JPH07150296A - Damping alloy and its production - Google Patents

Damping alloy and its production

Info

Publication number
JPH07150296A
JPH07150296A JP32311093A JP32311093A JPH07150296A JP H07150296 A JPH07150296 A JP H07150296A JP 32311093 A JP32311093 A JP 32311093A JP 32311093 A JP32311093 A JP 32311093A JP H07150296 A JPH07150296 A JP H07150296A
Authority
JP
Japan
Prior art keywords
less
alloy
point
grain size
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32311093A
Other languages
Japanese (ja)
Inventor
Takayuki Otake
隆之 大嶽
Toshihiro Takamura
登志博 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32311093A priority Critical patent/JPH07150296A/en
Publication of JPH07150296A publication Critical patent/JPH07150296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To develop a damping alloy having excellent vibration damping performance by normalizing the rolled stock of an Fe-Al-Si alloy having a specified compsn. at a specified temp. CONSTITUTION:The cast ingot of an Fe-Al-Si series alloy having a compsn. contg. Al and Si in the range surrounded by each point of the point A4 (Al; 7.05wt.%, Si; 0.95wt.%), B4 (Al; 6.50wt.%, Si; 1.10wt.%), C4 (Al; 4.70wt.%, Si; 2.75wt.%), D4 (Al; 2.25wt.%, Si; 2.45wt.%), E4 (Al; 0wt.%, Si; 4.50wt.%), A0 (Al; 0wt.%, Si; 0wt.%) and B0 (Al; 8.0wt.%, Si; 0wt.%) expressed by a phase diagram of the figure 1 and contg. respectively <=0.01wt.% C, N, O, P and S, and the balance Fe is subjected to hot rollin and is thereafter subjected to normalizing treatment at 800 to 1100 deg.C. The damping iron alloy in which the average ferritic grain size of the structure is regulated to 50 to 300mm and having excellent vibration damping performance can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は優れた振動減衰性能を
備え、構造用材料に使用することで構造物の振動、騒音
を低減できる制振合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration damping alloy having excellent vibration damping performance and capable of reducing vibration and noise of a structure when used as a structural material.

【0002】[0002]

【従来の技術】公害問題の一つとして生活環境での振
動、騒音が注目されている。また、精密機械に要求され
る精度が上がるにつれ、機器自体の振動を抑える手段を
講じる必要が生じている。このような問題や要請に対応
する手段の一つとして、振動の発生源となる構成要素自
体を振動減衰の著しく大きい材料(制振材料)に置き換
える方法がある。従来、制振材料としてはCu−Mn合
金、Mg合金等の非鉄合金、また鉄基の制振合金として
Fe−Cr−Al系合金(特公昭52−1683号)、
Fe−Si−Mn系合金(特公昭56−28982号)
等が開発されている。これらのうち経済性の点では鉄基
合金が最も優れていると言える。
2. Description of the Related Art Vibration and noise in a living environment have attracted attention as one of pollution problems. Further, as the precision required for precision machinery has increased, it has become necessary to take measures to suppress the vibration of the equipment itself. As one of the means for coping with such problems and demands, there is a method of replacing the constituent element itself, which is the source of vibration, with a material (vibration damping material) having a significantly large vibration damping. Conventionally, non-ferrous alloys such as Cu-Mn alloy and Mg alloy have been used as damping materials, and Fe-Cr-Al alloys (Japanese Patent Publication No. 52-1683) as iron-based damping alloys.
Fe-Si-Mn-based alloy (Japanese Patent Publication No. 56-28982)
Etc. have been developed. Of these, iron-based alloys are the most economically advantageous.

【0003】[0003]

【発明が解決しようとする課題】しかし、鉄基の制振合
金の制振性を支配する材料因子は未だ十分に解明されて
おらず、従来提唱されている金属組織制御や製造方法は
必ずしも適切なものとは言難い。例えば、従来では一般
に材料のフェライト粒径が大きいほど制振性が良好にな
ると考えられ、従来技術(例えば、特公昭56−289
82号)でもフェライト粒径を大きくすることに力を注
いでいるが、本発明者らが実験により確認したところに
よれば、フェライト粒径を大きくし過ぎると却って制振
性が劣化し、しかも靭性等の機械的特性も劣化してしま
う。
However, the material factors governing the damping properties of iron-based damping alloys have not yet been fully clarified, and the conventionally proposed metallographic structure control and manufacturing methods are not always appropriate. It is hard to say that it is a naive one. For example, conventionally, it is generally considered that the larger the ferrite particle size of the material is, the better the vibration damping property is, and the conventional technique (for example, Japanese Patent Publication No. 56-289).
No. 82) also makes efforts to increase the ferrite grain size, but the inventors confirmed by experiments that if the ferrite grain size is too large, the vibration damping property rather deteriorates. Mechanical properties such as toughness also deteriorate.

【0004】このような問題に対し本発明者らは、制振
性と平均フェライト結晶粒径との間に従来の定説とは異
なる関係を見出し、良好な制振性を有する制振合金の開
発に成功した。
In order to solve such a problem, the inventors of the present invention found a relationship between the vibration damping property and the average ferrite crystal grain size, which was different from the conventional theory, and developed a vibration damping alloy having good vibration damping property. succeeded in.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は次の
ような構成を有することをその特徴とする。
That is, the present invention is characterized by having the following configuration.

【0006】(1) 図1に示す点A4(Al:7.0
5wt%、Si:0.95wt%)、B4(Al:6.
50wt%、Si:1.10wt%)、C4(Al:
4.70wt%、Si:2.75wt%)、D4(A
l:2.25wt%、Si:2.45wt%)、E
4(Al:0wt%、Si:4.50wt%)、A0(A
l:0wt%、Si:0wt%)、B0(Al:8.0
0wt%、Si:0wt%)で囲まれる範囲内のAl・
Si、C:0.01wt%以下、N:0.01wt%以
下、O:0.01wt%以下、P:0.01wt%以
下、S:0.01wt%以下、残部Feおよび不可避的
不純物からなり、平均フェライト結晶粒径が50〜30
0μmである制振合金。
(1) Point A 4 (Al: 7.0) shown in FIG.
5 wt%, Si: 0.95 wt%), B 4 (Al: 6.
50 wt%, Si: 1.10 wt%), C 4 (Al:
4.70 wt%, Si: 2.75 wt%), D 4 (A
l: 2.25 wt%, Si: 2.45 wt%), E
4 (Al: 0 wt%, Si: 4.50 wt%), A 0 (A
1: 0 wt%, Si: 0 wt%), B 0 (Al: 8.0
0 wt%, Si: 0 wt%) Al within the range surrounded by
Si, C: 0.01 wt% or less, N: 0.01 wt% or less, O: 0.01 wt% or less, P: 0.01 wt% or less, S: 0.01 wt% or less, balance Fe and unavoidable impurities , Average ferrite crystal grain size is 50 to 30
Damping alloy that is 0 μm.

【0007】(2) 図2に示す点A6(Al:7.4
0wt%、Si:0.60wt%)、B6(Al:4.
75wt%、Si:1.00wt%)、C6(Al:
3.75wt%、Si:1.90wt%)、D6(A
l:2.15wt%、Si:2.15wt%)、E
6(Al:0wt%、Si:4.00wt%)、A0(A
l:0wt%、Si:0wt%)、B0(Al:8.0
0wt%、Si:0wt%)で囲まれる範囲内のAl・
Si、C:0.01wt%以下、N:0.01wt%以
下、O:0.01wt%以下、P:0.01wt%以
下、S:0.01wt%以下、残部Feおよび不可避的
不純物からなり、平均フェライト結晶粒径が50〜30
0μmである制振合金。
(2) Point A 6 (Al: 7.4) shown in FIG.
0 wt%, Si: 0.60 wt%), B 6 (Al: 4.
75 wt%, Si: 1.00 wt%), C 6 (Al:
3.75 wt%, Si: 1.90 wt%), D 6 (A
l: 2.15 wt%, Si: 2.15 wt%), E
6 (Al: 0 wt%, Si: 4.00 wt%), A 0 (A
1: 0 wt%, Si: 0 wt%), B 0 (Al: 8.0
0 wt%, Si: 0 wt%) Al within the range surrounded by
Si, C: 0.01 wt% or less, N: 0.01 wt% or less, O: 0.01 wt% or less, P: 0.01 wt% or less, S: 0.01 wt% or less, balance Fe and unavoidable impurities , Average ferrite crystal grain size is 50 to 30
Damping alloy that is 0 μm.

【0008】(3) 図3に示す点A8(Al:6.3
0wt%、Si:0wt%)、B8(Al:6.30w
t%、Si:0.50wt%)、C8(Al:2.75
wt%、Si:1.20wt%)、D8(Al:0wt
%、Si:3.50wt%)、E8(Al:0wt%、
Si:0.60wt%)、F8(Al:0.70wt
%、Si:0wt%)で囲まれる範囲内のAl・Si、
C:0.01wt%以下、N:0.01wt%以下、
O:0.01wt%以下、P:0.01wt%以下、
S:0.01wt%以下、残部Feおよび不可避的不純
物からなり、平均フェライト結晶粒径が50〜300μ
mである制振合金。
(3) Point A 8 (Al: 6.3) shown in FIG.
0wt%, Si: 0wt%) , B 8 (Al: 6.30w
t%, Si: 0.50 wt%), C 8 (Al: 2.75)
wt%, Si: 1.20 wt%), D 8 (Al: 0 wt
%, Si: 3.50 wt%), E 8 (Al: 0 wt%,
Si: 0.60 wt%, F 8 (Al: 0.70 wt%)
%, Si: 0 wt%) within the range surrounded by Al.Si,
C: 0.01 wt% or less, N: 0.01 wt% or less,
O: 0.01 wt% or less, P: 0.01 wt% or less,
S: 0.01 wt% or less, consisting of balance Fe and unavoidable impurities, and having an average ferrite crystal grain size of 50 to 300 μm.
Vibration-damping alloy that is m.

