 20 mm square sample piece was cut out from the outer center of the molded can, and the Vickers hardness of each sample piece was measured at 5 points, and the average value of 10 samples was obtained. This was used as the evaluation of mechanical strength.

【0013】(b)また耐食性の評価としては、同様に
切り出した10mm角の試料片を電解液に一定期間浸した
後の腐食減量を測定し、10個のサンプルについての平
均値を求めた。なお電解液はZnCl2 (26.4重量
%)とNH4 Cl(2.2重量%)を含むpH=4.7
の水溶液である。また放置期間は20日で、雰囲気温度
は45℃である。
(B) As for the evaluation of corrosion resistance, a 10 mm square sample piece similarly cut out was immersed in an electrolytic solution for a certain period of time, and the corrosion weight loss was measured to obtain an average value for 10 samples. The electrolytic solution contains ZnCl 2 (26.4% by weight) and NH 4 Cl (2.2% by weight) and has a pH of 4.7.
Is an aqueous solution of. The period of standing is 20 days, and the ambient temperature is 45 ° C.

【0014】その結果、鉛を添加している従来品の硬度
を100(HV45)とすると、純亜鉛の試作品の硬度
は最大値で82(HV37)であった。また従来品の腐
食減量を100(0.93mg/cm2 )とすると、純
亜鉛の試作品の腐食減量は最小値で1022(9.5m
g/cm2 )であった。硬度については極端に劣ってい
るとは言えないが、腐食減量は大幅に劣っている。鉛を
添加することが大きな効果を奏しているわけである。
As a result, when the hardness of the conventional product to which lead was added was 100 (HV45), the maximum hardness of the prototype of pure zinc was 82 (HV37). When the corrosion weight loss of the conventional product is 100 (0.93 mg / cm 2 ), the corrosion weight loss of the prototype of pure zinc is 1022 (9.5 m).
g / cm 2 ). It cannot be said that the hardness is extremely inferior, but the corrosion weight loss is significantly inferior. The addition of lead has a great effect.

【0015】[発明の目的]この発明の目的は、環境上
有害とされる鉛、カドミウム、水銀を添加せずに良好な
耐食性と機械的強度を有する負極亜鉛缶を提供するもの
である。
[Object of the Invention] An object of the present invention is to provide a negative electrode zinc can having good corrosion resistance and mechanical strength without adding lead, cadmium and mercury which are harmful to the environment.

【0016】[0016]

【課題を解決するための手段】第1の発明の負極亜鉛缶
は、第1添加金属としてビスマス、インジウム、ガリウ
ム、スズのうちの1種以上を合計0.004〜0.75
重量%含有するとともに、第2添加金属としてアルミニ
ウムまたはチタンのいずれかを0.001〜0.25重
量%含有し、かつ水銀やカドミウムおよび鉛といった有
害物質を有意に含有していない亜鉛基合金からなる。
The negative electrode zinc can of the first invention is a total of 0.004 to 0.75 of at least one selected from bismuth, indium, gallium and tin as the first additive metal.
From a zinc-based alloy that contains not less than 0.001 to 0.25% by weight of aluminum or titanium as the second additive metal and does not significantly contain toxic substances such as mercury, cadmium and lead, in addition to the amount of 1% by weight. Become.

【0017】第2の発明の負極亜鉛缶は、第1添加金属
としてビスマス、インジウム、ガリウム、スズのうちの
1種以上を合計0.004〜0.75重量%含有すると
ともに、第2添加金属としてアルミニウム、チタン、マ
グネシウムのうちの2種以上を合計0.001〜0.2
5重量%含有し、かつ水銀やカドミウムおよび鉛といっ
た有害物質を有意に含有していない亜鉛基合金からな
る。
The negative electrode zinc can of the second invention contains 0.004 to 0.75% by weight of one or more of bismuth, indium, gallium and tin as the first additive metal in total, and the second additive metal. As a total of two or more of aluminum, titanium and magnesium as 0.001 to 0.2
It is composed of a zinc-based alloy containing 5% by weight and containing no significant harmful substances such as mercury, cadmium and lead.

