JPH07151471A - Floatation melting device - Google Patents

Floatation melting device

Info

Publication number
JPH07151471A
JPH07151471A JP29715493A JP29715493A JPH07151471A JP H07151471 A JPH07151471 A JP H07151471A JP 29715493 A JP29715493 A JP 29715493A JP 29715493 A JP29715493 A JP 29715493A JP H07151471 A JPH07151471 A JP H07151471A
Authority
JP
Japan
Prior art keywords
crucible
shape
induction coil
melted
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29715493A
Other languages
Japanese (ja)
Inventor
Tamotsu Ashida
有 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29715493A priority Critical patent/JPH07151471A/en
Publication of JPH07151471A publication Critical patent/JPH07151471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)
  • General Induction Heating (AREA)

Abstract

PURPOSE:To obtain a product having a high space factor when many products are stacked for storage by forming the inner surface shape in the horizontal section of a crucible into a specific shaped polygon. CONSTITUTION:A crucible 7 is composed of an upper crucible 71 and a lower crucible 72, and their horizontal sectional shape of the inner surface and the outer surface are regular hexagon. The sectional shape of a product taken out from a floatation melting device after a member to be melted is solidified and the sectional shape of a product manufactured by the floatation melting device provided with the crucible 7 are formed into regular hexagon. Since any gap is not formed between the mutually adjacent products, the space factor in stacking becomes 1, and the space factor in the circular section is 0.9, accordingly the space factor in the regular hexagon is increased by 10%. Accordingly, the space required to store the same amount products can be decreased to 90% in comparison with the conventional product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、導電性の被溶解材を
交番磁界中に置いて電磁誘導作用によって誘導加熱する
とともに、所定の分布の磁界を生成して被溶解材に電磁
力による浮揚力を与えて浮揚状態で溶解することによっ
て高純度の材料を得ることのできる浮揚溶解装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention places a conductive material to be melted in an alternating magnetic field for induction heating by an electromagnetic induction action, and generates a magnetic field having a predetermined distribution to levitate the material to be melted by electromagnetic force. The present invention relates to a levitation melting apparatus capable of obtaining a high-purity material by applying force and melting it in a levitation state.

【0002】[0002]

【従来の技術】浮揚溶解装置は、所定の分布になるよう
に生成された交番磁界中に溶解される材料を置き、誘導
加熱と電磁力による浮揚力との双方を同時に与えて材料
が浮いてるつぼなど他の物に接触しない状態で溶解させ
て所定の材質と寸法の製品を得る装置である。溶解時に
他の物と接触しないために異物の混入が極めて少ないこ
と、融点の高い材料でも溶解が可能であること、熱伝導
損失が小さいこと、などの特長があることから、高融点
でしかも高純度が要求される材料、例えば、チタニウ
ム、シリコンなどの溶解処理に用いられる。
2. Description of the Related Art In a levitation melting apparatus, a material to be melted is placed in an alternating magnetic field generated so as to have a predetermined distribution, and the material is floated by applying both induction heating and levitation force by electromagnetic force at the same time. It is a device that melts without contacting other objects such as crucibles to obtain products of specified materials and dimensions. It has a high melting point and a high melting point because it has very few foreign substances mixed in because it does not come into contact with other substances during melting, and that it can dissolve even materials with a high melting point and has a small heat conduction loss. It is used for dissolution processing of materials that require high purity, such as titanium and silicon.

【0003】図4は従来の浮揚溶解装置の運転状態の全
体を示す縦断面斜視図、図5は図4の初期状態の要部を
示す縦断面斜視図であり、これらの図はこの発明と同じ
出願人による特願平4-140811号に示されているものに類
似である。これらの図において、浮揚溶解装置は、上る
つぼ11と下るつぼ12からなるるつぼ1、その外径側に周
回して設けられた誘導コイル2、るつぼ1の上部の開口
部から被溶解材5からなる小片53を連続的に投入する連
続投入装置3、これを制御する制御装置31及びこれの制
御情報を得るための湯面温度計32、下るつぼ12を上下方
向に駆動する駆動装置4、これを制御する制御装置41、
これの制御情報を得るための湯面レベル計42などからな
っている。
FIG. 4 is a longitudinal sectional perspective view showing the entire operating state of a conventional flotation / melting apparatus, and FIG. 5 is a longitudinal sectional perspective view showing the essential parts of the initial state of FIG. It is similar to that shown in Japanese Patent Application No. 4-140811 by the same applicant. In these drawings, the levitation melting apparatus is composed of a crucible 1 composed of an upper crucible 11 and a lower crucible 12, an induction coil 2 provided around the outer diameter side of the crucible 1, an opening at an upper portion of the crucible 1, and a material 5 to be melted. Continuous feeding device 3 for continuously feeding the small pieces 53, a control device 31 for controlling the same, a molten metal thermometer 32 for obtaining control information thereof, a driving device 4 for vertically driving the lower crucible 12, A control device 41 for controlling
It consists of a level gauge 42 for obtaining control information for this.