【0009】(4) 図4に示す点A10(Al:4.8
0wt%、Si:0wt%)、B10(Al:4.80w
t%、Si:0.70wt%)、C10(Al:2.90
wt%、Si:1.00wt%)、D10(Al:1.3
5wt%、Si:2.05wt%)、E10(Al:0.
55wt%、Si:2.00wt%)、F10(Al:0
wt%、Si:2.40wt%)、G10(Al:0wt
%、Si:0.80wt%)、H10(Al:0.55w
t%、Si:0.25wt%)、I10(Al:1.60
wt%、Si:0.35wt%)、J10(Al:2.2
5wt%、Si:0wt%)で囲まれる範囲内のAl・
Si、C:0.01wt%以下、N:0.01wt%以
下、O:0.01wt%以下、P:0.01wt%以
下、S:0.01wt%以下、残部Feおよび不可避的
不純物からなり、平均フェライト結晶粒径が50〜30
0μmである制振合金。
(4) Point A 10 (Al: 4.8) shown in FIG.
0 wt%, Si: 0 wt%), B 10 (Al: 4.80 w
t%, Si: 0.70 wt%), C 10 (Al: 2.90)
wt%, Si: 1.00 wt%), D 10 (Al: 1.3
5 wt%, Si: 2.05 wt%), E 10 (Al: 0.
55 wt%, Si: 2.00 wt%), F 10 (Al: 0
wt%, Si: 2.40 wt%), G 10 (Al: 0 wt%
%, Si: 0.80 wt%, H 10 (Al: 0.55w
t%, Si: 0.25 wt%), I 10 (Al: 1.60)
wt%, Si: 0.35 wt%), J 10 (Al: 2.2
5 wt%, Si: 0 wt%) Al within the range surrounded by
Si, C: 0.01 wt% or less, N: 0.01 wt% or less, O: 0.01 wt% or less, P: 0.01 wt% or less, S: 0.01 wt% or less, balance Fe and unavoidable impurities , Average ferrite crystal grain size is 50 to 30
Damping alloy that is 0 μm.

【0010】(5) 図5に示す点A12(Al:4.5
5wt%、Si:0.10wt%)、B12(Al:4.
55wt%、Si:0.60wt%)、C12(Al:
2.35wt%、Si:1.00wt%)、D12(A
l:1.10wt%、Si:1.95wt%)、E
12(Al:1.10wt%、Si:1.35wt%)、
12(Al:2.40wt%、Si:0.10wt%)
で囲まれる範囲内および点G12(Al:0wt%、S
i:1.05wt%)、H12(Al:0.60wt%、
Si:0.35wt%)、I12(Al:0.90wt
%、Si:0.40wt%)、J12(Al:0.30w
t%、Si:2.05wt%)、K12(Al:0wt
%、Si:2.30wt%)で囲まれる範囲内のAl・
Si、C:0.01wt%以下、N:0.01wt%以
下、O:0.01wt%以下、P:0.01wt%以
下、S:0.01wt%以下、残部Feおよび不可避的
不純物からなり、平均フェライト結晶粒径が50〜30
0μmである制振合金。
(5) Point A 12 (Al: 4.5 shown in FIG.
5 wt%, Si: 0.10 wt%), B 12 (Al: 4.
55 wt%, Si: 0.60 wt%, C 12 (Al:
2.35 wt%, Si: 1.00 wt%, D 12 (A
1: 1.10 wt%, Si: 1.95 wt%), E
12 (Al: 1.10 wt%, Si: 1.35 wt%),
F 12 (Al: 2.40 wt%, Si: 0.10 wt%)
Within the range surrounded by and the point G 12 (Al: 0 wt%, S
i: 1.05 wt%), H 12 (Al: 0.60 wt%,
Si: 0.35 wt%, I 12 (Al: 0.90 wt%)
%, Si: 0.40 wt%, J 12 (Al: 0.30w)
t%, Si: 2.05 wt%), K 12 (Al: 0 wt%
%, Si: 2.30 wt%) Al within the range surrounded by
Si, C: 0.01 wt% or less, N: 0.01 wt% or less, O: 0.01 wt% or less, P: 0.01 wt% or less, S: 0.01 wt% or less, balance Fe and unavoidable impurities , Average ferrite crystal grain size is 50 to 30
Damping alloy that is 0 μm.

【0011】(6) 図6に示す点A14(Al:4.1
5wt%、Si:0.20wt%)、B14(Al:4.
15wt%、Si:0.60wt%)、C14(Al:
2.30wt%、Si:0.90wt%)、D14(A
l:1.20wt%、Si:1.75wt%)、E
14(Al:1.20wt%、Si:1.35wt%)、
14(Al:2.70wt%、Si:0.20wt%)
で囲まれる範囲内および点G14(Al:0wt%、S
i:1.15wt%)、H14(Al:0.60wt%、
Si:0.40wt%)、I14(Al:0.80wt
%、Si:0.45wt%)、J14(Al:0wt%、
Si:2.20wt%)で囲まれる範囲内のAl・S
i、C:0.01wt%以下、N:0.01wt%以
下、O:0.01wt%以下、P:0.01wt%以
下、S:0.01wt%以下、残部Feおよび不可避的
不純物からなり、平均フェライト結晶粒径が50〜30
0μmである制振合金。
(6) Point A 14 (Al: 4.1) shown in FIG.
5 wt%, Si: 0.20 wt%), B 14 (Al: 4.
15 wt%, Si: 0.60 wt%, C 14 (Al:
2.30 wt%, Si: 0.90 wt%), D 14 (A
l: 1.20 wt%, Si: 1.75 wt%), E
14 (Al: 1.20 wt%, Si: 1.35 wt%),
F 14 (Al: 2.70 wt%, Si: 0.20 wt%)
Within the range surrounded by and the point G 14 (Al: 0 wt%, S
i: 1.15 wt%, H 14 (Al: 0.60 wt%,
Si: 0.40 wt%), I 14 (Al: 0.80 wt%)
%, Si: 0.45 wt%), J 14 (Al: 0 wt%,
Al: S within the range surrounded by Si: 2.20 wt%
i, C: 0.01 wt% or less, N: 0.01 wt% or less, O: 0.01 wt% or less, P: 0.01 wt% or less, S: 0.01 wt% or less, balance Fe and inevitable impurities , Average ferrite crystal grain size is 50 to 30
Damping alloy that is 0 μm.

【0012】(7) 図1に示す点A4(Al:7.0
5wt%、Si:0.95wt%)、B4(Al:6.
50wt%、Si:1.10wt%)、C4(Al:
4.70wt%、Si:2.75wt%)、D4(A
l:2.25wt%、Si:2.45wt%)、E
4(Al:0wt%、Si:4.50wt%)、A0(A
l:0wt%、Si:0wt%)、B0(Al:8.0
0wt%、Si:0wt%)で囲まれる範囲内のAl・
Si、C:0.01wt%以下、N:0.01wt%以
下、O:0.01wt%以下、P:0.01wt%以
下、S:0.01wt%以下、残部Feおよび不可避的
不純物からなる合金を圧延後、800〜1100℃で焼
きならしすることにより平均フェライト結晶粒径を50
〜300μmの範囲とすることを特徴とする制振合金の
製造方法。
(7) Point A 4 (Al: 7.0) shown in FIG.
5 wt%, Si: 0.95 wt%), B 4 (Al: 6.
50 wt%, Si: 1.10 wt%), C 4 (Al:
4.70 wt%, Si: 2.75 wt%), D 4 (A
l: 2.25 wt%, Si: 2.45 wt%), E
4 (Al: 0 wt%, Si: 4.50 wt%), A 0 (A
1: 0 wt%, Si: 0 wt%), B 0 (Al: 8.0
0 wt%, Si: 0 wt%) Al within the range surrounded by
Si, C: 0.01 wt% or less, N: 0.01 wt% or less, O: 0.01 wt% or less, P: 0.01 wt% or less, S: 0.01 wt% or less, balance Fe and unavoidable impurities After rolling the alloy, the average ferrite crystal grain size is set to 50 by normalizing at 800 to 1100 ° C.
To 300 μm, a method for producing a vibration damping alloy.

【0013】(8) 図2に示す点A6(Al:7.4
0wt%、Si:0.60wt%)、B6(Al:4.
75wt%、Si:1.00wt%)、C6(Al:
3.75wt%、Si:1.90wt%)、D6(A
l:2.15wt%、Si:2.15wt%)、E
6(Al:0wt%、Si:4.00wt%)、A0(A
l:0wt%、Si:0wt%)、B0(Al:8.0
0wt%、Si:0wt%)で囲まれる範囲内のAl・
Si、C:0.01wt%以下、N:0.01wt%以
下、O:0.01wt%以下、P:0.01wt%以
下、S:0.01wt%以下、残部Feおよび不可避的
不純物からなる合金を圧延後、800〜1100℃で焼
きならしすることにより平均フェライト結晶粒径を50
〜300μmの範囲とすることを特徴とする制振合金の
製造方法。
(8) Point A 6 (Al: 7.4) shown in FIG.
0 wt%, Si: 0.60 wt%), B 6 (Al: 4.
75 wt%, Si: 1.00 wt%), C 6 (Al:
3.75 wt%, Si: 1.90 wt%), D 6 (A
l: 2.15 wt%, Si: 2.15 wt%), E
6 (Al: 0 wt%, Si: 4.00 wt%), A 0 (A
1: 0 wt%, Si: 0 wt%), B 0 (Al: 8.0
0 wt%, Si: 0 wt%) Al within the range surrounded by
Si, C: 0.01 wt% or less, N: 0.01 wt% or less, O: 0.01 wt% or less, P: 0.01 wt% or less, S: 0.01 wt% or less, balance Fe and unavoidable impurities After rolling the alloy, the average ferrite crystal grain size is set to 50 by normalizing at 800 to 1100 ° C.
To 300 μm, a method for producing a vibration damping alloy.