【0018】第3の発明の負極亜鉛缶は、第1添加金属
としてビスマス、インジウム、ガリウム、スズのうちの
1種以上を合計0.004〜0.75重量%含有すると
ともに、第2添加金属としてマグネシウムを0.004
〜0.25重量%含有し、かつ水銀やカドミウムおよび
鉛といった有害物質を有意に含有していない亜鉛基合金
からなる。
The negative electrode zinc can of the third invention contains 0.004 to 0.75% by weight of one or more of bismuth, indium, gallium and tin as the first additive metal in total, and the second additive metal. 0.004 as magnesium
.About.0.25% by weight and does not contain toxic substances such as mercury, cadmium and lead significantly.

【0019】第4の発明の負極亜鉛缶は、第1添加金属
としてビスマス、インジウム、ガリウム、スズのうちの
1種以上を合計0.004〜0.75重量%含有すると
ともに、第2添加金属としてリチウムを0.001〜
0.02重量%含有し、かつ水銀やカドミウムおよび鉛
といった有害物質を有意に含有していない亜鉛基合金か
らなる。
The negative electrode zinc can of the fourth invention contains 0.004 to 0.75% by weight of one or more of bismuth, indium, gallium and tin as the first additive metal in total, and the second additive metal. 0.001 to lithium
It is composed of a zinc-based alloy containing 0.02% by weight and containing no significant harmful substances such as mercury, cadmium and lead.

【0020】[0020]

【作用】以下に説明する多数の比較試験結果から分るよ
うに、純亜鉛に前記第1添加金属を前記の割り合いで添
加することで耐食性が向上する。第1添加金属として複
数種類の金属を添加すると、相乗効果により耐食性が大
幅に向上する。第1添加金属に加え前記第2添加金属を
前記の割り合いで添加することで硬度が向上するととも
に、耐食性が若干向上する。その結果、目標値である硬
度40HV以上、腐食減量7.0mg/cm2 以下を達
成することができる。
As can be seen from the results of many comparative tests described below, the corrosion resistance is improved by adding the first additive metal to pure zinc in the above proportion. When multiple kinds of metals are added as the first additive metal, the synergistic effect significantly improves the corrosion resistance. By adding the second additive metal in addition to the first additive metal in the above proportion, the hardness is improved and the corrosion resistance is slightly improved. As a result, it is possible to achieve the target values of hardness of 40 HV or more and corrosion loss of 7.0 mg / cm 2 or less.

【0021】[0021]

【実施例】亜鉛純度が99.9986重量%の純亜鉛地
金を原料とし(不可避の不純物は考慮しない)、これに
以下のように微量金属を添加し、前述した製造プロセス
で単一形マンガン電池用の負極亜鉛缶を製作する。そし
て各試作品について、先に詳述した(a)および(b)
の方法にしたがってビッカース硬度(HV)と腐食減量
(mg/cm2 )とを測定し、諸特性を評価した。
EXAMPLE Using pure zinc metal having a zinc purity of 99.9986% by weight as raw material (inevitable impurities are not taken into consideration), trace metals are added to the raw metal as follows, and single-type manganese is produced by the manufacturing process described above. Manufacture negative electrode zinc cans for batteries. And for each prototype, (a) and (b) detailed above
The Vickers hardness (HV) and the corrosion weight loss (mg / cm 2 ) were measured according to the above method to evaluate various properties.