【0004】誘導コイル2は交流電源6によって高周波
の電圧が印加され電流が供給される。連続投入装置3に
は小片53をあらかじめ加熱するための交流電源34で励磁
される誘導コイル33が設けられている。上るつぼ11、下
るつぼ12はいずれも図示のように所定の形状を持つ複数
のセグメント111,121 がスリット112,122 を介して図示
のように上下のるつぼ11,12 を合わせたるつぼ1の形状
が底のある略円筒状に形成されるもので、スリット112,
122 にはマイカなどの絶縁板が挿入されて隣接するセグ
メント111 又は121 間の絶縁が確保されている。セグメ
ント111,121 は銅製で内部に図示しない冷却孔が設けら
れていて冷却水によって強力に冷却される構造になって
いる。
A high frequency voltage is applied to the induction coil 2 by an AC power source 6 to supply a current. The continuous charging device 3 is provided with an induction coil 33 which is excited by an AC power source 34 for preheating the small piece 53. Each of the upper crucible 11 and the lower crucible 12 has a plurality of segments 111, 121 each having a predetermined shape as shown in the drawing, and the shape of the crucible 1 in which the upper and lower crucibles 11, 12 are combined as shown in the drawing through the slits 112, 122. It is formed in a substantially cylindrical shape and has a slit 112,
An insulating plate such as mica is inserted in 122 to ensure insulation between adjacent segments 111 or 121. The segments 111 and 121 are made of copper and have cooling holes (not shown) provided therein, so that the segments can be strongly cooled by cooling water.

【0005】図4は溶解過程の最終段階に近い状態を示
し、図5は初期の状態を示すもので、初期には小さな被
溶解材5が浮揚するとともに溶解して初期溶解部50とな
り、以下に詳しく説明する過程で初期溶解部50から始ま
って被溶解材5が成長して長くなった状態を示したのが
図4である。実際に被溶解材5が溶解されて所定の製品
が得られる過程を次に説明する。 図5に示すように、最初に初期溶解部50となる所定の
量の被溶解材5を入れて誘導コイル2を励磁する。これ
によって、誘導コイル2の内側空間に交流磁界が発生し
電磁誘導作用によってそれぞれのセグメント111,121 及
び被溶解材5に渦電流が流れる。るつぼ1内の磁束はる
つぼ1の内面に沿った分布をするが、下るつぼ12のセグ
メント121 が図示のように下に絞られた形状をしている
ので被溶解材5がある底部近傍の磁束分布は下から上に
向かって開いた分布になる。渦電流によって被溶解材5
は加熱されるが、一方、前述のような磁束分布と渦電流
の相互作用から詳しい説明は省略するが被溶解材5には
重力に逆らう上向きの電磁力が働く。図のような下るつ
ぼ12の底部の形状は浮揚力を発生させるに適した磁束分
布が得られるように設定されているのである。 誘導コイル2が励磁されると電磁力は同時に働き僅か
の時間遅れで被溶解材5は浮揚し、重力と電磁力とが釣
り合う位置で停止する。一方、被溶解材5の融点は高い
ので溶解までに時間がかかり、融点に達した時点ではす
でに浮揚した状態になっている。したがって被溶解材5
が溶解して初期溶解部50となったときに浮揚してるつぼ
1の内壁に接触しないので不純物が混入することがな
い。 連続投入装置31によって小片53を投入する。小片53は
誘導コイル33による電磁誘導加熱によって加熱されて融
点には達しないが高温になっており、初期溶解部50と接
触して熱伝導によって融点以上に加熱されて溶解し初期
溶解部50と文字通り一体になる。小片53が連続して投入
されるにつれて初期溶解部50は大きくなって成長してゆ
く。小片53の投入は湯面温度計32が所定の値以上のとき
に行い、以下になったときには停止するというように制
御装置31によって投入頻度が適宜制御される。 小片53の投入によって初期溶解部50から大きくなった
被溶解材5の浮揚力は重量の増加ほどには増加しないの
で被溶解材5の成長とともに浮揚位置が下がってゆきつ
いに被溶解材5の下部が下るつぼ12の底部に接触する。
前述のように下るつぼ12は冷却されて常温近くの低温に
保持されているので接触部はただちに固化する。このよ
うにして固化部52が生成され以後は被溶解材5の成長と
ともに固化部52も成長する。溶解部51は常に被溶解材5
の上先端部に存在し、この溶解部51に小片53が投入され
る。溶解部51は固化部52の上にあるのでるつぼ1と接触
することがないことから不純物が混入しない条件のまま
被溶解材5は大きく成長することができる。 被溶解材5がある程度成長したところで下るつぼ12を
下に向けて移動させて溶解部51が上るつぼ11及び誘導コ
イル2に対して一定の位置を保持するように制御され
る。この制御は湯面レベル計42によって被溶解材5の上
面位置を計測しその結果を制御装置41に入力しこれに基
づいて駆動装置4によって下るつぼ12が駆動される。 被溶解材5が所定の長さになったところで下るつぼ12
の駆動、小片53の投入、及び誘導コイル2の励磁を止め
ると、図4のように棒状に成長した被溶解材5は全体が
固化するのでこれを取り出して所望の製品が得られる。
この製品の大きさ、特にその長さは下るつぼ12の移動距
離によって決まるので、この浮揚溶解装置はるつぼ1の
容積に比べてはるかに大きな製品を得ることができると
いう特長を持つものである。
FIG. 4 shows a state close to the final stage of the melting process, and FIG. 5 shows an initial state. In the initial stage, a small material 5 to be melted floats and melts to become an initial melting portion 50. FIG. 4 shows a state in which the material to be melted 5 has grown and lengthened starting from the initial melting portion 50 in the process described in detail in FIG. The process in which the material 5 to be melted is actually melted to obtain a predetermined product will be described below. As shown in FIG. 5, the induction coil 2 is excited by first inserting a predetermined amount of the material 5 to be melted, which becomes the initial melting portion 50. As a result, an alternating magnetic field is generated in the inner space of the induction coil 2, and an eddy current flows through the segments 111 and 121 and the material 5 to be melted by the electromagnetic induction action. The magnetic flux in the crucible 1 is distributed along the inner surface of the crucible 1, but since the segment 121 of the lower crucible 12 has a shape narrowed down as shown in the figure, the magnetic flux in the vicinity of the bottom where the material to be melted 5 is present. The distribution is open from bottom to top. Material to be melted 5 due to eddy current
Is heated, on the other hand, an upward electromagnetic force that opposes gravity acts on the material to be melted 5, although a detailed description is omitted from the interaction between the magnetic flux distribution and the eddy current as described above. The shape of the bottom of the lower crucible 12 as shown in the figure is set so that a magnetic flux distribution suitable for generating a levitation force can be obtained. When the induction coil 2 is excited, an electromagnetic force simultaneously works and the material to be melted 5 levitates with a slight time delay and stops at a position where gravity and the electromagnetic force are balanced. On the other hand, since the melting point of the material 5 to be melted is high, it takes time to melt it, and when it reaches the melting point, it is already in a levitated state. Therefore, the material to be melted 5
When is melted to become the initial melting portion 50, it does not come into contact with the inner wall of the crucible 1 that floats, so that impurities are not mixed. A small piece 53 is charged by the continuous charging device 31. The small piece 53 is heated by electromagnetic induction heating by the induction coil 33 and does not reach the melting point, but is at a high temperature. Literally become one. As the small pieces 53 are continuously charged, the initial melting part 50 grows and grows. The control unit 31 controls the charging frequency such that the small pieces 53 are charged when the molten metal surface thermometer 32 is equal to or higher than a predetermined value and stopped when the temperature becomes lower than a predetermined value. Since the levitation force of the melted material 5 increased from the initial melting portion 50 by the introduction of the small piece 53 does not increase as much as the increase in weight, the levitation position lowers as the melted material 5 grows, and the lower part of the melted material 5 is tightened. Touches the bottom of the crucible 12.
As described above, the lower crucible 12 is cooled and kept at a low temperature near room temperature, so that the contact portion immediately solidifies. In this way, the solidified portion 52 is generated, and thereafter, the solidified portion 52 also grows along with the growth of the melted material 5. The melting part 51 is always the material 5 to be melted.
The small piece 53 is placed in the upper tip portion of the and the melting portion 51 is charged. Since the melting portion 51 is above the solidifying portion 52 and does not come into contact with the crucible 1, the material 5 to be dissolved can grow large under the condition that impurities are not mixed. When the material 5 to be melted has grown to a certain extent, the lower crucible 12 is moved downward so that the melting portion 51 is controlled so as to maintain a constant position with respect to the upper crucible 11 and the induction coil 2. In this control, the molten metal level meter 42 measures the position of the upper surface of the material 5 to be melted, and the result is input to the control device 41. Based on this, the driving device 4 drives the lower crucible 12. Crucible 12 when the material to be melted 5 reaches a specified length
When the driving, the feeding of the small piece 53, and the excitation of the induction coil 2 are stopped, the melted material 5 that has grown in a rod shape as shown in FIG. 4 is solidified as a whole, and the product is taken out to obtain a desired product.
Since the size of this product, especially its length, is determined by the moving distance of the lower crucible 12, this levitation melting apparatus is characterized in that a product much larger than the volume of the crucible 1 can be obtained.