【0014】(9) 図3に示す点A8(Al:6.3
0wt%、Si:0wt%)、B8(Al:6.30w
t%、Si:0.50wt%)、C8(Al:2.75
wt%、Si:1.20wt%)、D8(Al:0wt
%、Si:3.50wt%)、E8(Al:0wt%、
Si:0.60wt%)、F8(Al:0.70wt
%、Si:0wt%)で囲まれる範囲内のAl・Si、
C:0.01wt%以下、N:0.01wt%以下、
O:0.01wt%以下、P:0.01wt%以下、
S:0.01wt%以下、残部Feおよび不可避的不純
物からなる合金を圧延後、800〜1100℃で焼きな
らしすることにより平均フェライト結晶粒径を50〜3
00μmの範囲とすることを特徴とする制振合金の製造
方法。
(9) Point A 8 (Al: 6.3) shown in FIG.
0wt%, Si: 0wt%) , B 8 (Al: 6.30w
t%, Si: 0.50 wt%), C 8 (Al: 2.75)
wt%, Si: 1.20 wt%), D 8 (Al: 0 wt
%, Si: 3.50 wt%), E 8 (Al: 0 wt%,
Si: 0.60 wt%, F 8 (Al: 0.70 wt%)
%, Si: 0 wt%) within the range surrounded by Al.Si,
C: 0.01 wt% or less, N: 0.01 wt% or less,
O: 0.01 wt% or less, P: 0.01 wt% or less,
S: 0.01 wt% or less, after rolling an alloy consisting of the balance Fe and unavoidable impurities, the average ferrite crystal grain size is 50 to 3 by normalizing at 800 to 1100 ° C.
A method for producing a vibration damping alloy, characterized in that the thickness is within a range of 00 μm.

【0015】(10) 図4に示す点A10(Al:4.
80wt%、Si:0wt%)、B10(Al:4.80
wt%、Si:0.70wt%)、C10(Al:2.9
0wt%、Si:1.00wt%)、D10(Al:1.
35wt%、Si:2.05wt%)、E10(Al:
0.55wt%、Si:2.00wt%)、F10(A
l:0wt%、Si:2.40wt%)、G10(Al:
0wt%、Si:0.80wt%)、H10(Al:0.
55wt%、Si:0.25wt%)、I10(Al:
1.60wt%、Si:0.35wt%)、J10(A
l:2.25wt%、Si:0wt%)で囲まれる範囲
内のAl・Si、C:0.01wt%以下、N:0.0
1wt%以下、O:0.01wt%以下、P:0.01
wt%以下、S:0.01wt%以下、残部Feおよび
不可避的不純物からなる合金を圧延後、800〜110
0℃で焼きならしすることにより平均フェライト結晶粒
径を50〜300μmの範囲とすることを特徴とする制
振合金の製造方法。
(10) Point A 10 (Al: 4.
80 wt%, Si: 0 wt%), B 10 (Al: 4.80)
wt%, Si: 0.70 wt%, C 10 (Al: 2.9)
0 wt%, Si: 1.00 wt%), D 10 (Al: 1.
35 wt%, Si: 2.05 wt%), E 10 (Al:
0.55 wt%, Si: 2.00 wt%), F 10 (A
1: 0 wt%, Si: 2.40 wt%, G 10 (Al:
0 wt%, Si: 0.80 wt%), H 10 (Al: 0.
55 wt%, Si: 0.25 wt%), I 10 (Al:
1.60 wt%, Si: 0.35 wt%), J 10 (A
(1: 2.25 wt%, Si: 0 wt%) Al.Si within a range surrounded by C, 0.01 wt% or less, N: 0.0
1 wt% or less, O: 0.01 wt% or less, P: 0.01
800% to 110% after rolling an alloy containing wt% or less, S: 0.01 wt% or less, and the balance Fe and unavoidable impurities.
A method for producing a vibration damping alloy, characterized in that the average ferrite crystal grain size is adjusted to a range of 50 to 300 μm by normalizing at 0 ° C.

【0016】(11) 図5に示す点A12(Al:4.
55wt%、Si:0.10wt%)、B12(Al:
4.55wt%、Si:0.60wt%)、C12(A
l:2.35wt%、Si:1.00wt%)、D
12(Al:1.10wt%、Si:1.95wt%)、
12(Al:1.10wt%、Si:1.35wt
%)、F12(Al:2.40wt%、Si:0.10w
t%)で囲まれる範囲内および点G12(Al:0wt
%、Si:1.05wt%)、H12(Al:0.60w
t%、Si:0.35wt%)、I12(Al:0.90
wt%、Si:0.40wt%)、J12(Al:0.3
0wt%、Si:2.05wt%)、K12(Al:0w
t%、Si:2.30wt%)で囲まれる範囲内のAl
・Si、C:0.01wt%以下、N:0.01wt%
以下、O:0.01wt%以下、P:0.01wt%以
下、S:0.01wt%以下、残部Feおよび不可避的
不純物からなる合金を圧延後、800〜1100℃で焼
きならしすることにより平均フェライト結晶粒径を50
〜300μmの範囲とすることを特徴とする制振合金の
製造方法。
(11) Point A 12 (Al: 4.
55 wt%, Si: 0.10 wt%), B 12 (Al:
4.55 wt%, Si: 0.60 wt%), C 12 (A
1: 2.35 wt%, Si: 1.00 wt%), D
12 (Al: 1.10 wt%, Si: 1.95 wt%),
E 12 (Al: 1.10 wt%, Si: 1.35 wt
%), F 12 (Al: 2.40 wt%, Si: 0.10 w
within a range surrounded by t%) and a point G 12 (Al: 0 wt
%, Si: 1.05 wt%, H 12 (Al: 0.60 w
t%, Si: 0.35 wt%), I 12 (Al: 0.90)
wt%, Si: 0.40 wt%), J 12 (Al: 0.3
0 wt%, Si: 2.05 wt%), K 12 (Al: 0w
t%, Si: 2.30 wt%) Al within the range
・ Si, C: 0.01 wt% or less, N: 0.01 wt%
Hereinafter, by rolling an alloy consisting of O: 0.01 wt% or less, P: 0.01 wt% or less, S: 0.01 wt% or less, and the balance Fe and unavoidable impurities, by normalizing at 800 to 1100 ° C. Average ferrite grain size of 50
To 300 μm, a method for producing a vibration damping alloy.

【0017】(12) 図6に示す点A14(Al:4.
15wt%、Si:0.20wt%)、B14(Al:
4.15wt%、Si:0.60wt%)、C14(A
l:2.30wt%、Si:0.90wt%)、D
14(Al:1.20wt%、Si:1.75wt%)、
14(Al:1.20wt%、Si:1.35wt
%)、F14(Al:2.70wt%、Si:0.20w
t%)で囲まれる範囲内および点G14(Al:0wt
%、Si:1.15wt%)、H14(Al:0.60w
t%、Si:0.40wt%)、I14(Al:0.80
wt%、Si:0.45wt%)、J14(Al:0wt
%、Si:2.20wt%)で囲まれる範囲内のAl・
Si、C:0.01wt%以下、N:0.01wt%以
下、O:0.01wt%以下、P:0.01wt%以
下、S:0.01wt%以下、残部Feおよび不可避的
不純物からなる合金を圧延後、800〜1100℃で焼
きならしすることにより平均フェライト結晶粒径を50
〜300μmの範囲とすることを特徴とする制振合金の
製造方法。
(12) Point A 14 (Al: 4.
15 wt%, Si: 0.20 wt%), B 14 (Al:
4.15 wt%, Si: 0.60 wt%), C 14 (A
l: 2.30 wt%, Si: 0.90 wt%), D
14 (Al: 1.20 wt%, Si: 1.75 wt%),
E 14 (Al: 1.20 wt%, Si: 1.35 wt
%), F 14 (Al: 2.70 wt%, Si: 0.20 w
within a range surrounded by t%) and a point G 14 (Al: 0 wt
%, Si: 1.15 wt%, H 14 (Al: 0.60 w
t%, Si: 0.40 wt%), I 14 (Al: 0.80)
wt%, Si: 0.45 wt%), J 14 (Al: 0 wt%
%, Si: 2.20 wt%) Al within the range surrounded by
Si, C: 0.01 wt% or less, N: 0.01 wt% or less, O: 0.01 wt% or less, P: 0.01 wt% or less, S: 0.01 wt% or less, balance Fe and unavoidable impurities After rolling the alloy, the average ferrite crystal grain size is set to 50 by normalizing at 800 to 1100 ° C.
To 300 μm, a method for producing a vibration damping alloy.