【0022】[0022]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

【表7】 [Table 7]

【表8】 [Table 8]

【表9】 [Table 9]

【表10】 [Table 10]

【表11】 [Table 11]

【表12】 [Table 12]

【表13】 [Table 13]

【表14】 [Table 14]

【表15】 [Table 15]

【表16】 [Table 16]

【表17】 [Table 17]

【表18】 [Table 18]

【表19】 [Table 19]

【表20】 [Table 20]

【表21】 [Table 21]

【表22】 [Table 22]

【表23】 [Table 23]

【表24】 [Table 24]

【表25】 [Table 25]

【表26】 [Table 26]

【表27】 [Table 27]

【表28】 [Table 28]

【表29】 [Table 29]

【表30】 [Table 30]

【表31】 [Table 31]

【表32】 [Table 32]

【表33】 [Table 33]

【0023】[0023]

【発明の効果】以上詳細に説明したように、この発明に
よれば、水銀やカドミウムおよび鉛といった有害物質を
亜鉛に添加することを廃止し、代りにビスマス、インジ
ウム、ガリウム、スズ、アルミニウム、チタン、マグネ
シウム、リチウムといった安全性の高い金属を前記の組
み合わせ・割り合いで添加することで、従来の鉛添加の
負極亜鉛缶と同等あるいはそれ以上の特性の負極亜鉛缶
を実現することができる。
As described in detail above, according to the present invention, the addition of harmful substances such as mercury, cadmium and lead to zinc is abolished, and bismuth, indium, gallium, tin, aluminum and titanium are used instead. By adding a highly safe metal such as magnesium, magnesium, or lithium in the above combination and ratio, it is possible to realize a negative electrode zinc can having characteristics equal to or better than the conventional lead-added negative electrode zinc can.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ビスマス、インジウム、ガリウム、スズ
のうちの1種以上を合計0.004〜0.75重量%含
有するとともに、アルミニウムまたはチタンのいずれか
を0.001〜0.25重量%含有し、かつ水銀やカド
ミウムおよび鉛といった有害物質を有意に含有していな
い亜鉛基合金からなることを特徴とする電池の負極亜鉛
缶。
1. At least one of bismuth, indium, gallium, and tin is contained in a total amount of 0.004 to 0.75% by weight, and at least one of aluminum and titanium is contained in an amount of 0.001 to 0.25% by weight. And a negative electrode zinc can for a battery, which is made of a zinc-based alloy that does not significantly contain harmful substances such as mercury, cadmium and lead.
【請求項2】 ビスマス、インジウム、ガリウム、スズ
のうちの1種以上を合計0.004〜0.75重量%含
有するとともに、アルミニウム、チタン、マグネシウム
のうちの2種以上を合計0.001〜0.25重量%含
有し、かつ水銀やカドミウムおよび鉛といった有害物質
を有意に含有していない亜鉛基合金からなることを特徴
とする電池の負極亜鉛缶。
2. A total of 0.004 to 0.75% by weight of at least one of bismuth, indium, gallium and tin, and a total of 0.001 to at least two of aluminum, titanium and magnesium. A negative electrode zinc can for a battery, which is made of a zinc-based alloy containing 0.25% by weight and containing no significant harmful substances such as mercury, cadmium and lead.
【請求項3】 ビスマス、インジウム、ガリウム、スズ
のうちの1種以上を合計0.004〜0.75重量%含
有するとともに、マグネシウムを0.004〜0.25
重量%含有し、かつ水銀やカドミウムおよび鉛といった
有害物質を有意に含有していない亜鉛基合金からなるこ
とを特徴とする電池の負極亜鉛缶。
3. At least one of bismuth, indium, gallium, and tin is contained in a total amount of 0.004 to 0.75% by weight, and magnesium is contained in a range of 0.004 to 0.25.
A negative electrode zinc can for a battery, which is made of a zinc-based alloy containing 50% by weight and containing no significant harmful substances such as mercury, cadmium and lead.
【請求項4】 ビスマス、インジウム、ガリウム、スズ
のうちの1種以上を合計0.004〜0.75重量%含
有するとともに、リチウムを0.001〜0.02重量
%含有し、かつ水銀やカドミウムおよび鉛といった有害
物質を有意に含有していない亜鉛基合金からなることを
特徴とする電池の負極亜鉛缶。
4. At least one of bismuth, indium, gallium, and tin is contained in an amount of 0.004 to 0.75% by weight, and lithium is contained in an amount of 0.001 to 0.02% by weight, and mercury or mercury is contained. A negative electrode zinc can for a battery, which is made of a zinc-based alloy that does not significantly contain harmful substances such as cadmium and lead.
JP5300016A 1993-11-30 1993-11-30 Battery negative electrode zinc can Expired - Fee Related JP2918434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5300016A JP2918434B2 (en) 1993-11-30 1993-11-30 Battery negative electrode zinc can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5300016A JP2918434B2 (en) 1993-11-30 1993-11-30 Battery negative electrode zinc can