【0006】なお、図4では被溶解材5の固化部52とる
つぼ1の内面との間にかなりの隙間があるものとして図
示してあるが、前述の説明からも分かるように固化部52
とるつぼ1の内面とは接触しているのが実際である。し
たがって、るつぼ1の内面の形状と製品としての被溶解
材5の断面形状は実質的に同じになる。また、溶解部51
に凸凹があるように図示してあるが、これは小片53が溶
解部51に入った瞬間や溶解部が振動して変形するなどの
実際の現象を示したものであり、小片53の投入の影響が
なくなったときの溶解部51の形状は軸対称性の安定した
形状を保つのが実際である。
In FIG. 4, the solidified portion 52 of the material to be melted 5 and the inner surface of the crucible 1 are shown to have a considerable gap, but as can be understood from the above description, the solidified portion 52 is shown.
In fact, it is in contact with the inner surface of the crucible 1. Therefore, the shape of the inner surface of the crucible 1 and the sectional shape of the material 5 to be melted as a product are substantially the same. In addition, the melting section 51
Although it is illustrated as having unevenness, this shows an actual phenomenon such as the moment when the small piece 53 enters the melting portion 51 or the melting portion vibrates and deforms. In reality, when the influence disappears, the shape of the melted portion 51 maintains a stable shape with axial symmetry.

【0007】なお、誘導コイル2の電流は数千アンペア
と非常に大きくしかも周波数は50kHz と高いのでその導
体やリードの断面積が大きいことから誘導コイル2の上
下方向を移動させるのは困難である反面、上るつぼ11や
下るつぼ12は冷却水用の配管がつながるとはいえ、移動
させるのは誘導コイル2に比べてはるかに容易なので、
実際に採用される構造も誘導コイル2は固定しておき下
るつぼ12を移動可能になっているのが実際である。
Since the current of the induction coil 2 is very large (thousands of amperes) and the frequency is as high as 50 kHz, it is difficult to move the induction coil 2 in the vertical direction due to the large cross-sectional area of the conductor and the lead. On the other hand, although the upper crucible 11 and the lower crucible 12 are connected to the piping for cooling water, it is much easier to move them than the induction coil 2.
In the actually adopted structure, the induction coil 2 is fixed and the lower crucible 12 is movable.