【0018】[0018]

【作用】以下、本発明の詳細とその限定理由を説明す
る。純鉄に特定量のAl、Siを添加すると優れた制振
性が得られる。本発明者らの実験により、1050℃で
焼きならし処理した合金板の制振性(損失係数)と合金
の化学組成の間に図7に示すような関係が認められた。
同図はFe−Al−Si三元合金の損失係数を測定し
(試験片を横振動基本モードの節の位置で2本の細線で
支持し、真空中での振動の自由減衰曲線から損失係数を
求める方法)、これを等高線表示したもので、図中の各
曲線は損失係数が等しい点を結んだものであり、各曲線
に付したマスの中の数字は、損失係数を×(1/1
3)の単位で表示したものである。ここで、損失係数
とは素材の制振性の指標として一般に用いられる係数で
あり、振動サイクル当りに吸収されるエネルギーの全振
動エネルギーに対する比に相当する。図7によれば、F
eに対しAl、Siを所定の範囲で添加することにより
優れた制振性が得られることが判る。本発明では、図7
の結果に基づきAl、Siの添加量を以下のように規定
する。
The details of the present invention and the reasons for limitation thereof will be described below. By adding specific amounts of Al and Si to pure iron, excellent vibration damping properties can be obtained. According to the experiments conducted by the present inventors, a relationship as shown in FIG. 7 was recognized between the vibration damping property (loss coefficient) of the alloy sheet that was subjected to the normalizing treatment at 1050 ° C. and the chemical composition of the alloy.
In the figure, the loss coefficient of the Fe-Al-Si ternary alloy is measured (the test piece is supported by two thin wires at the node position of the transverse vibration fundamental mode, and the loss coefficient is determined from the free damping curve of vibration in vacuum). The curve in the figure connects points with the same loss coefficient, and the numbers in the squares attached to each curve indicate the loss coefficient x (1 / 1
It is expressed in units of 0 3 ). Here, the loss coefficient is a coefficient generally used as an index of the damping property of the material, and corresponds to the ratio of the energy absorbed per vibration cycle to the total vibration energy. According to FIG. 7, F
It can be seen that excellent damping properties can be obtained by adding Al and Si to e in a predetermined range. In the present invention, FIG.
Based on the result, the addition amounts of Al and Si are defined as follows.

【0019】すなわち、1050℃で焼きならし処理し
た場合に損失係数η:4×1/103以上を得るには、
Al、Siの添加量を図1に示すように、点A4(A
l:7.05wt%、Si:0.95wt%)、B
4(Al:6.50wt%、Si:1.10wt%)、
4(Al:4.70wt%、Si:2.75wt
%)、D4(Al:2.25wt%、Si:2.45w
t%)、E4(Al:0wt%、Si:4.50wt
%)、A0(Al:0wt%、Si:0wt%)、B
0(Al:8.00wt%、Si:0wt%)で囲まれ
る範囲内のAl・Siとする。
That is, in order to obtain a loss coefficient η: 4 × 1/10 3 or more when normalizing at 1050 ° C.,
As shown in FIG. 1, the addition amounts of Al and Si are shown by the point A 4
1: 7.05 wt%, Si: 0.95 wt%), B
4 (Al: 6.50 wt%, Si: 1.10 wt%),
C 4 (Al: 4.70 wt%, Si: 2.75 wt
%), D 4 (Al: 2.25 wt%, Si: 2.45 w
t%), E 4 (Al: 0 wt%, Si: 4.50 wt
%), A 0 (Al: 0 wt%, Si: 0 wt%), B
Al · Si within the range surrounded by 0 (Al: 8.00 wt%, Si: 0 wt%).

【0020】1050℃で焼きならし処理した場合に損
失係数η:6×1/103以上を得るには、Al、Si
の添加量を図2に示すように、点A6(Al:7.40
wt%、Si:0.60wt%)、B6(Al:4.7
5wt%、Si:1.00wt%)、C6(Al:3.
75wt%、Si:1.90wt%)、D6(Al:
2.15wt%、Si:2.15wt%)、E6(A
l:0wt%、Si:4.00wt%)、A0(Al:
0wt%、Si:0wt%)、B0(Al:8.00w
t%、Si:0wt%)で囲まれる範囲内のAl・Si
とする。
In order to obtain a loss coefficient η: 6 × 1/10 3 or more in the case of normalizing at 1050 ° C., Al, Si
As shown in FIG. 2, the amount of addition of the point A 6 (Al: 7.40
wt%, Si: 0.60 wt%), B 6 (Al: 4.7
5 wt%, Si: 1.00 wt%), C 6 (Al: 3.
75 wt%, Si: 1.90 wt%), D 6 (Al:
2.15 wt%, Si: 2.15 wt%), E 6 (A
1: 0 wt%, Si: 4.00 wt%), A 0 (Al:
0 wt%, Si: 0 wt%, B 0 (Al: 8.00 w
t%, Si: 0 wt%) Al · Si within the range
And

【0021】1050℃で焼きならし処理した場合に損
失係数η:8×1/103以上を得る場合には、Al、
Siの添加量を図3に示すように、点A8(Al:6.
30wt%、Si:0wt%)、B8(Al:6.30
wt%、Si:0.50wt%)、C8(Al:2.7
5wt%、Si:1.20wt%)、D8(Al:0w
t%、Si:3.50wt%)、E8(Al:0wt
%、Si:0.60wt%)、F8(Al:0.70w
t%、Si:0wt%)で囲まれる範囲内のAl・Si
とする。
When a loss coefficient η: 8 × 1/10 3 or more is obtained after normalizing at 1050 ° C., Al,
As shown in FIG. 3, the amount of Si added is point A 8 (Al: 6.
30 wt%, Si: 0 wt%), B 8 (Al: 6.30)
wt%, Si: 0.50 wt%), C 8 (Al: 2.7
5 wt%, Si: 1.20 wt%, D 8 (Al: 0w
t%, Si: 3.50 wt%), E 8 (Al: 0 wt%
%, Si: 0.60 wt%, F 8 (Al: 0.70w)
t%, Si: 0 wt%) Al · Si within the range
And

【0022】1050℃で焼きならし処理した場合に損
失係数η:1.0×1/102以上を得る場合には、A
l、Siの添加量を図4に示すように、点A10(Al:
4.80wt%、Si:0wt%)、B10(Al:4.
80wt%、Si:0.70wt%)、C10(Al:
2.90wt%、Si:1.00wt%)、D10(A
l:1.35wt%、Si:2.05wt%)、E
10(Al:0.55wt%、Si:2.00wt%)、
10(Al:0wt%、Si:2.40wt%)、G10
(Al:0wt%、Si:0.80wt%)、H10(A
l:0.55wt%、Si:0.25wt%)、I
10(Al:1.60wt%、Si:0.35wt%)、
10(Al:2.25wt%、Si:0wt%)で囲ま
れる範囲内のAl・Siとする。
When a loss coefficient η: 1.0 × 1/10 2 or more is obtained by normalizing at 1050 ° C., A
As shown in FIG. 4, the amount of addition of 1 and Si is point A 10 (Al:
4.80 wt%, Si: 0 wt%), B 10 (Al: 4.
80 wt%, Si: 0.70 wt%), C 10 (Al:
2.90 wt%, Si: 1.00 wt%, D 10 (A
l: 1.35 wt%, Si: 2.05 wt%), E
10 (Al: 0.55 wt%, Si: 2.00 wt%),
F 10 (Al: 0 wt%, Si: 2.40 wt%), G 10
(Al: 0 wt%, Si: 0.80 wt%), H 10 (A
l: 0.55 wt%, Si: 0.25 wt%), I
10 (Al: 1.60 wt%, Si: 0.35 wt%),
Al · Si within a range surrounded by J 10 (Al: 2.25 wt%, Si: 0 wt%).

【0023】1050℃で焼きならし処理した場合に損
失係数η:1.2×1/102以上を得るには、Al、
Siの添加量を図5に示すように、点A12(Al:4.
55wt%、Si:0.10wt%)、B12(Al:
4.55wt%、Si:0.60wt%)、C12(A
l:2.35wt%、Si:1.00wt%)、D
12(Al:1.10wt%、Si:1.95wt%)、
12(Al:1.10wt%、Si:1.35wt
%)、F12(Al:2.40wt%、Si:0.10w
t%)で囲まれる範囲内および点G12(Al:0wt
%、Si:1.05wt%)、H12(Al:0.60w
t%、Si:0.35wt%)、I12(Al:0.90
wt%、Si:0.40wt%)、J12(Al:0.3
0wt%、Si:2.05wt%)、K12(Al:0w
t%、Si:2.30wt%)で囲まれる範囲内のAl
・Siとする。
In order to obtain a loss coefficient η: 1.2 × 1/10 2 or more when normalizing at 1050 ° C., Al,
As shown in FIG. 5, the addition amount of Si is point A 12 (Al: 4.
55 wt%, Si: 0.10 wt%), B 12 (Al:
4.55 wt%, Si: 0.60 wt%), C 12 (A
1: 2.35 wt%, Si: 1.00 wt%), D
12 (Al: 1.10 wt%, Si: 1.95 wt%),
E 12 (Al: 1.10 wt%, Si: 1.35 wt
%), F 12 (Al: 2.40 wt%, Si: 0.10 w
within a range surrounded by t%) and a point G 12 (Al: 0 wt
%, Si: 1.05 wt%, H 12 (Al: 0.60 w
t%, Si: 0.35 wt%), I 12 (Al: 0.90)
wt%, Si: 0.40 wt%), J 12 (Al: 0.3
0 wt%, Si: 2.05 wt%), K 12 (Al: 0w
t%, Si: 2.30 wt%) Al within the range
・ Set to Si.