Publications (2)

Publication Number Publication Date
JPH07153449A true JPH07153449A (en) 1995-06-16
JP2918434B2 JP2918434B2 (en) 1999-07-12

Family

ID=17879702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5300016A Expired - Fee Related JP2918434B2 (en) 1993-11-30 1993-11-30 Battery negative electrode zinc can

Country Status (1)

Country Link
JP (1) JP2918434B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0819774A1 (en) * 1996-07-19 1998-01-21 Matsushita Electric Industrial Co., Ltd. Silver-alloyed or silver-titanium-alloyed zinc anode can for manganese dry battery
WO1998055664A1 (en) * 1997-06-06 1998-12-10 Cominco Ltd. Galvanizing of reactive steels
US5853920A (en) * 1996-03-14 1998-12-29 Mitsui Mining & Smelting Co., Ltd. Method of manufacturing zinc-titanium mother alloy and manganese dry battery
US6280795B1 (en) 1998-05-22 2001-08-28 Cominco, Ltd. Galvanizing of reactive steels
US6569268B1 (en) 2000-10-16 2003-05-27 Teck Cominco Metals Ltd. Process and alloy for decorative galvanizing of steel
US6652676B1 (en) * 1999-10-18 2003-11-25 Big River Zinc Corporation Zinc alloy containing a bismuth-indium intermetallic compound for use in alkaline batteries
WO2006125364A1 (en) * 2005-04-26 2006-11-30 Asia Royal Development Limited Environmental protection zinc pot for battery, and manufacture methode of the same
WO2006133641A1 (en) * 2005-06-13 2006-12-21 Liangzhi Lin A zinc-manganese dry cell and negative alloy material and manufacture method thereof
JP2009203545A (en) * 2008-02-29 2009-09-10 Dowa Metals & Mining Co Ltd Zn ALLOY FOR DIE CASTING, AND METHOD FOR PRODUCING DIE-CAST MEMBER USING THE Zn ALLOY FOR DIE CASTING
CN101934296A (en) * 2010-08-30 2011-01-05 江门市三七电池实业有限公司 Zinc tube producing method for reducing weight of zinc tube
ES2425716R1 (en) * 2012-04-12 2013-11-06 Ampere Ind Zinc-based alloy, and zinc-based sacrificial anode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302323A (en) * 1993-04-14 1994-10-28 Toshiba Battery Co Ltd Manganese dry battery
JPH0794193A (en) * 1993-09-27 1995-04-07 Toshiba Battery Co Ltd Manganese dry battery
JPH0794194A (en) * 1993-09-28 1995-04-07 Toshiba Battery Co Ltd Manganese dry battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302323A (en) * 1993-04-14 1994-10-28 Toshiba Battery Co Ltd Manganese dry battery
JPH0794193A (en) * 1993-09-27 1995-04-07 Toshiba Battery Co Ltd Manganese dry battery
JPH0794194A (en) * 1993-09-28 1995-04-07 Toshiba Battery Co Ltd Manganese dry battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853920A (en) * 1996-03-14 1998-12-29 Mitsui Mining & Smelting Co., Ltd. Method of manufacturing zinc-titanium mother alloy and manganese dry battery
EP0819774A1 (en) * 1996-07-19 1998-01-21 Matsushita Electric Industrial Co., Ltd. Silver-alloyed or silver-titanium-alloyed zinc anode can for manganese dry battery
WO1998055664A1 (en) * 1997-06-06 1998-12-10 Cominco Ltd. Galvanizing of reactive steels
AU730209B2 (en) * 1997-06-06 2001-03-01 N.V. Umicore S.A. Galvanizing of reactive steels
US6280795B1 (en) 1998-05-22 2001-08-28 Cominco, Ltd. Galvanizing of reactive steels
US6652676B1 (en) * 1999-10-18 2003-11-25 Big River Zinc Corporation Zinc alloy containing a bismuth-indium intermetallic compound for use in alkaline batteries
US6569268B1 (en) 2000-10-16 2003-05-27 Teck Cominco Metals Ltd. Process and alloy for decorative galvanizing of steel
WO2006125364A1 (en) * 2005-04-26 2006-11-30 Asia Royal Development Limited Environmental protection zinc pot for battery, and manufacture methode of the same
WO2006133641A1 (en) * 2005-06-13 2006-12-21 Liangzhi Lin A zinc-manganese dry cell and negative alloy material and manufacture method thereof
JP2009203545A (en) * 2008-02-29 2009-09-10 Dowa Metals & Mining Co Ltd Zn ALLOY FOR DIE CASTING, AND METHOD FOR PRODUCING DIE-CAST MEMBER USING THE Zn ALLOY FOR DIE CASTING
CN101934296A (en) * 2010-08-30 2011-01-05 江门市三七电池实业有限公司 Zinc tube producing method for reducing weight of zinc tube
ES2425716R1 (en) * 2012-04-12 2013-11-06 Ampere Ind Zinc-based alloy, and zinc-based sacrificial anode