【0008】下るつぼ12の移動の制御は前述のように被
溶解材5の上面、すなわち溶解部51の上面位置を湯面レ
ベル計42で計測しその結果を基に、上面位置が高すぎる
と下るつぼ12を下げる速度を上げ、低すぎると速度を下
げるという考えを基に行われる。その際、基準になる位
置は溶解部51の消費電力が最大になる位置に設定され
る。溶解部51で消費電力が最大になる条件は誘導コイル
2との位置関係から決まる。
As described above, the movement of the lower crucible 12 is controlled by measuring the upper surface position of the material 5 to be melted, that is, the upper surface position of the melting portion 51 with the molten metal level gauge 42, and if the upper surface position is too high, This is done based on the idea that the lowering speed of the lower crucible 12 is increased, and if it is too low, the lowering speed is reduced. At that time, the reference position is set to a position where the power consumption of the melting section 51 is maximized. The condition for maximizing the power consumption in the melting section 51 is determined by the positional relationship with the induction coil 2.

【0009】るつぼ1の内面の形状は円筒状としている
が、それは、円形は被溶解材5の一定の断面積に対して
セグメント111,121 に流れる渦電流の電流経路が最小に
なる最も効率のよい形状だからである。るつぼ1の製作
方法は、銅材をスリット112,122 が設けられずセグメン
ト111,121 が形成されない有底円筒状に加工し、これに
半径方向の切断部としてのスリット112,122 を設けて所
定の数のセグメントに分割する。
The inner surface of the crucible 1 has a cylindrical shape, but the circular shape is the most efficient shape in which the current path of the eddy current flowing in the segments 111 and 121 is minimum for a given cross-sectional area of the material 5 to be melted. That's why. The crucible 1 is manufactured by processing a copper material into a bottomed cylindrical shape in which the slits 112,122 are not provided and the segments 111,121 are not formed, and the slits 112,122 are provided as a radial cut portion to divide into a predetermined number of segments. To do.

【0010】[0010]

【発明が解決しようとする課題】ところで、被溶解材5
がるつぼ1から取り出された製品は丸棒状をしており、
これを板又は線に加工するなどの次の工程に移されるま
での間の保管、製品が放射性廃棄物の場合のように長期
保管される場合には、適宜横置きにしたり立置きしたり
して密集して集積した状態に保管される。製品の断面形
状が円形の場合、製品が移動し易いために不安定である
とい問題もあるが、隣合う製品の間に隙間ができて占積
率が悪いという問題がある。特に前述の放射性廃棄物の
ように長期にわたって保管するものでは占積率が悪いと
保管に要する空間が大きいために保管コストが増大する
という問題がある。
By the way, the material to be melted 5
The product taken out from the crucible 1 has a round bar shape,
If this product is stored until it is transferred to the next process such as processing into a plate or wire, or if it is stored for a long period of time such as in the case of radioactive waste, set it horizontally or upright as appropriate. Are stored in a dense and concentrated state. When the cross-sectional shape of the product is circular, there is a problem that the product is unstable because it easily moves, but there is a problem that a space is formed between adjacent products and the space factor is poor. In particular, in the case of long-term storage such as radioactive waste described above, if the space factor is poor, there is a problem that the storage cost increases because the space required for storage is large.

【0011】この発明の目的はこのような問題を解決し
て、多数の製品を保管するために集積したときに占積率
の高い形状を持った製品を得ることのできる浮揚溶解装
置を提供することにある。
An object of the present invention is to solve such a problem and to provide a levitation melting apparatus capable of obtaining a product having a shape with a high space factor when accumulated for storing a large number of products. Especially.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、良導電金属製の有底筒状のるつ
ぼ、るつぼの外径側に設けられた誘導コイル、誘導コイ
ルに電流を供給する交流電源、るつぼの上部から導電性
の被溶解材の小片を連続的にるつぼ内に投入する連続投
入装置、及びるつぼの上下方向位置を変える駆動装置と
が備えられてなる浮上溶解装置において、るつぼの水平
断面の内面形状が所定の形状の多角形であるものとす
る。また、るつぼの水平断面の外面形状と誘導コイルの
形状とが、るつぼの水平断面の内面形状に相似の多角形
であるものとする。また、るつぼの水平断面の内面形状
が正六角形であるものとする。
In order to solve the above problems, according to the present invention, there is provided a bottomed cylindrical crucible made of a good conductive metal, an induction coil provided on the outer diameter side of the crucible, and an induction coil. Floating melting comprising an AC power supply for supplying an electric current, a continuous charging device for continuously charging a small piece of a conductive material to be melted into the crucible from the upper part of the crucible, and a driving device for changing the vertical position of the crucible. In the device, the inner surface shape of the horizontal cross section of the crucible is a polygon of a predetermined shape. Further, the outer surface shape of the horizontal cross section of the crucible and the shape of the induction coil are polygons similar to the inner surface shape of the horizontal cross section of the crucible. Further, the inner surface shape of the horizontal cross section of the crucible is assumed to be a regular hexagon.

【0013】[0013]

【作用】この発明の構成において、るつぼの水平断面の
内面形状を所定の形状の多角形にすると、製作される棒
状の製品の断面形状はるつぼの水平断面の内面形状と同
じ多角形になる。例えば、正六角形や長方形の場合には
多数の製品を棒状の軸方向を平行にして集積すると互い
の製品の面同士が接触して隙間が生じないように集積す
ることができる。したがって、製品の間に隙間ができな
いので集積状態での占積率が実質的に1になる。このよ
うな集積したときに隙間の生じない多角形はこの他に種
々ある。
In the structure of the present invention, if the inner surface shape of the horizontal cross section of the crucible is a polygon of a predetermined shape, the manufactured rod-shaped product has the same polygonal shape as the inner surface shape of the horizontal cross section of the crucible. For example, in the case of a regular hexagon or a rectangle, when a large number of products are stacked with their rod-shaped axes parallel to each other, the products can be stacked so that the surfaces of the products do not come into contact with each other to form a gap. Therefore, since there is no gap between the products, the space factor in the integrated state is substantially 1. There are various other polygons that do not have a gap when they are stacked.

【0014】また、るつぼ水平断面の外面形状と誘導コ
イルとの双方を内面形状に相似の多角形にすることによ
って、るつぼ外周面と誘導コイルとの間隙は絶縁などに
必要な最小の寸法でよいのでこの間隙を通過する磁束が
最小になって誘導コイルのインダクタンスは最小にな
る。更に、円形の場合に比べて誘導コイルの全長が短く
なるので電流が流れることによる発生損失が低減し、同
じようにしてるつぼの外周に流れる渦電流の流路も短く
なって損失が低減する。また、るつぼの水平断面の内面
形状を正六角形とすると、集積したときに隙間が生じな
い形状でしかも製品の断面積に対して周長が最も短い形
状となり、更に、円形に最も近い形状なので溶解部に生
ずる電磁力の周方向分布が最も均一になる。
By forming both the outer surface shape of the crucible horizontal section and the induction coil into a polygon similar to the inner surface shape, the gap between the outer surface of the crucible and the induction coil may be the minimum dimension necessary for insulation. Therefore, the magnetic flux passing through this gap is minimized and the inductance of the induction coil is minimized. Furthermore, since the total length of the induction coil is shorter than that in the case of a circular shape, the generated loss due to the current flowing is reduced, and the flow path of the eddy current flowing around the outer periphery of the crucible is also shortened to reduce the loss. In addition, if the inner surface of the horizontal cross section of the crucible is a regular hexagon, the shape will be such that no gaps will be created when the crucible is integrated, and the circumference will be the shortest with respect to the cross-sectional area of the product. The circumferential distribution of the electromagnetic force generated in the part becomes most uniform.

【0015】[0015]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の第1の実施例を示す浮揚溶解装置のる
つぼ斜視図、図2は図1のるつぼと誘導コイルとの水平
断面図である。図1では図4、図5と同様に手前の半分
を省略して向こう側の半分だけを図示してあり、誘導コ
イルその外の構成物の図示を省略してある。図1におい
て、るつぼ7は上るつぼ71、下るつぼ72からなってい
る。そして、これらの水平断面形状は図2から明らかな
ように内面、外面とも正六角形である。スリット712,72
2 は正六角形の6つの頂点の位置に設けられている。し
たがって全周に対しては6箇所である。ただ、必要なス
リットの数は6よりも大きいのが普通である。例えば、
スリット数が24必要であれば各辺を4等分した位置に
スリットを設ければよい。
EXAMPLES The present invention will be described below based on examples.
1 is a perspective view of a crucible of a levitation melting apparatus showing a first embodiment of the present invention, and FIG. 2 is a horizontal sectional view of the crucible and the induction coil of FIG. In FIG. 1, as in FIGS. 4 and 5, only the front half is omitted and only the half on the other side is shown, and the components other than the induction coil are not shown. In FIG. 1, the crucible 7 comprises an upper crucible 71 and a lower crucible 72. The horizontal cross-sectional shape of these is a regular hexagon on both the inner and outer surfaces, as is clear from FIG. Slit 712,72
2 is provided at the positions of the six vertices of a regular hexagon. Therefore, there are 6 locations on the entire circumference. However, the number of slits required is usually larger than six. For example,
If 24 slits are required, slits may be provided at positions where each side is divided into four.

【0016】前述のように被溶解材5が固まり浮揚溶解
装置から取り出された製品の断面形状はるつぼの水平断
面の内面形状と同じになる。したがって、るつぼ7を持
つ浮揚溶解装置によって製作された製品の断面形状も正
六角形になる。図3は製品の集積状況の模式的な斜視図
である。この図において、断面が正六角形の製品50が互
いの面を接触させて密に集積された状態になっている。
したがって隣合う製品の間に隙間を作らないために、集
積時の占積率が1になっている。ちなみに円形断面の場
合の占積率は約0.9 であるから、正六角形の場合はこれ
よりも10%占積率が高いことになる。このことは同じ量
の製品を保管するのに必要な空間が従来の製品に比べて
90%に縮小することができることを表す。
As described above, the material 5 to be melted is solidified and the product taken out from the levitation melting apparatus has the same cross-sectional shape as the inner surface of the horizontal cross-section of the crucible. Therefore, the cross-sectional shape of the product manufactured by the levitation melting apparatus having the crucible 7 is also a regular hexagon. FIG. 3 is a schematic perspective view of the accumulation state of products. In this figure, products 50 having a regular hexagonal cross section are in a state of being densely packed with their surfaces in contact with each other.
Therefore, the space factor at the time of stacking is 1 because no space is formed between adjacent products. By the way, since the space factor in the case of a circular cross section is about 0.9, the space factor in the case of a regular hexagon is 10% higher than this. This means that the space required to store the same amount of product is
It means that it can be reduced to 90%.

【0017】図2に戻って、誘導コイル27をるつぼ7の
形状に沿って正六角形にしてある。また、るつぼ7の外
面も同様である。このような構成を採用する理由は、る
つぼ7及び誘導コイル27に発生する損失をなるべく小さ
く浮揚溶解装置の効率を上げること、誘導コイル27のイ
ンダクタンスをなるべく小さくすること、の2つであ
る。すなわち、円弧とこの円弧の両端を接続する線分と
しての弦との長さを比べたとき弦の長さの方が短いのは
明らかである。したがって、誘導コイル27及びるつぼ7
の外面形状を円形ではなく内面形状に相似の正六角形に
することによってこれらの周方向長さが短くなり、これ
らを流れる電流によるジュール損が長さの短くなった比
率に応じて低減する。また、るつぼ7の外表面と誘導コ
イルの内径面との間の隙間には誘導コイル27に流れる電
流によって発生した磁束が通るが、この隙間の面積が大
きいとここを通る磁束量を増え誘導コイル27のインダク
タンスが増大する。誘導コイル27のインダクタンスが増
大すると交流電源6に含まれる直列コンデンサの容量を
大きくする必要がある。このようなことから、誘導コイ
ル27のインダクタンスはなるべく小さいのが望ましい。
したがって、従来の浮揚溶解装置の場合に、円形のるつ
ぼ1の外表面から必要最小限の寸法をとって誘導コイル
2が設けられる。図2の場合もるつぼ7の外面の形状を
正六角形にする限り誘導コイル27も正六角形にするのが
妥当であるということになる。ただ、るつぼ7の外面形
状を正六角形にするか円形にするかはるつぼ7の製作方
法に関係する。すなわち、銅材から削り出してスリット
のない有底筒状のものに加工し、これにスリットを設け
る製作方法の場合、内面はともかく外面は円形の方が加
工が容易である。したがって、外面を正六角形にする利
点と加工工数の増大との兼ね合いに基づいてどちらかの
選択が行われる。また、るつぼ7の外面が円形の場合は
誘導コイル27も同じく円形なのが妥当である。るつぼ7
の外面が正六角形の場合、誘導コイル27を正六角形にす
るか円形にするかについても誘導コイル27の製作方法も
考慮されて決定されるのが実際である。
Returning to FIG. 2, the induction coil 27 is formed into a regular hexagon along the shape of the crucible 7. The same applies to the outer surface of the crucible 7. There are two reasons for adopting such a configuration: to reduce the loss generated in the crucible 7 and the induction coil 27 as much as possible to improve the efficiency of the levitation melting apparatus, and to make the inductance of the induction coil 27 as small as possible. That is, it is clear that the length of the chord is shorter when the lengths of the arc and the chord as a line segment connecting both ends of the arc are compared. Therefore, the induction coil 27 and the crucible 7
By making the outer surface shape of the above-mentioned regular hexagonal shape similar to the inner surface shape instead of the circular shape, the circumferential length of these is shortened, and the Joule loss due to the current flowing through them is reduced according to the ratio of the shortened length. Further, the magnetic flux generated by the current flowing in the induction coil 27 passes through the gap between the outer surface of the crucible 7 and the inner diameter surface of the induction coil. If the area of this gap is large, the amount of magnetic flux passing therethrough will increase. The inductance of 27 increases. When the inductance of the induction coil 27 increases, it is necessary to increase the capacity of the series capacitor included in the AC power supply 6. For this reason, it is desirable that the inductance of the induction coil 27 be as small as possible.
Therefore, in the case of the conventional levitation melting apparatus, the induction coil 2 is provided by taking the minimum required size from the outer surface of the circular crucible 1. In the case of FIG. 2 as well, it is appropriate that the induction coil 27 is also a regular hexagon as long as the outer surface of the crucible 7 is a regular hexagon. However, whether the outer surface shape of the crucible 7 is a regular hexagon or a circle depends on the manufacturing method of the crucible 7. That is, in the case of a manufacturing method in which a copper material is machined into a bottomed cylindrical shape without slits and slits are formed in this, it is easier to process the circular shape on the outer surface as well as the inner surface. Therefore, either one is selected based on the trade-off between the advantage of forming a regular hexagonal outer surface and the increase in the number of processing steps. When the outer surface of the crucible 7 is circular, it is appropriate that the induction coil 27 is also circular. Crucible 7
When the outer surface of the induction coil 27 is a regular hexagon, whether the induction coil 27 is a regular hexagon or a circular shape is actually determined in consideration of the manufacturing method of the induction coil 27.

【0018】ところで、製品を図3のように集積したと
きに、隙間が生じない製品の断面形状は正六角形だけで
はない。例えば、三角形ならばどのうような形状のもの
でも隙間なしに集積できる。四角形の場合、正方形、長
方形、平行四辺形、及び斜辺が対称な台形は全てこの条
件を満足する。六角形の場合でも対向する3組の辺が互
いに平行な場合も条件を満足する。集積時の隙間を生じ
ないという目的のためにはこれら全ての多角形が条件を
満足し、したがってるつぼの水平断面の内面形状にこれ
ら全ての多角形を適用することができる。
By the way, when the products are integrated as shown in FIG. 3, the cross-sectional shape of the product without a gap is not limited to a regular hexagon. For example, triangles of any shape can be collected without gaps. In the case of a quadrangle, a square, a rectangle, a parallelogram, and a trapezoid whose hypotenuse is symmetrical all satisfy this condition. Even in the case of a hexagon, the condition is satisfied even when three pairs of opposite sides are parallel to each other. All of these polygons satisfy the conditions for the purpose of not creating a gap during integration, and therefore all of these polygons can be applied to the inner surface shape of the horizontal cross section of the crucible.

【0019】この発明に適合したこれら種々の多角形の
中で正六角形が最適である。その理由の1つは、同じ断
面積に対する周長が最も短いこと、もう1つは、円形に
最も近いので溶解部51に生ずる電磁力の周方向の乱れが
最小である、ことである。前者は損失の低減とこれに伴
う効率の向上に利点があり、後者は図4の溶解部51及び
図5の初期溶解部50の安定性に関するもので、るつぼ7
の内面形状が多角形であっても溶解部51は表面張力の影
響でより円形に近くなる。るつぼ7の内面形状が多角形
であることによって溶解部51近くの磁束分布の成分に軸
対称ではない成分が含まれる。すなわち、正六角形の場
合は1周の中で6サイクルの周期で変化する成分が重畳
する。この磁束成分と溶解部51の表面近くを流れる渦電
流との間の相互作用としての電磁力の成分の中に6サイ
クルの周期変化成分が含まれて溶解部51が乱れるのであ
る。この乱れは多角形の形状が円形から離れるほど大き
い。したがって、正六角形がこのような乱れが最も少な
い形状である。
Among these various polygons adapted to the present invention, the regular hexagon is most suitable. One of the reasons is that the circumferential length for the same cross-sectional area is the shortest, and the other is that the electromagnetic force generated in the melting portion 51 is the smallest in the circumferential direction because the circular shape is the closest to the circular shape. The former has the advantage of reducing losses and the consequent increase in efficiency, while the latter relates to the stability of the melting section 51 of FIG. 4 and the initial melting section 50 of FIG.
Even if the inner surface of the melting point is polygonal, the melting portion 51 becomes more circular due to the effect of surface tension. Since the inner surface of the crucible 7 has a polygonal shape, the component of the magnetic flux distribution near the melting portion 51 includes a non-axisymmetric component. That is, in the case of a regular hexagon, components that change in a cycle of 6 cycles are superposed in one round. The component of the electromagnetic force as the interaction between the magnetic flux component and the eddy current flowing near the surface of the melting portion 51 includes the period changing component of 6 cycles and disturbs the melting portion 51. This turbulence increases as the polygonal shape departs from the circle. Therefore, the regular hexagon is the shape with the least such disturbance.

【0020】[0020]

【発明の効果】この発明は前述のように、るつぼの水平
断面の内面形状を所定の形状の多角形にすることよっ
て、製品の断面も同じ多角形になる。多角形の形状を製
品を軸が平行になるように集積したときに互いの辺が密
接して隣合う製品間に隙間ができないようなものに設定
することによって、多数の製品を保管するために集積し
たときの占積率がに1になり、従来の円形の集積率が約
0.9 であるのに対して約10%向上する。したがって、製
品の保管に要する空間を10%縮小することができるとい
う効果が得られる。
As described above, according to the present invention, the inner surface shape of the horizontal cross section of the crucible is a polygon of a predetermined shape, so that the cross section of the product is also the same polygon. To store a large number of products by setting the polygonal shape so that when the products are stacked so that their axes are parallel to each other, the sides are in close contact with each other and there is no gap between adjacent products. The space factor when accumulated is 1 and the conventional circular accumulation ratio is about
It is about 10% higher than 0.9. Therefore, it is possible to reduce the space required for storing the product by 10%.

【0021】また、るつぼの外面と誘導コイルとの双方
を内面形状に相似の多角形にすることによって、るつぼ
外周面と誘導コイルとの間隙は絶縁などに必要な最小の
寸法にすることができるのでこの間隙を通過する磁束が
最小になって誘導コイルのインダクタンスは最小になる
ので、誘導コイルと共振をとるために交流電源に設けら
れる直流コンデンサの容量の増大が抑制されてこの発明
を適用したことによる交流電源のコストアップを抑制す
ることができる。更に、円形の場合に比べて誘導コイル
の全長が短くなるので電流が流れることによる発生損失
が低減し、同じようにしてるつぼの外周に流れる渦電流
の流路も短くなって損失が低減するので従来の浮揚溶解
装置に比べて効率が向上するという効果が得られる。
Further, by forming both the outer surface of the crucible and the induction coil into a polygon similar to the inner surface shape, the gap between the outer surface of the crucible and the induction coil can be set to the minimum dimension necessary for insulation or the like. Therefore, since the magnetic flux passing through this gap is minimized and the inductance of the induction coil is minimized, the increase of the capacity of the DC capacitor provided in the AC power supply to resonate with the induction coil is suppressed and the present invention is applied. It is possible to suppress an increase in the cost of the AC power supply due to this. Furthermore, since the total length of the induction coil is shorter than in the case of a circular shape, the generated loss due to the current flowing is reduced, and the flow path of the eddy current flowing in the outer periphery of the crucible is also shortened and the loss is reduced. It is possible to obtain the effect that the efficiency is improved as compared with the conventional levitation melting apparatus.

【0022】また、るつぼの水平断面の内面形状を正六
角形とすると、製品を集積したときに隙間が生じない形
状でしかも製品の断面積に対して周長が最も短い形状な
ので、るつぼや誘導コイルに生ずる損失の増大を最小に
抑制することができる。更に、正六角形は他の多角形に
比べて最も円形に近いので、るつぼ内面形状が多角形で
あることによる磁束分布の軸対称からの乱れが最小にな
って溶解部に生ずる電磁力の周方向分布が最も均一にな
ることから溶解部か最も安定し装置の運転に支障を生ず
ることがないという効果か得られる。
Further, if the inner surface of the horizontal cross section of the crucible is a regular hexagon, the crucible and the induction coil are shaped so that no gap is created when the products are stacked and the peripheral length is the shortest with respect to the cross sectional area of the product. It is possible to minimize the increase in loss that occurs in the. Furthermore, since the regular hexagon is closest to the circle as compared with other polygons, the disturbance of the magnetic flux distribution due to the polygonal inner shape of the crucible from axial symmetry is minimized, and the electromagnetic force generated in the melted portion in the circumferential direction is minimized. Since the distribution is most uniform, the effect is that the melted part is most stable and the operation of the device is not hindered.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す浮揚溶解装置のるつぼ
の斜視図
FIG. 1 is a perspective view of a crucible of a levitation melting apparatus showing an embodiment of the present invention.

【図2】図1のるつぼと誘導コイルとの水平断面図FIG. 2 is a horizontal sectional view of the crucible and the induction coil shown in FIG.

【図3】製品の集積状況の模式的な斜視図FIG. 3 is a schematic perspective view of a product accumulation state.

【図4】従来の浮揚溶解装置の運転状態の全体を示す縦
断面斜視図
FIG. 4 is a vertical cross-sectional perspective view showing the entire operating state of a conventional levitation melting apparatus.

【図5】図4の浮揚溶解装置の初期状態の要部を示す縦
断面斜視図
5 is a perspective view in vertical section showing a main part of the flotation / melting apparatus of FIG. 4 in an initial state.

【符号の説明】[Explanation of symbols]

1,7 るつぼ 11,71 上るつぼ 12,72 下るつぼ 2,27 誘導コイル 3 連続投入装置 4 駆動装置 5 被溶解材 51 溶解部 52 固化部 53 小片 50 製品 6 交流電源 1,7 Crucible 11,71 Upper crucible 12,72 Lower crucible 2,27 Induction coil 3 Continuous charging device 4 Drive device 5 Dissolved material 51 Melting part 52 Solidifying part 53 Small piece 50 Product 6 AC power supply

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】良導電金属製の有底筒状のるつぼ、るつぼ
の外径側に設けられた誘導コイル、誘導コイルに電流を
供給する交流電源、るつぼの上部から導電性の被溶解材
の小片を連続的にるつぼ内に投入する連続投入装置、及
びるつぼの上下方向位置を変える駆動装置とが備えられ
てなる浮上溶解装置において、るつぼの水平断面の内面
形状が所定の形状の多角形であることを特徴とする浮揚
溶解装置。
1. A bottomed cylindrical crucible made of a good conductive metal, an induction coil provided on the outer diameter side of the crucible, an AC power supply for supplying a current to the induction coil, and a conductive material to be melted from the upper part of the crucible. In a levitation melting device comprising a continuous charging device for continuously charging small pieces into a crucible, and a drive device for changing the vertical position of the crucible, the inner surface shape of the horizontal cross section of the crucible is a polygon of a predetermined shape. A levitation melting apparatus characterized by being.
【請求項2】るつぼの水平断面の外面形状と誘導コイル
の形状とが、るつぼの水平断面の内面形状に相似の多角
形であることを特徴とする請求項1記載の浮揚溶解装
置。
2. The levitation melting apparatus according to claim 1, wherein the outer surface shape of the horizontal cross section of the crucible and the shape of the induction coil are polygons similar to the inner surface shape of the horizontal cross section of the crucible.
【請求項3】るつぼの水平断面の内面形状が正六角形で
あることを特徴とする請求項1又は2記載の浮揚溶解装
置。
3. The flotation / melting apparatus according to claim 1, wherein the inner surface of the crucible in a horizontal cross section has a regular hexagonal shape.
JP29715493A 1993-11-29 1993-11-29 Floatation melting device Pending JPH07151471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29715493A JPH07151471A (en) 1993-11-29 1993-11-29 Floatation melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29715493A JPH07151471A (en) 1993-11-29 1993-11-29 Floatation melting device

Publications (1)

Publication Number Publication Date
JPH07151471A true JPH07151471A (en) 1995-06-16

Family

ID=17842901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29715493A Pending JPH07151471A (en) 1993-11-29 1993-11-29 Floatation melting device

Country Status (1)

Country Link
JP (1) JPH07151471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218483A (en) * 2006-02-15 2007-08-30 Kobe Steel Ltd Cold crucible induction melting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218483A (en) * 2006-02-15 2007-08-30 Kobe Steel Ltd Cold crucible induction melting device

Similar Documents

Publication Publication Date Title
US5887018A (en) Longitudinal electromagnetic levitator
JPH0115345B2 (en)
US4915723A (en) Apparatus for casting silicon with gradual cooling
US5528620A (en) Levitating and melting apparatus and method of operating the same
JP3047056B2 (en) Floating melting apparatus and its operation method
JP3129076B2 (en) Floating melting apparatus and its tapping method
JPH07151471A (en) Floatation melting device
JP3000028B2 (en) Floating melting equipment
US3621103A (en) Methods of and apparatus for stirring immiscible conductive fluids
KR100419757B1 (en) A electromagnet stirrer in continuous casting machine
TWI736936B (en) Method for producing cast bodies and apparatus for levitation melting electrically conductive material
JP3129048B2 (en) Floating melting apparatus and its operation method
JP2010017749A (en) Melting furnace, continuous casting apparatus, and casting method for continuous casting apparatus
KR910009998B1 (en) Continuous metal tube casting method and apparatus
CA1240476A (en) Electromagnetic levitation casting apparatus having improved levitation coil assembly
JP2008188632A (en) Melting furnace, continuous casting apparatus, and casting method for continuous casting apparatus
JP3570084B2 (en) Bottom hole tapping type flotation melting equipment
JP3275556B2 (en) Flotation melting device and its operation method
JP2925446B2 (en) Floating melting equipment
JP3196457B2 (en) Floating melting equipment
US20240210112A1 (en) Induction coils as non-contact temperature boosters and flow boosters for ferrous and non-ferrous materials in a furnace
Enokizono et al. Experiment and analysis of levitation-melting method of induction furnace
KR100273912B1 (en) A floating melting appratus and a operating method thereof
JP2938353B2 (en) Operation method of flotation melting equipment
KR200253509Y1 (en) A electromagnet stirrer in continuous casting machine