【0024】1050℃で焼きならし処理した場合に損
失係数η:1.4×1/102以上を得るには、Al、
Siの添加量を図6に示すように、点A14(Al:4.
15wt%、Si:0.20wt%)、B14(Al:
4.15wt%、Si:0.60wt%)、C14(A
l:2.30wt%、Si:0.90wt%)、D
14(Al:1.20wt%、Si:1.75wt%)、
14(Al:1.20wt%、Si:1.35wt
%)、F14(Al:2.70wt%、Si:0.20w
t%)で囲まれる範囲内および点G14(Al:0wt
%、Si:1.15wt%)、H14(Al:0.60w
t%、Si:0.40wt%)、I14(Al:0.80
wt%、Si:0.45wt%)、J14(Al:0wt
%、Si:2.20wt%)で囲まれる範囲内のAl・
Siとする。
In order to obtain a loss coefficient η: 1.4 × 1/10 2 or more when normalizing at 1050 ° C., Al,
As shown in FIG. 6, the amount of Si added was changed to point A 14 (Al: 4.
15 wt%, Si: 0.20 wt%), B 14 (Al:
4.15 wt%, Si: 0.60 wt%), C 14 (A
l: 2.30 wt%, Si: 0.90 wt%), D
14 (Al: 1.20 wt%, Si: 1.75 wt%),
E 14 (Al: 1.20 wt%, Si: 1.35 wt
%), F 14 (Al: 2.70 wt%, Si: 0.20 w
within a range surrounded by t%) and a point G 14 (Al: 0 wt
%, Si: 1.15 wt%, H 14 (Al: 0.60 w
t%, Si: 0.40 wt%), I 14 (Al: 0.80)
wt%, Si: 0.45 wt%), J 14 (Al: 0 wt%
%, Si: 2.20 wt%) Al within the range surrounded by
Let Si.

【0025】また、本発明合金における他の元素の限定
理由は以下の通りである。Cは侵入型固溶元素であり、
磁壁の異動度を減少させて制振性を劣化させるため、
0.01wt%以下とする。NもCと同様の理由で制振
性能を劣化させるため、0.01wt%以下とする。O
もC、Nと同様の理由で制振性能を劣化させるため、
0.01wt%以下とする。Pは粒界に偏析して加工性
を劣化させるため、0.01wt%以下とする。Sは熱
間加工性を劣化させるため、0.01wt%以下とす
る。
The reasons for limiting other elements in the alloy of the present invention are as follows. C is an interstitial solid solution element,
Since the degree of movement of the domain wall is reduced and the damping property is deteriorated,
0.01 wt% or less. Since N also deteriorates the vibration damping performance for the same reason as C, it is made 0.01 wt% or less. O
Also deteriorates the vibration damping performance for the same reason as C and N.
0.01 wt% or less. Since P segregates at the grain boundaries and deteriorates workability, it is set to 0.01 wt% or less. Since S deteriorates the hot workability, it is made 0.01 wt% or less.

【0026】本発明者らによる実験の結果、平均フェラ
イト結晶粒径と制振性の間には図8の関係があることが
確認された。すなわち、上記化学組成の合金において
は、平均フェライト結晶粒径が百数十μmのときに損失
係数は最も高い値をとる。これは、磁壁移動の抵抗とな
る二つの要素である結晶粒界と渦電流のバランスによる
ものと考えられる。平均フェライト結晶粒径が過度に大
きくなると制振性が劣化するのは、結晶粒径が大きくな
ると粒界が減る反面、磁区が大きくなることにより渦電
流損が大きくなり、これによる抵抗が増すためであると
考えられる。以上の実験結果に基づき、本発明では平均
フェライト結晶粒径を50〜300μmの範囲に規定す
る。また、平均フェライト結晶粒径が100〜200μ
mの範囲では特に優れた制振性能が得られ、具体的に
は、Al、Siの添加量の範囲が図1に示す合金では損
失係数η:4×1/103以上が得られ、Al、Siの
添加量の範囲が図2に示す合金では損失係数η:6×1
/103以上が得られ、Al、Siの添加量の範囲が図
3に示す合金では損失係数η:8×1/103以上が得
られ、Al、Siの添加量の範囲が図4に示す合金では
損失係数η:1.0×1/102以上が得られ、Al、
Siの添加量の範囲が図5に示す合金では損失係数η:
1.2×1/102以上が得られ、Al、Siの添加量
の範囲が図6に示す合金では損失係数η:1.4×1/
102以上が得られる。
As a result of experiments conducted by the present inventors, it was confirmed that the average ferrite crystal grain size and the damping property have the relationship shown in FIG. That is, in the alloy having the above chemical composition, the loss coefficient takes the highest value when the average ferrite crystal grain size is 100 to 10 μm. It is considered that this is due to the balance between the grain boundary and the eddy current, which are two factors that act as resistance to domain wall motion. The damping property deteriorates when the average ferrite crystal grain size becomes excessively large because the grain boundary decreases as the crystal grain size increases, but the eddy current loss increases due to the increase in the magnetic domains, which increases the resistance. Is considered to be. Based on the above experimental results, the average ferrite crystal grain size is specified in the range of 50 to 300 μm in the present invention. The average ferrite crystal grain size is 100 to 200 μ.
In the range of m, particularly excellent vibration damping performance is obtained, and specifically, in the alloy in which the amount of Al and Si added is in the range shown in FIG. 1, loss factor η: 4 × 1/10 3 or more is obtained. , The addition amount of Si is in the range shown in FIG. 2, the loss factor η: 6 × 1
/ 10 3 or more is obtained, Al, loss factor in the range of the additive is an alloy shown in FIG. 3 of Si eta: 8 × 1/10 3 is obtained, Al, range of the addition amount of Si is 4 In the alloy shown, loss factor η: 1.0 × 1/10 2 or more is obtained, and Al,
In the alloy whose Si addition amount range is shown in FIG. 5, the loss coefficient η:
1.2 × 1/10 2 or more is obtained, Al, loss factor in the range of the additive is an alloy shown in FIG. 6 of the Si η: 1.4 × 1 /
10 2 or more is obtained.

【0027】上記のような平均フェライト結晶粒径は、
合金を圧延した後、800〜1100℃の温度で焼きな
らしすることにより得られる。焼きならし温度が800
℃未満ではフェライト結晶粒の成長が十分でなく、一
方、1100℃を超えるとフェライト粒が粗大化し過
ぎ、50〜300μmの範囲の平均フェライト結晶粒径
が得られない。また、焼きならし温度が1050℃前後
の場合に、平均フェライト結晶粒径が100〜200μ
mの範囲となり、特に優れた制振性能が得られる。
The average ferrite crystal grain size as described above is
It is obtained by rolling the alloy and then normalizing it at a temperature of 800 to 1100 ° C. Normalizing temperature is 800
If the temperature is less than 0 ° C, the growth of ferrite crystal grains is not sufficient, while if it exceeds 1100 ° C, the ferrite grains become too coarse, and an average ferrite crystal grain size in the range of 50 to 300 µm cannot be obtained. Further, when the normalizing temperature is around 1050 ° C., the average ferrite crystal grain size is 100 to 200 μm.
In the range of m, particularly excellent vibration damping performance is obtained.

【0028】[0028]

【実施例】表1ないし表3に示す化学組成の本発明合金
および比較合金を製造し、各合金の損失係数を測定し
た。各合金は溶製後、鋳型にて鋼塊とし、これを120
0℃に加熱後、厚さ6mmまで熱間圧延し、この熱延板
から0.8×10×100mmの試験片を切り出し、1
050℃で焼きならしした後、損失係数を測定した。そ
の結果を表1ないし表3に併せて示す。
EXAMPLES Inventive alloys and comparative alloys having the chemical compositions shown in Tables 1 to 3 were produced, and the loss coefficient of each alloy was measured. After melting each alloy, it is made into a steel ingot with a mold,
After heating to 0 ° C., hot rolling was performed to a thickness of 6 mm, and a 0.8 × 10 × 100 mm test piece was cut out from this hot rolled sheet, and 1
After normalizing at 050 ° C., the loss coefficient was measured. The results are also shown in Tables 1 to 3.

【0029】また、表1ないし表3の合金No.1、N
o.17〜No.19、No.34およびNo.38の
各熱延板(板厚6mm)を700℃に加熱後、さらに3
mmまで熱間圧延し、この熱延板から0.8×10×1
00mmの試験片を切り出し、これら試験片を温度を変
えて焼きならしすることで平均フェライト結晶粒径を制
御した後、損失係数を測定した。先に述べたように焼き
ならし温度が略1050℃の場合に平均フェライト結晶
粒径が100〜200μmの範囲となり、最も優れた制
振性能が得られることから、この実施例では制振特性の
良・不良の評価として、各供試材の損失係数をη、10
50℃焼きならし材の損失係数をη0とした場合に、η
/η0≧0.5を良好、η/η0<0.5を不良と評価し
た。その結果を表4および表5に示す。なお、損失係数
の測定は、試験片を横振動基本モードの節の位置で2本
の細線によって支持し、真空中で振動の自由減衰曲線を
求めることで行った。
Further, alloy Nos. 1 to 3 shown in Tables 1 to 3 were used. 1, N
o. 17-No. 19, No. 34 and No. 34. After heating each hot-rolled plate of 38 (plate thickness 6 mm) to 700 ° C., further
hot rolled to 0.8 mm from this hot rolled sheet 0.8 × 10 × 1
A 00 mm test piece was cut out, and the average ferrite crystal grain size was controlled by normalizing these test pieces at different temperatures, and then the loss coefficient was measured. As described above, when the normalizing temperature is approximately 1050 ° C., the average ferrite crystal grain size is in the range of 100 to 200 μm, and the most excellent vibration damping performance can be obtained. The loss factor of each test material is η, 10 for the evaluation of good and bad.
If the loss coefficient of the 50 ° C normalized material is η 0 , η
/ Η 0 ≧ 0.5 was evaluated as good, and η / η 0 <0.5 was evaluated as poor. The results are shown in Tables 4 and 5. The loss coefficient was measured by supporting the test piece with two thin wires at the nodes of the transverse vibration fundamental mode and obtaining a free damping curve of vibration in vacuum.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【発明の効果】以上述べたように本発明によれば、良好
な制振性を有する制振合金を得ることができる。
As described above, according to the present invention, it is possible to obtain a damping alloy having good damping properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の請求項1で規定するAl、Siの範囲を
示す図面
FIG. 1 is a drawing showing the ranges of Al and Si defined in claim 1 of the present application.

【図2】本願の請求項2で規定するAl、Siの範囲を
示す図面
FIG. 2 is a drawing showing the ranges of Al and Si defined in claim 2 of the present application.

【図3】本願の請求項3で規定するAl、Siの範囲を
示す図面
FIG. 3 is a drawing showing the ranges of Al and Si defined in claim 3 of the present application.

【図4】本願の請求項4で規定するAl、Siの範囲を
示す図面
FIG. 4 is a drawing showing the ranges of Al and Si defined in claim 4 of the present application.

【図5】本願の請求項5で規定するAl、Siの範囲を
示す図面
FIG. 5 is a drawing showing the ranges of Al and Si defined in claim 5 of the present application.

【図6】本願の請求項6で規定するAl、Siの範囲を
示す図面
FIG. 6 is a drawing showing the ranges of Al and Si defined in claim 6 of the present application.

【図7】焼ならし条件を一定(1050℃)にしたFe
−Al−Si系合金のAl量およびSi量と損失係数と
の関係を示す図面
FIG. 7: Fe with the normalizing condition kept constant (1050 ° C.)
-Al-Si-based alloy drawing showing the relationship between the amount of Al and Si and the loss coefficient

【図8】Fe−Al−Si系合金の平均フェライト結晶
粒径と損失係数との関係を示す図面
FIG. 8 is a drawing showing the relationship between the average ferrite crystal grain size and the loss factor of an Fe—Al—Si alloy.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 図1に示す点A4(Al:7.05wt
%、Si:0.95wt%)、B4(Al:6.50w
t%、Si:1.10wt%)、C4(Al:4.70
wt%、Si:2.75wt%)、D4(Al:2.2
5wt%、Si:2.45wt%)、E4(Al:0w
t%、Si:4.50wt%)、A0(Al:0wt
%、Si:0wt%)、B0(Al:8.00wt%、
Si:0wt%)で囲まれる範囲内のAl・Si、C:
0.01wt%以下、N:0.01wt%以下、O:
0.01wt%以下、P:0.01wt%以下、S:
0.01wt%以下、残部Feおよび不可避的不純物か
らなり、平均フェライト結晶粒径が50〜300μmで
ある制振合金。
1. A point A 4 (Al: 7.05 wt shown in FIG.
%, Si: 0.95 wt%), B 4 (Al: 6.50 w
t%, Si: 1.10 wt%), C 4 (Al: 4.70)
wt%, Si: 2.75 wt%), D 4 (Al: 2.2)
5 wt%, Si: 2.45 wt%, E 4 (Al: 0w
t%, Si: 4.50 wt%), A 0 (Al: 0 wt%
%, Si: 0 wt%, B 0 (Al: 8.00 wt%,
Si: 0 wt%) Al within the range surrounded by Si, C:
0.01 wt% or less, N: 0.01 wt% or less, O:
0.01 wt% or less, P: 0.01 wt% or less, S:
A damping alloy that is 0.01 wt% or less, the balance is Fe and unavoidable impurities, and has an average ferrite crystal grain size of 50 to 300 μm.
【請求項2】 図2に示す点A6(Al:7.40wt
%、Si:0.60wt%)、B6(Al:4.75w
t%、Si:1.00wt%)、C6(Al:3.75
wt%、Si:1.90wt%)、D6(Al:2.1
5wt%、Si:2.15wt%)、E6(Al:0w
t%、Si:4.00wt%)、A0(Al:0wt
%、Si:0wt%)、B0(Al:8.00wt%、
Si:0wt%)で囲まれる範囲内のAl・Si、C:
0.01wt%以下、N:0.01wt%以下、O:
0.01wt%以下、P:0.01wt%以下、S:
0.01wt%以下、残部Feおよび不可避的不純物か
らなり、平均フェライト結晶粒径が50〜300μmで
ある制振合金。
2. A point A 6 (Al: 7.40 wt) shown in FIG.
%, Si: 0.60 wt%), B 6 (Al: 4.75w)
t%, Si: 1.00 wt%), C 6 (Al: 3.75)
wt%, Si: 1.90 wt%), D 6 (Al: 2.1
5 wt%, Si: 2.15 wt%, E 6 (Al: 0w
t%, Si: 4.00 wt%), A 0 (Al: 0 wt%
%, Si: 0 wt%, B 0 (Al: 8.00 wt%,
Si: 0 wt%) Al within the range surrounded by Si, C:
0.01 wt% or less, N: 0.01 wt% or less, O:
0.01 wt% or less, P: 0.01 wt% or less, S:
A damping alloy that is 0.01 wt% or less, the balance is Fe and unavoidable impurities, and has an average ferrite crystal grain size of 50 to 300 μm.
【請求項3】 図3に示す点A8(Al:6.30wt
%、Si:0wt%)、B8(Al:6.30wt%、
Si:0.50wt%)、C8(Al:2.75wt
%、Si:1.20wt%)、D8(Al:0wt%、
Si:3.50wt%)、E8(Al:0wt%、S
i:0.60wt%)、F8(Al:0.70wt%、
Si:0wt%)で囲まれる範囲内のAl・Si、C:
0.01wt%以下、N:0.01wt%以下、O:
0.01wt%以下、P:0.01wt%以下、S:
0.01wt%以下、残部Feおよび不可避的不純物か
らなり、平均フェライト結晶粒径が50〜300μmで
ある制振合金。
3. A point A 8 (Al: 6.30 wt) shown in FIG.
%, Si: 0 wt%, B 8 (Al: 6.30 wt%,
Si: 0.50 wt%), C 8 (Al: 2.75 wt%)
%, Si: 1.20 wt%), D 8 (Al: 0 wt%,
Si: 3.50 wt%), E 8 (Al: 0 wt%, S
i: 0.60 wt%), F 8 (Al: 0.70 wt%,
Si: 0 wt%) Al within the range surrounded by Si, C:
0.01 wt% or less, N: 0.01 wt% or less, O:
0.01 wt% or less, P: 0.01 wt% or less, S:
A damping alloy that is 0.01 wt% or less, the balance is Fe and unavoidable impurities, and has an average ferrite crystal grain size of 50 to 300 μm.
【請求項4】 図4に示す点A10(Al:4.80wt
%、Si:0wt%)、B10(Al:4.80wt%、
Si:0.70wt%)、C10(Al:2.90wt
%、Si:1.00wt%)、D10(Al:1.35w
t%、Si:2.05wt%)、E10(Al:0.55
wt%、Si:2.00wt%)、F10(Al:0wt
%、Si:2.40wt%)、G10(Al:0wt%、
Si:0.80wt%)、H10(Al:0.55wt
%、Si:0.25wt%)、I10(Al:1.60w
t%、Si:0.35wt%)、J10(Al:2.25
wt%、Si:0wt%)で囲まれる範囲内のAl・S
i、C:0.01wt%以下、N:0.01wt%以
下、O:0.01wt%以下、P:0.01wt%以
下、S:0.01wt%以下、残部Feおよび不可避的
不純物からなり、平均フェライト結晶粒径が50〜30
0μmである制振合金。
4. The point A 10 (Al: 4.80 wt) shown in FIG.
%, Si: 0wt%), B 10 (Al: 4.80wt%,
Si: 0.70 wt%, C 10 (Al: 2.90 wt)
%, Si: 1.00 wt%), D 10 (Al: 1.35w)
t%, Si: 2.05 wt%), E 10 (Al: 0.55)
wt%, Si: 2.00 wt%), F 10 (Al: 0 wt%
%, Si: 2.40 wt%, G 10 (Al: 0 wt%,
Si: 0.80 wt%, H 10 (Al: 0.55 wt)
%, Si: 0.25 wt%), I 10 (Al: 1.60 w
t%, Si: 0.35 wt%), J 10 (Al: 2.25)
wt%, Si: 0 wt%) Al ・ S in the range surrounded by
i, C: 0.01 wt% or less, N: 0.01 wt% or less, O: 0.01 wt% or less, P: 0.01 wt% or less, S: 0.01 wt% or less, balance Fe and inevitable impurities , Average ferrite crystal grain size is 50 to 30
Damping alloy that is 0 μm.
【請求項5】 図5に示す点A12(Al:4.55wt
%、Si:0.10wt%)、B12(Al:4.55w
t%、Si:0.60wt%)、C12(Al:2.35
wt%、Si:1.00wt%)、D12(Al:1.1
0wt%、Si:1.95wt%)、E12(Al:1.
10wt%、Si:1.35wt%)、F12(Al:
2.40wt%、Si:0.10wt%)で囲まれる範
囲内および点G12(Al:0wt%、Si:1.05w
t%)、H12(Al:0.60wt%、Si:0.35
wt%)、I12(Al:0.90wt%、Si:0.4
0wt%)、J12(Al:0.30wt%、Si:2.
05wt%)、K12(Al:0wt%、Si:2.30
wt%)で囲まれる範囲内のAl・Si、C:0.01
wt%以下、N:0.01wt%以下、O:0.01w
t%以下、P:0.01wt%以下、S:0.01wt
%以下、残部Feおよび不可避的不純物からなり、平均
フェライト結晶粒径が50〜300μmである制振合
金。
5. A point A 12 (Al: 4.55 wt) shown in FIG.
%, Si: 0.10 wt%), B 12 (Al: 4.55w)
t%, Si: 0.60 wt%), C 12 (Al: 2.35)
wt%, Si: 1.00 wt%), D 12 (Al: 1.1)
0 wt%, Si: 1.95 wt%), E 12 (Al: 1.
10 wt%, Si: 1.35 wt%), F 12 (Al:
2.40 wt%, Si: 0.10 wt%) within the range and point G 12 (Al: 0 wt%, Si: 1.05 w
t%), H 12 (Al: 0.60 wt%, Si: 0.35)
wt%), I 12 (Al: 0.90 wt%, Si: 0.4
0 wt%), J 12 (Al: 0.30 wt%, Si: 2.
05 wt%), K 12 (Al: 0 wt%, Si: 2.30)
wt%) within the range surrounded by Al.Si, C: 0.01
wt% or less, N: 0.01 wt% or less, O: 0.01w
t% or less, P: 0.01 wt% or less, S: 0.01 wt
% Or less, balance Fe and unavoidable impurities, and a damping alloy having an average ferrite crystal grain size of 50 to 300 μm.
【請求項6】 図6に示す点A14(Al:4.15wt
%、Si:0.20wt%)、B14(Al:4.15w
t%、Si:0.60wt%)、C14(Al:2.30
wt%、Si:0.90wt%)、D14(Al:1.2
0wt%、Si:1.75wt%)、E14(Al:1.
20wt%、Si:1.35wt%)、F14(Al:
2.70wt%、Si:0.20wt%)で囲まれる範
囲内および点G14(Al:0wt%、Si:1.15w
t%)、H14(Al:0.60wt%、Si:0.40
wt%)、I14(Al:0.80wt%、Si:0.4
5wt%)、J14(Al:0wt%、Si:2.20w
t%)で囲まれる範囲内のAl・Si、C:0.01w
t%以下、N:0.01wt%以下、O:0.01wt
%以下、P:0.01wt%以下、S:0.01wt%
以下、残部Feおよび不可避的不純物からなり、平均フ
ェライト結晶粒径が50〜300μmである制振合金。
6. The point A 14 (Al: 4.15 wt) shown in FIG.
%, Si: 0.20 wt%, B 14 (Al: 4.15 w)
t%, Si: 0.60 wt%, C 14 (Al: 2.30)
wt%, Si: 0.90 wt%), D 14 (Al: 1.2)
0 wt%, Si: 1.75 wt%), E 14 (Al: 1.
20 wt%, Si: 1.35 wt%), F 14 (Al:
Within a range surrounded by 2.70 wt% and Si: 0.20 wt% and at a point G 14 (Al: 0 wt%, Si: 1.15w)
t%), H 14 (Al: 0.60 wt%, Si: 0.40)
wt%), I 14 (Al: 0.80 wt%, Si: 0.4
5 wt%), J 14 (Al: 0 wt%, Si: 2.20 w
Al ・ Si, C within the range surrounded by t%: 0.01 w
t% or less, N: 0.01 wt% or less, O: 0.01 wt
% Or less, P: 0.01 wt% or less, S: 0.01 wt%
Hereinafter, a vibration damping alloy which consists of the balance Fe and unavoidable impurities and has an average ferrite crystal grain size of 50 to 300 μm.
【請求項7】 図1に示す点A4(Al:7.05wt
%、Si:0.95wt%)、B4(Al:6.50w
t%、Si:1.10wt%)、C4(Al:4.70
wt%、Si:2.75wt%)、D4(Al:2.2
5wt%、Si:2.45wt%)、E4(Al:0w
t%、Si:4.50wt%)、A0(Al:0wt
%、Si:0wt%)、B0(Al:8.00wt%、
Si:0wt%)で囲まれる範囲内のAl・Si、C:
0.01wt%以下、N:0.01wt%以下、O:
0.01wt%以下、P:0.01wt%以下、S:
0.01wt%以下、残部Feおよび不可避的不純物か
らなる合金を圧延後、800〜1100℃で焼きならし
することにより平均フェライト結晶粒径を50〜300
μmの範囲とすることを特徴とする制振合金の製造方
法。
7. A point A 4 (Al: 7.05 wt shown in FIG.
%, Si: 0.95 wt%), B 4 (Al: 6.50 w
t%, Si: 1.10 wt%), C 4 (Al: 4.70)
wt%, Si: 2.75 wt%), D 4 (Al: 2.2)
5 wt%, Si: 2.45 wt%, E 4 (Al: 0w
t%, Si: 4.50 wt%), A 0 (Al: 0 wt%
%, Si: 0 wt%, B 0 (Al: 8.00 wt%,
Si: 0 wt%) Al within the range surrounded by Si, C:
0.01 wt% or less, N: 0.01 wt% or less, O:
0.01 wt% or less, P: 0.01 wt% or less, S:
An average ferrite crystal grain size of 50 to 300 is obtained by rolling an alloy composed of 0.01 wt% or less, the balance being Fe and unavoidable impurities, and then normalizing the alloy at 800 to 1100 ° C.
A method for producing a vibration damping alloy, characterized in that the thickness is in the range of μm.
【請求項8】 図2に示す点A6(Al:7.40wt
%、Si:0.60wt%)、B6(Al:4.75w
t%、Si:1.00wt%)、C6(Al:3.75
wt%、Si:1.90wt%)、D6(Al:2.1
5wt%、Si:2.15wt%)、E6(Al:0w
t%、Si:4.00wt%)、A0(Al:0wt
%、Si:0wt%)、B0(Al:8.00wt%、
Si:0wt%)で囲まれる範囲内のAl・Si、C:
0.01wt%以下、N:0.01wt%以下、O:
0.01wt%以下、P:0.01wt%以下、S:
0.01wt%以下、残部Feおよび不可避的不純物か
らなる合金を圧延後、800〜1100℃で焼きならし
することにより平均フェライト結晶粒径を50〜300
μmの範囲とすることを特徴とする制振合金の製造方
法。
8. The point A 6 (Al: 7.40 wt) shown in FIG.
%, Si: 0.60 wt%), B 6 (Al: 4.75w)
t%, Si: 1.00 wt%), C 6 (Al: 3.75)
wt%, Si: 1.90 wt%), D 6 (Al: 2.1
5 wt%, Si: 2.15 wt%, E 6 (Al: 0w
t%, Si: 4.00 wt%), A 0 (Al: 0 wt%
%, Si: 0 wt%, B 0 (Al: 8.00 wt%,
Si: 0 wt%) Al within the range surrounded by Si, C:
0.01 wt% or less, N: 0.01 wt% or less, O:
0.01 wt% or less, P: 0.01 wt% or less, S:
An average ferrite crystal grain size of 50 to 300 is obtained by rolling an alloy composed of 0.01 wt% or less, the balance being Fe and unavoidable impurities, and then normalizing the alloy at 800 to 1100 ° C.
A method for producing a vibration damping alloy, characterized in that it is in the range of μm.
【請求項9】 図3に示す点A8(Al:6.30wt
%、Si:0wt%)、B8(Al:6.30wt%、
Si:0.50wt%)、C8(Al:2.75wt
%、Si:1.20wt%)、D8(Al:0wt%、
Si:3.50wt%)、E8(Al:0wt%、S
i:0.60wt%)、F8(Al:0.70wt%、
Si:0wt%)で囲まれる範囲内のAl・Si、C:
0.01wt%以下、N:0.01wt%以下、O:
0.01wt%以下、P:0.01wt%以下、S:
0.01wt%以下、残部Feおよび不可避的不純物か
らなる合金を圧延後、800〜1100℃で焼きならし
することにより平均フェライト結晶粒径を50〜300
μmの範囲とすることを特徴とする制振合金の製造方
法。
9. The point A 8 (Al: 6.30 wt) shown in FIG.
%, Si: 0 wt%, B 8 (Al: 6.30 wt%,
Si: 0.50 wt%), C 8 (Al: 2.75 wt%)
%, Si: 1.20 wt%), D 8 (Al: 0 wt%,
Si: 3.50 wt%), E 8 (Al: 0 wt%, S
i: 0.60 wt%), F 8 (Al: 0.70 wt%,
Si: 0 wt%) Al within the range surrounded by Si, C:
0.01 wt% or less, N: 0.01 wt% or less, O:
0.01 wt% or less, P: 0.01 wt% or less, S:
An average ferrite crystal grain size of 50 to 300 is obtained by rolling an alloy composed of 0.01 wt% or less, the balance being Fe and unavoidable impurities, and then normalizing the alloy at 800 to 1100 ° C.
A method for producing a vibration damping alloy, characterized in that it is in the range of μm.
【請求項10】 図4に示す点A10(Al:4.80w
t%、Si:0wt%)、B10(Al:4.80wt
%、Si:0.70wt%)、C10(Al:2.90w
t%、Si:1.00wt%)、D10(Al:1.35
wt%、Si:2.05wt%)、E10(Al:0.5
5wt%、Si:2.00wt%)、F10(Al:0w
t%、Si:2.40wt%)、G10(Al:0wt
%、Si:0.80wt%)、H10(Al:0.55w
t%、Si:0.25wt%)、I10(Al:1.60
wt%、Si:0.35wt%)、J10(Al:2.2
5wt%、Si:0wt%)で囲まれる範囲内のAl・
Si、C:0.01wt%以下、N:0.01wt%以
下、O:0.01wt%以下、P:0.01wt%以
下、S:0.01wt%以下、残部Feおよび不可避的
不純物からなる合金を圧延後、800〜1100℃で焼
きならしすることにより平均フェライト結晶粒径を50
〜300μmの範囲とすることを特徴とする制振合金の
製造方法。
10. A point A 10 (Al: 4.80w shown in FIG.
t%, Si: 0 wt%), B 10 (Al: 4.80 wt)
%, Si: 0.70 wt%, C 10 (Al: 2.90 w)
t%, Si: 1.00 wt%), D 10 (Al: 1.35)
wt%, Si: 2.05 wt%), E 10 (Al: 0.5
5 wt%, Si: 2.00 wt%), F 10 (Al: 0 w
t%, Si: 2.40 wt%), G 10 (Al: 0 wt%
%, Si: 0.80 wt%, H 10 (Al: 0.55w
t%, Si: 0.25 wt%), I 10 (Al: 1.60)
wt%, Si: 0.35 wt%), J 10 (Al: 2.2
5 wt%, Si: 0 wt%) Al within the range surrounded by
Si, C: 0.01 wt% or less, N: 0.01 wt% or less, O: 0.01 wt% or less, P: 0.01 wt% or less, S: 0.01 wt% or less, balance Fe and unavoidable impurities After rolling the alloy, the average ferrite crystal grain size is set to 50 by normalizing at 800 to 1100 ° C.
To 300 μm, a method for producing a vibration damping alloy.
【請求項11】 図5に示す点A12(Al:4.55w
t%、Si:0.10wt%)、B12(Al:4.55
wt%、Si:0.60wt%)、C12(Al:2.3
5wt%、Si:1.00wt%)、D12(Al:1.
10wt%、Si:1.95wt%)、E12(Al:
1.10wt%、Si:1.35wt%)、F12(A
l:2.40wt%、Si:0.10wt%)で囲まれ
る範囲内および点G12(Al:0wt%、Si:1.0
5wt%)、H12(Al:0.60wt%、Si:0.
35wt%)、I12(Al:0.90wt%、Si:
0.40wt%)、J12(Al:0.30wt%、S
i:2.05wt%)、K12(Al:0wt%、Si:
2.30wt%)で囲まれる範囲内のAl・Si、C:
0.01wt%以下、N:0.01wt%以下、O:
0.01wt%以下、P:0.01wt%以下、S:
0.01wt%以下、残部Feおよび不可避的不純物か
らなる合金を圧延後、800〜1100℃で焼きならし
することにより平均フェライト結晶粒径を50〜300
μmの範囲とすることを特徴とする制振合金の製造方
法。
11. A point A 12 (Al: 4.55w shown in FIG.
t%, Si: 0.10 wt%), B 12 (Al: 4.55)
wt%, Si: 0.60 wt%, C 12 (Al: 2.3)
5 wt%, Si: 1.00 wt%), D 12 (Al: 1.
10 wt%, Si: 1.95 wt%), E 12 (Al:
1.10 wt%, Si: 1.35 wt%), F 12 (A
L: 2.40 wt%, Si: 0.10 wt%) and a point G 12 (Al: 0 wt%, Si: 1.0)
5 wt%), H 12 (Al: 0.60 wt%, Si: 0.
35 wt%), I 12 (Al: 0.90 wt%, Si:
0.40 wt%), J 12 (Al: 0.30 wt%, S
i: 2.05 wt%), K 12 (Al: 0 wt%, Si:
2.30 wt%) within the range surrounded by Al-Si, C:
0.01 wt% or less, N: 0.01 wt% or less, O:
0.01 wt% or less, P: 0.01 wt% or less, S:
An average ferrite crystal grain size of 50 to 300 is obtained by rolling an alloy composed of 0.01 wt% or less, the balance being Fe and unavoidable impurities, and then normalizing the alloy at 800 to 1100 ° C.
A method for producing a vibration damping alloy, characterized in that the thickness is in the range of μm.
【請求項12】 図6に示す点A14(Al:4.15w
t%、Si:0.20wt%)、B14(Al:4.15
wt%、Si:0.60wt%)、C14(Al:2.3
0wt%、Si:0.90wt%)、D14(Al:1.
20wt%、Si:1.75wt%)、E14(Al:
1.20wt%、Si:1.35wt%)、F14(A
l:2.70wt%、Si:0.20wt%)で囲まれ
る範囲内および点G14(Al:0wt%、Si:1.1
5wt%)、H14(Al:0.60wt%、Si:0.
40wt%)、I14(Al:0.80wt%、Si:
0.45wt%)、J14(Al:0wt%、Si:2.
20wt%)で囲まれる範囲内のAl・Si、C:0.
01wt%以下、N:0.01wt%以下、O:0.0
1wt%以下、P:0.01wt%以下、S:0.01
wt%以下、残部Feおよび不可避的不純物からなる合
金を圧延後、800〜1100℃で焼きならしすること
により平均フェライト結晶粒径を50〜300μmの範
囲とすることを特徴とする制振合金の製造方法。
12. A point A 14 (Al: 4.15w shown in FIG. 6)
t%, Si: 0.20 wt%), B 14 (Al: 4.15)
wt%, Si: 0.60 wt%, C 14 (Al: 2.3)
0 wt%, Si: 0.90 wt%), D 14 (Al: 1.
20 wt%, Si: 1.75 wt%), E 14 (Al:
1.20 wt%, Si: 1.35 wt%), F 14 (A
l: 2.70 wt%, Si: 0.20 wt%) and a point G 14 (Al: 0 wt%, Si: 1.1)
5 wt%), H 14 (Al: 0.60 wt%, Si: 0.
40 wt%), I 14 (Al: 0.80 wt%, Si:
0.45 wt%), J 14 (Al: 0 wt%, Si: 2.
20 wt%) within the range surrounded by Al.Si, C: 0.
01 wt% or less, N: 0.01 wt% or less, O: 0.0
1 wt% or less, P: 0.01 wt% or less, S: 0.01
After rolling an alloy consisting of less than wt% and balance Fe and unavoidable impurities, the average ferrite crystal grain size is set in the range of 50 to 300 μm by normalizing at 800 to 1100 ° C. Production method.
JP32311093A 1993-11-29 1993-11-29 Damping alloy and its production Pending JPH07150296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32311093A JPH07150296A (en) 1993-11-29 1993-11-29 Damping alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32311093A JPH07150296A (en) 1993-11-29 1993-11-29 Damping alloy and its production

Publications (1)

Publication Number Publication Date
JPH07150296A true JPH07150296A (en) 1995-06-13

Family

ID=18151196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32311093A Pending JPH07150296A (en) 1993-11-29 1993-11-29 Damping alloy and its production

Country Status (1)

Country Link
JP (1) JPH07150296A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085609A1 (en) * 2005-02-10 2006-08-17 Yoshihira Okanda NOVEL Fe-Al ALLOY AND METHOD FOR PRODUCING SAME
JP2015027214A (en) * 2013-07-29 2015-02-05 富士通株式会社 Vibration power generation device
KR101650299B1 (en) * 2015-07-14 2016-08-23 주식회사 씨텍코리아 Method of installing vibration Protection pad
JP2020015943A (en) * 2018-07-25 2020-01-30 日本製鉄株式会社 Ferrite steel and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085609A1 (en) * 2005-02-10 2006-08-17 Yoshihira Okanda NOVEL Fe-Al ALLOY AND METHOD FOR PRODUCING SAME
EP1847624A1 (en) * 2005-02-10 2007-10-24 Yoshihira Okanda NOVEL Fe-Al ALLOY AND METHOD FOR PRODUCING SAME
EP1847624A4 (en) * 2005-02-10 2008-05-28 Yoshihira Okanda NOVEL Fe-Al ALLOY AND METHOD FOR PRODUCING SAME
JP5185613B2 (en) * 2005-02-10 2013-04-17 佳平 大神田 Novel Fe-Al alloy and method for producing the same
JP2015027214A (en) * 2013-07-29 2015-02-05 富士通株式会社 Vibration power generation device
KR101650299B1 (en) * 2015-07-14 2016-08-23 주식회사 씨텍코리아 Method of installing vibration Protection pad
JP2020015943A (en) * 2018-07-25 2020-01-30 日本製鉄株式会社 Ferrite steel and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2019507245A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPWO2005033349A1 (en) High-strength electrical steel sheet, processed parts thereof, and manufacturing method thereof
JPH11264058A (en) Iron-cobalt alloy
JP2004068084A (en) Non-grain-oriented electromagnetic steel sheet with high magnetic-flux density for rotating machine, and member for rotating machine
CN110720130A (en) Fe-Si-based alloy and method for producing same
JP4430502B2 (en) Method for producing low specific gravity steel sheet with excellent ductility
JPH07150296A (en) Damping alloy and its production
KR102178341B1 (en) Non-oriented electrical steel sheet having superior magneticproperties and method for manufacturing the same
JP2004339603A (en) High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
JP3870616B2 (en) Fe-Cr-Si alloy and method for producing the same
WO2019132130A1 (en) Non-oriented electrical steel sheet and method for producing same
JP2003105508A (en) Nonoriented silicon steel sheet having excellent workability, and production method therefor
JPS6232267B2 (en)
KR20200062438A (en) Austenitic light-weight steel having high toughness and method of manufacturing the same
JP7328597B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPS5827951A (en) Nodular graphite austenite cast iron with heat resistance
JP4280139B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH09227997A (en) High damping alloy and its production
JP4273621B2 (en) Electrical steel sheet for high-speed small motors
JP2001279398A (en) Nonoriented silicon steel sheet excellent in high frequency magnetic property
JPH09143624A (en) Damping alloy and its production
JPH06100987A (en) High damping alloy with high toughness
JPH09104950A (en) High damping alloy and its production
JPH08239734A (en) Cast austenitic stainless steel
CN117377787A (en) Non-oriented electrical steel sheet and method for manufacturing same