Also Published As

Publication number Publication date
JP2918434B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP2918434B2 (en) Battery negative electrode zinc can
KR19990082621A (en) Lead-Calcium Alloys for Battery Grids
CN105244489A (en) Aluminum-alloy anode material for battery and preparation method of aluminum-alloy anode material
JP2918446B2 (en) Battery negative electrode zinc can
CN1898822B (en) Negative electrode can for battery and manganese dry battery utilizing the same
CN1118523A (en) Manganese dry battery
CN100454616C (en) Method for producing anode can for battery and manganese dry battery using such anode can for battery
KR100895941B1 (en) Negative electrode active material for battery, anode can for battery, zinc negative plate for battery, manganese dry battery and method for manufacturing same
JP2612137B2 (en) Battery negative electrode zinc can
US5645961A (en) Zinc anode can of a battery, method of manufacture thereof, and manganese dry battery using such zinc can prepared by such method
JP2612138B2 (en) Battery negative electrode zinc can
JP3592345B2 (en) Manganese dry cell
CN1328803C (en) Environment-friendly zinc-manganese battery cathode can
JPH0575813B2 (en)
JP2918469B2 (en) Battery negative electrode zinc can and method of manufacturing the same
CN1045352C (en) Manganese dry cell
JP2918468B2 (en) Battery negative electrode zinc can and method of manufacturing the same
JPH06179936A (en) Negative electrode material for aluminum battery
EP1750316A1 (en) Negative electrode of dry battery, manufacture method of the same, and zinc-manganese dry battery using the same
EP2641292B1 (en) Alkaline collector anode
US4517065A (en) Alloyed-lead corrosion-resisting anode
US4583285A (en) Method of making self-supporting electrode for sea-water batteries
JPH0794193A (en) Manganese dry battery
JPS58500500A (en) Alloy for manufacturing lead-acid battery electrode support and its manufacturing method
CN102465218A (en) Environment-friendly zinc-manganese alloy and zinc-manganese battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees