JPH0714986A - Method and apparatus for manufacturing semiconductor device - Google Patents

Method and apparatus for manufacturing semiconductor device

Info

Publication number
JPH0714986A
JPH0714986A JP5149982A JP14998293A JPH0714986A JP H0714986 A JPH0714986 A JP H0714986A JP 5149982 A JP5149982 A JP 5149982A JP 14998293 A JP14998293 A JP 14998293A JP H0714986 A JPH0714986 A JP H0714986A
Authority
JP
Japan
Prior art keywords
substrate
insulating film
oxygen
atmosphere
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5149982A
Other languages
Japanese (ja)
Other versions
JP3230901B2 (en
Inventor
Tomonori Aoyama
知憲 青山
Keitarou Imai
馨太郎 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14998293A priority Critical patent/JP3230901B2/en
Publication of JPH0714986A publication Critical patent/JPH0714986A/en
Application granted granted Critical
Publication of JP3230901B2 publication Critical patent/JP3230901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide a method and an apparatus for manufacturing a semiconductor device having an insulating film with a small leak current and high permittivity. CONSTITUTION:At first, a Ta2O5 film 9 is formed, and still in the vacuum state an oxygen heat treatment step with 0.1 to 3.0Torr at temperatures of 500 to 850 deg.C is carried out or an oxygen plasma heat treatment step at temperatures of 300 to 500 deg.C is carried out with or without an oxygen heat aftertreatment step with 0.1 to 3.0Torr at temperatures of 500 to 850 deg.C. These heat-treatment steps are carried out with a manufacturing apparatus, in which a reactive chamber for forming the Ta2O5 film 9 is connected through a vacuum system with a heat treatment chamber for oxygen heat treatment or the reactive chamber is connected through a vacuum carriage system with a heat treatment chamber, to which a charging unit for oxygen plasma heat treatment is integrated or connected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法及
びその製造装置に係わり、特に金属酸化物からなる高誘
電率絶縁膜の製造方法及びその製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device and a manufacturing apparatus thereof, and more particularly to a method of manufacturing a high dielectric constant insulating film made of a metal oxide and a manufacturing apparatus thereof.

【0002】[0002]

【従来の技術】従来より、半導体メモリの一つとして、
トランジスタとキャパシタとを組み合わせたDRAMが
知られている。近年、半導体集積回路の高集積化に伴
い、回路の微細化は進む一方であり、例えばキャパシタ
のセル面積は世代毎に小さくなっている。セル面積が小
さくなるとそれに応じてキャパシタの占める面積も小さ
くなり十分な容量を確保することが難しくなるが、キャ
パシタの容量は感度やソフトエラー等の点から一定以下
にすることはできない。
2. Description of the Related Art Conventionally, as one of semiconductor memories,
A DRAM in which a transistor and a capacitor are combined is known. In recent years, with the high integration of semiconductor integrated circuits, miniaturization of circuits is advancing, and the cell area of capacitors, for example, is decreasing with each generation. When the cell area becomes smaller, the area occupied by the capacitor becomes smaller accordingly, and it becomes difficult to secure a sufficient capacity, but the capacity of the capacitor cannot be kept below a certain level in view of sensitivity and soft error.

【0003】このため絶縁膜の薄膜化を進める一方、ト
レンチキャパシタやスタックトキャパシタのようにキャ
パシタを3次元的に形成してセル面積をできるだけ大き
くしてキャパシタ容量を稼ぐことが行われている。さら
にキャパシタ絶縁膜に誘電率の大きな材料(高誘電率絶
縁膜)を用いることによりキャパシタ容量を大きくする
方法も提案されている。
For this reason, while the insulation film is being made thinner, capacitors such as trench capacitors and stacked capacitors are three-dimensionally formed to increase the cell area as much as possible to increase the capacitance of the capacitor. Further, a method of increasing the capacitance of the capacitor by using a material having a high dielectric constant (high dielectric constant insulating film) for the capacitor insulating film has also been proposed.

【0004】このような高誘電率絶縁膜として代表的な
ものにTa25 がある。Ta25 膜を形成する方法
としては、Ta(OC255 やTaCl4 をソース
として用いるCVD法や、Taターゲットを用いて酸素
とアルゴンの混合ガス中でスパッタして形成する化成ス
パッタ法等のスパッタ法がある。しかし、上記の方法で
形成されたTa25 膜は酸素欠損が生じるため、キャ
パシタのリーク電流が大きくなるという問題点がある。
また、成膜直後では誘電率が低いという問題点がある。
これらの問題点を解決する方法として、Ta25 を形
成した後に熱処理用の炉に移し、酸素雰囲気中600 〜10
00℃で熱処理を行う方法が提案されている。
Ta 2 O 5 is a typical example of such a high dielectric constant insulating film. As a method for forming the Ta 2 O 5 film, a CVD method using Ta (OC 2 H 5 ) 5 or TaCl 4 as a source, or a chemical conversion method formed by sputtering using a Ta target in a mixed gas of oxygen and argon is used. There is a sputtering method such as a sputtering method. However, the Ta 2 O 5 film formed by the above method suffers from oxygen deficiency, which causes a problem that the leak current of the capacitor increases.
Further, there is a problem that the dielectric constant is low immediately after film formation.
As a method of solving these problems, after forming Ta 2 O 5 , it is transferred to a furnace for heat treatment, and 600 to 10
A method of performing heat treatment at 00 ° C has been proposed.

【0005】しかしこの場合、下地のシリコン表面が酸
化され、この表面に誘電率の小さいSiO2 膜が形成さ
れてしまうためキャパシタ容量の低下を招く。また、こ
のような方法ではTa25 膜を形成した後、一度大気
にさらした後で酸素雰囲気中で熱処理をするため、欠損
した酸素を十分補うことができず、このような酸素欠損
によって膜のリーク電流を十分低く押さえることができ
ないため、絶縁性が低下することになる。したがってキ
ャパシタの電荷保持能力が劣化することになってしまい
素子の信頼性の低下を招くことになる。
In this case, however, the surface of the underlying silicon is oxidized and a SiO 2 film having a small dielectric constant is formed on this surface, resulting in a decrease in the capacitance of the capacitor. Further, in such a method, after the Ta 2 O 5 film is formed, it is exposed to the air and then heat-treated in an oxygen atmosphere, so that it is not possible to sufficiently supplement the deficient oxygen. Since the leak current of the film cannot be suppressed to a sufficiently low level, the insulating property will deteriorate. Therefore, the charge retention capacity of the capacitor is deteriorated and the reliability of the element is lowered.

【0006】[0006]

【発明が解決しようとする課題】以上述べたように、シ
リコン等の下部電極上にキャパシタ絶縁膜として、高誘
電率絶縁膜を形成する場合、この絶縁膜において酸素欠
損が生じ、キャパシタのリーク電流が大きくなるという
問題があった。この酸素欠損を解決するため酸素を補う
場合に、下部電極の表面が酸化されキャパシタ容量の低
下を招くという問題があった。
As described above, when a high-dielectric-constant insulating film is formed as a capacitor insulating film on a lower electrode such as silicon, oxygen deficiency occurs in this insulating film, resulting in leakage current of the capacitor. There was a problem that became large. When supplementing oxygen to solve the oxygen deficiency, there is a problem that the surface of the lower electrode is oxidized and the capacitance of the capacitor is reduced.

【0007】本発明は、前記実情に鑑みてなされたもの
で、リーク電流が小さく、信頼性の高い高誘電率絶縁膜
を形成することができる半導体装置の製造方法及びその
製造装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a method of manufacturing a semiconductor device and a manufacturing apparatus thereof capable of forming a highly reliable insulating film having a small leak current and high reliability. With the goal.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明第1においては、基板上に形成された第1の導
電層上に金属酸化物からなる絶縁膜を形成する工程と、
前記基板を大気開放せずに連続で減圧酸素雰囲気中で前
記絶縁膜の熱処理を行う工程と、前記絶縁膜上に第2の
導電層を形成する工程とを含む半導体装置の製造方法を
提供する。
In order to achieve the above object, in the first aspect of the present invention, a step of forming an insulating film made of a metal oxide on a first conductive layer formed on a substrate,
Provided is a method for manufacturing a semiconductor device, which includes a step of continuously performing a heat treatment on the insulating film in a reduced pressure oxygen atmosphere without exposing the substrate to the atmosphere, and a step of forming a second conductive layer on the insulating film. .

【0009】本発明第2においては、基板上に形成され
た第1の導電層上に金属酸化物からなる絶縁膜を形成す
る工程と、前記基板を大気開放せずに連続で減圧酸素雰
囲気中で前記絶縁膜の熱処理を行う工程と、大気開放せ
ずに連続で減圧下において酸素ラジカルを含む酸素雰囲
気中で前記絶縁膜の熱処理を行う工程と、前記絶縁膜上
に第2の導電層を形成する工程とを含む半導体装置の製
造方法を提供する。
In the second aspect of the present invention, a step of forming an insulating film made of a metal oxide on the first conductive layer formed on the substrate, and the substrate is continuously exposed to a reduced pressure oxygen atmosphere without exposing to the atmosphere. A heat treatment of the insulating film, a step of continuously heat treating the insulating film in an oxygen atmosphere containing oxygen radicals under reduced pressure without exposing to the atmosphere, and forming a second conductive layer on the insulating film. A method of manufacturing a semiconductor device including a step of forming the semiconductor device.

【0010】本発明第3においては、基板表面に形成さ
れた第1の導電層上に金属酸化物からなる絶縁膜を形成
する工程と、前記基板を反応容器内に保持し、この反応
容器内に酸素を含むガスを導入し、このガスを前記基板
の電位が浮遊電位となるように励起することにより酸素
ラジカルを生成せしめるとともに、前記基板を大気開放
せずに連続で前記酸素ラジカルを含む雰囲気中で前記絶
縁膜の熱処理を行う工程と、前記絶縁膜上に第2の導電
層を形成する工程とを含む半導体装置の製造方法を提供
する。
In the third aspect of the present invention, the step of forming an insulating film made of a metal oxide on the first conductive layer formed on the surface of the substrate, and holding the substrate in the reaction vessel, An oxygen-containing gas is introduced into the substrate, and an oxygen radical is generated by exciting the gas so that the potential of the substrate becomes a floating potential, and the atmosphere containing the oxygen radical is continuously provided without exposing the substrate to the atmosphere. Provided is a method of manufacturing a semiconductor device, which includes a step of heat-treating the insulating film therein and a step of forming a second conductive layer on the insulating film.

【0011】本発明第4においては、基板表面に形成さ
れた第1の導電層上に金属酸化物からなる絶縁膜を形成
する工程と、前記基板を反応容器内に保持し、この容器
の外部で酸素を含むガスを励起することにより酸素ラジ
カルを生成せしめ、この酸素ラジカルを前記反応容器内
に導入するとともに、前記基板を大気開放せずに連続で
前記酸素ラジカルを含む雰囲気中で前記絶縁膜の熱処理
を行う工程と、前記絶縁膜上に第2の導電層を形成する
工程とを含む半導体装置の製造方法を提供する。
In the fourth aspect of the present invention, the step of forming an insulating film made of a metal oxide on the first conductive layer formed on the surface of the substrate, and holding the substrate in a reaction container, To generate oxygen radicals by exciting a gas containing oxygen, and to introduce the oxygen radicals into the reaction vessel, the insulating film in an atmosphere containing the oxygen radicals continuously without exposing the substrate to the atmosphere. And a step of forming a second conductive layer on the insulating film, the method of manufacturing a semiconductor device.

【0012】本発明第5においては、基板が収容されそ
の上に金属酸化物膜が成膜される第1の反応容器と、前
記基板が収容される第2の反応容器と、この反応容器内
の内壁又は内部に設けられた第1及び第2の電極の少な
くとも一方に高周波電力を印加する高周波電力印加手段
と、基板が保持され、浮遊電位となるように前記第2の
反応容器内に設置された基板保持部と、前記第2の反応
容器内の前記基板を加熱する基板加熱手段と、前記第2
の反応容器内に酸素を含むガスを導入するガス導入手段
と、前記第1及び第2の反応容器内をそれぞれ減圧に排
気する少なくとも一つの排気手段と、前記第1及び第2
の反応容器に対して接続され、かつ真空に排気され、こ
れらの反応容器の間で前記基板を搬送する真空搬送手段
とを備えた半導体装置の製造装置を提供する。
In the fifth aspect of the present invention, a first reaction container in which a substrate is housed and a metal oxide film is formed thereon, a second reaction container in which the substrate is housed, and the inside of this reaction container And a high-frequency power applying means for applying high-frequency power to at least one of the first and second electrodes provided on the inner wall or inside of the container, and the substrate is held in the second reaction container so as to have a floating potential. And a substrate heating means for heating the substrate in the second reaction container;
Gas introducing means for introducing a gas containing oxygen into the reaction container, at least one exhausting means for exhausting the inside of the first and second reaction containers to a reduced pressure, and the first and second
And a vacuum transfer means for transferring the substrate between the reaction vessels, the apparatus being connected to the reaction vessels and being evacuated to a vacuum.

【0013】本発明第6においては、基板が収容されそ
の上に金属酸化物膜が成膜される第1の反応容器と、前
記基板が収容される第2の反応容器と、この反応容器の
外部に、この反応容器と接続して設けられる放電部と、
この放電部を介して前記第2の反応容器に酸素を含むガ
スを供給するするガス供給手段と、前記第2の反応容器
内の前記基板を加熱する基板加熱手段と、前記第1及び
第2の反応容器内をそれぞれ減圧に排気する少なくとも
一つの排気手段と、前記第1及び第2の反応容器に対し
て接続され、かつ真空に排気され、これらの反応容器の
間で前記基板を搬送する真空搬送手段とを備えた半導体
装置の製造装置を提供する。
In the sixth aspect of the present invention, a first reaction container in which a substrate is housed and a metal oxide film is formed thereon, a second reaction container in which the substrate is housed, and this reaction container Externally, a discharge unit provided by connecting to this reaction container,
Gas supply means for supplying a gas containing oxygen to the second reaction vessel via the discharge part, substrate heating means for heating the substrate in the second reaction vessel, and the first and second Connected to the first and second reaction vessels and evacuated to a vacuum, and transporting the substrate between these reaction vessels. Provided is a semiconductor device manufacturing apparatus including a vacuum transfer unit.

【0014】[0014]

【作用】金属酸化物からなる高誘電率絶縁膜を形成した
後で一度大気にさらすと水分等が高誘電率絶縁膜表面に
吸着したり高誘電率絶縁膜中に入り込むことになるが、
これらはその後高温の熱処理を行っても十分抜けきれず
逆に膜中の構造欠陥(特に後述する酸素欠損部)に取り
込まれることになる。水分等が金属酸化膜中に入るとト
ラップの原因となる等膜質の劣化につながる。また、金
属酸化膜は膜中に酸素欠損を生じ易くこれが電子のドナ
ーとなることによりリーク電流を増す原因となる。この
ような酸素欠損は酸素雰囲気中で熱処理をしても十分補
うことが難しく、従ってリーク電流を十分小さくするこ
とができない。
[Function] When a high dielectric constant insulating film made of a metal oxide is formed and then exposed to the air, moisture or the like may be adsorbed on the surface of the high dielectric constant insulating film or enter the high dielectric constant insulating film.
Even if a high-temperature heat treatment is performed thereafter, these cannot be fully removed and, conversely, they are taken in by structural defects in the film (in particular, oxygen deficiency portions described later). If water or the like enters the metal oxide film, it leads to the deterioration of the film quality that causes traps. Further, the metal oxide film easily causes oxygen deficiency in the film, which serves as an electron donor, which causes a leak current to increase. Such oxygen deficiency is difficult to be sufficiently compensated by heat treatment in an oxygen atmosphere, and therefore the leak current cannot be sufficiently reduced.

【0015】本発明によれば、金属酸化物からなる高誘
電率絶縁膜を形成した後に、真空を破らず、減圧酸素雰
囲気中で熱処理を行うと、界面における酸化膜(例えば
SiO2 膜)の形成を抑制して酸素欠損を十分補うこと
ができるため、キャパシタ容量を大きくかつリーク電流
を十分小さくすることができる。この酸素欠損消失の効
果は、酸化力の強い酸素ラジカル雰囲気で熱処理を行う
ことによって更にその効果を高めることが可能になる。
このような酸素ラジカルの形成は、減圧酸素中での放電
によって比較的容易になされる。酸素の放電はウエハの
熱処理室で同時に行っても良いが、外部での放電により
形成された酸素ラジカルを熱処理室へ導入するとさらに
良い。即ち、酸素ラジカルは寿命が比較的長く、また高
誘電率絶縁膜の表面から、徐々に内部に拡散して膜内に
導入される。従って、上記した界面において酸化膜は生
じにくく、酸素欠損を補うとともに誘電率の低下をさら
に効果的に防止することができる。
According to the present invention, when a high dielectric constant insulating film made of a metal oxide is formed and then heat-treated in a reduced pressure oxygen atmosphere without breaking the vacuum, an oxide film (eg, SiO 2 film) at the interface is formed. Since the formation can be suppressed and oxygen vacancies can be sufficiently compensated, the capacitance of the capacitor can be increased and the leakage current can be sufficiently reduced. This effect of eliminating oxygen vacancies can be further enhanced by performing heat treatment in an oxygen radical atmosphere having strong oxidizing power.
The formation of such oxygen radicals is relatively easy by discharge in reduced pressure oxygen. The discharge of oxygen may be performed in the heat treatment chamber of the wafer at the same time, but it is more preferable to introduce oxygen radicals formed by external discharge into the heat treatment chamber. That is, the oxygen radicals have a relatively long life and are gradually diffused from the surface of the high dielectric constant insulating film to the inside and introduced into the film. Therefore, an oxide film is unlikely to be formed at the above-described interface, oxygen vacancies can be compensated for, and a decrease in dielectric constant can be prevented more effectively.

【0016】[0016]

【実施例】以下、本発明の実施例について詳細に説明す
る。図1は、本発明の第1乃至第4の実施例を説明する
ための工程断面図である。まず第1の実施例では、シリ
コン基板1上に素子分離領域2を形成した後、トランジ
スタのゲート電極(ワード線)3、ソース・ドレイン領
域となるn- 領域4を形成し、さらにビット線6を形成
する。その後、層間絶縁膜5を形成し、ソース・ドレイ
ン領域上にコンタクト孔を開孔し、下部電極となるn+
型多結晶シリコン7を形成する。n+ 型多結晶シリコン
7はシリンダ型に形成し表面積を増している。その後表
面の自然酸化膜を除去した後、アンモニア雰囲気中で80
0 ℃の熱処理を施し表面に0.5 〜1.0 nmのシリコン窒化
膜8を形成する(図1(a))。
EXAMPLES Examples of the present invention will be described in detail below. 1A to 1D are process sectional views for explaining the first to fourth embodiments of the present invention. First, in the first embodiment, after forming the element isolation region 2 on the silicon substrate 1, the gate electrode (word line) 3 of the transistor, the n region 4 serving as the source / drain region, and the bit line 6 are formed. To form. After that, an interlayer insulating film 5 is formed, contact holes are opened on the source / drain regions, and n + which becomes a lower electrode is formed.
The type polycrystalline silicon 7 is formed. The n + type polycrystalline silicon 7 is formed in a cylinder type to increase the surface area. Then, remove the native oxide film on the surface, and
A heat treatment is performed at 0 ° C. to form a 0.5 to 1.0 nm silicon nitride film 8 on the surface (FIG. 1A).

【0017】次に、本実施例において高誘電率絶縁膜を
成膜した後、減圧酸素雰囲気下で熱処理を行う。図2は
この成膜、熱処理の用いた半導体装置の製造装置の概略
図である。
Next, after forming the high dielectric constant insulating film in this embodiment, heat treatment is performed in a reduced pressure oxygen atmosphere. FIG. 2 is a schematic view of a semiconductor device manufacturing apparatus using the film formation and heat treatment.

【0018】この図に示すように、高誘電率絶縁膜を形
成するための反応室11A内には、ウエハ1´を加熱す
るためのヒーター11aを備えた試料台11bが配置さ
れ、さらにこの反応室11Aにはと原料ガスを導入する
ためのガス導入ノズル15さらに排気系のターボ分子ポ
ンプ13を介してドライポンプ14が接続されており、
減圧酸素雰囲気下で熱処理を行うための熱処理室11B
内にはウエハを加熱するためのヒーター11cを備えた
加熱体が配置され、さらにこの反応室11Bには酸素を
含むガスを導入するためのガス導入ノズル15、さらに
排気系のターボ分子ポンプ13を介してドライポンプ1
4が接続されている。上記反応室11Aと熱処理室11
Bとは搬送室11Cを備えた真空搬送系で接続されてい
る。この搬送室11Cは反応室11A及び熱処理室11
Bに対してそれぞれアイソレーションバルブ16を介し
て接続されている。なお、ヒーター11cは赤外線ラン
プのようなランプヒーターでもウエハに直接接触するホ
ットプレートタイプのヒーターでも良い。ランプヒータ
ーを用いる場合は、上記ヒーター11cを備えた加熱体
とウエハの間にサセプター12を設置し、このサセプタ
ー12の上にウエハ1´を載せる。また、本発明では反
応室と熱処理室をそれぞれ別に設けたが、これは高誘電
率絶縁膜を形成する温度と減圧酸素雰囲気下で熱処理す
る温度が異なるためである。
As shown in this figure, a sample stage 11b provided with a heater 11a for heating the wafer 1'is arranged in the reaction chamber 11A for forming the high dielectric constant insulating film, and further this reaction is performed. A dry pump 14 is connected to the chamber 11A, a gas introduction nozzle 15 for introducing a raw material gas, and a turbo molecular pump 13 of an exhaust system,
Heat treatment chamber 11B for performing heat treatment in a reduced pressure oxygen atmosphere
A heating body provided with a heater 11c for heating the wafer is disposed therein, and a gas introduction nozzle 15 for introducing a gas containing oxygen, and a turbo molecular pump 13 for an exhaust system are further provided in the reaction chamber 11B. Through dry pump 1
4 is connected. The reaction chamber 11A and the heat treatment chamber 11
B is connected to B by a vacuum transfer system including a transfer chamber 11C. This transfer chamber 11C is a reaction chamber 11A and a heat treatment chamber 11
B is connected to each B via an isolation valve 16. The heater 11c may be a lamp heater such as an infrared lamp or a hot plate type heater that directly contacts the wafer. When a lamp heater is used, the susceptor 12 is installed between the heating body having the heater 11c and the wafer, and the wafer 1 ′ is placed on the susceptor 12. Further, in the present invention, the reaction chamber and the heat treatment chamber are provided separately, but this is because the temperature for forming the high dielectric constant insulating film and the temperature for heat treatment under a reduced pressure oxygen atmosphere are different.

【0019】上記装置において、ウエハ1´はロード・
アンロード室11Dに搬入され、このロード・アンロー
ド室11Dは真空引きされる。この後、搬送室11cに
設けられたアームにより、ウエハ1´は反応室11Aま
たは熱処理室11Bに搬送され、成膜・処理され、再び
ロード・アンロード室11Dに戻された後、大気に出さ
れる。なお、ロード室とアンロード室を別々に設けるこ
ともできる。
In the above apparatus, the wafer 1'is loaded and
It is carried into the unload chamber 11D, and the load / unload chamber 11D is evacuated. After that, the wafer 1'is transferred to the reaction chamber 11A or the heat treatment chamber 11B by the arm provided in the transfer chamber 11c, and is subjected to film formation / treatment, returned to the load / unload chamber 11D again, and then exposed to the atmosphere. Be done. The loading chamber and the unloading chamber may be provided separately.

【0020】上記した装置を用いて、ウエハ温度300 〜
500 ℃でTa(OC255 及びO2 を導入し、0.1
〜0.7Torr でTa25 膜9を16nm形成する。その後、
大気にさらすことなく0.1 〜3.0Torr の酸素中400 〜80
0 ℃で熱処理を行う(図1(b))。
Using the above-mentioned apparatus, the wafer temperature of 300-
Introduce Ta (OC 2 H 5 ) 5 and O 2 at 500 ° C.
A Ta 2 O 5 film 9 of 16 nm is formed at about 0.7 Torr. afterwards,
400-80 in 0.1-3.0 Torr oxygen without exposure to air
Heat treatment is performed at 0 ° C. (FIG. 1B).

【0021】その後、TaCl4 及びNH3 を用いたC
VDにより、上部電極として、例えばTiN薄膜10を
形成する(図1(c))。その後、通常の写真食刻法に
よりレジストパターンをマスクとして、電極の加工を行
う。
Thereafter, C using TaCl 4 and NH 3 was used.
For example, a TiN thin film 10 is formed as an upper electrode by VD (FIG. 1C). After that, the electrodes are processed by a usual photolithography method using the resist pattern as a mask.

【0022】上記第1の実施例は、Ta25 膜を形成
した後に、大気解放せずに連続で減圧酸素雰囲気中で熱
処理を行っている。減圧酸素雰囲気中で熱処理をするこ
とにより、下地シリコン表面に誘電率の小さいSiO2
膜は形成されず、非結晶状態にあるTa25 膜を結晶
化させ、高誘電率絶縁膜を形成することができる。ま
た、大気解放していないため、Ta25 膜形成時に欠
損した酸素を補うことができ、酸素欠損による前記膜の
リーク電流を十分低く押さえることができる。
In the first embodiment, after the Ta 2 O 5 film is formed, the heat treatment is continuously performed in a reduced pressure oxygen atmosphere without exposing to the atmosphere. By heat treatment in a reduced pressure oxygen atmosphere, SiO 2 having a small dielectric constant is formed on the surface of the underlying silicon.
No film is formed, and the Ta 2 O 5 film in the amorphous state can be crystallized to form a high dielectric constant insulating film. Further, since it is not exposed to the atmosphere, oxygen that has been lost during the formation of the Ta 2 O 5 film can be supplemented, and the leak current of the film due to oxygen deficiency can be suppressed sufficiently low.

【0023】次に第2の実施例について説明する。この
実施例においても、図1を用いて説明を行うとする。第
2の実施例が第1の実施例と異なる点は、Ta25
を形成した後、大気にさらすことなく0.1 〜3.0Torr の
酸素中300 〜500 ℃で、1 〜10分間、50〜300 WのRF
放電による酸素プラズマ雰囲気中で熱処理する点であ
る。その後のキャパシタ電極であるTiN薄膜の形成及
びその加工は第1の実施例と同様に行う。
Next, a second embodiment will be described. Also in this embodiment, description will be made with reference to FIG. The second embodiment is different from the first embodiment in that after the Ta 2 O 5 film is formed, it is exposed to the atmosphere of 0.1 to 3.0 Torr in oxygen at 300 to 500 ° C. for 1 to 10 minutes without being exposed to the atmosphere. ~ 300 W RF
This is the point of heat treatment in an oxygen plasma atmosphere by electric discharge. The subsequent formation and processing of the TiN thin film that is the capacitor electrode is performed in the same manner as in the first embodiment.

【0024】図3は、本実施例を行うための半導体装置
の製造装置の概略図である。本製造装置が前記製造装置
と異なる点は熱処理室に放電用電極17を備えている点
である。電極17にはRF発生器18よりRF電力が印
加される。放電用電極は平行平板型でも良い(図3
(a)の17a、17a´)が、チャンバー壁全体を電
極としたアンテナ電極型とするとなお良く(図3(b)
17b、17b´)、絶縁膜の下地材料の酸化をさらに
抑え効率よく、その酸化欠損を補うことができる。
FIG. 3 is a schematic view of a semiconductor device manufacturing apparatus for carrying out this embodiment. This manufacturing apparatus is different from the above manufacturing apparatus in that a discharge electrode 17 is provided in the heat treatment chamber. RF power is applied to the electrode 17 from an RF generator 18. The discharge electrode may be a parallel plate type (see FIG. 3).
It is even better if (a) 17a, 17a 'is an antenna electrode type in which the entire chamber wall is used as an electrode (FIG. 3 (b)).
17b, 17b '), the oxidation of the underlying material of the insulating film can be further suppressed, and the oxidation defect can be efficiently compensated.

【0025】その主な理由は、アンテナ電極型であれ
ば、基板に対し直接RF電力が印加されず、その電位が
浮遊電位となるので、発生した酸素プラズマ中のイオン
が高誘電率絶縁膜に対して引き込まれにくくなり、主と
して酸素ラジカルの形で酸素がこの絶縁膜中に導入され
るからだと思われる。即ち、酸素プラズマ中のイオン
は、高誘電率絶縁膜に対して、大きなエネルギーをもっ
て注入されるので、この絶縁膜の膜厚が薄い場合は、そ
の下地のシリコン等の表面に酸素イオンが多量に到達す
るようになり、この表面での酸化が進みやすい。これに
対して、酸素ラジカルは絶縁膜も表面から徐々に内部に
拡散して膜内に導入されるので、主として酸素ラジカル
により絶縁膜の酸素欠損を補うようにすれば、上記した
下地の酸化をより効果的に抑えつつ欠損酸素の補充を行
うことができる。
The main reason for this is that if the antenna electrode type is used, the RF power is not directly applied to the substrate and the potential becomes a floating potential, so that the ions in the generated oxygen plasma form a high dielectric constant insulating film. It is thought that this is because the oxygen is introduced into the insulating film mainly in the form of oxygen radicals. That is, since the ions in the oxygen plasma are injected into the high-dielectric-constant insulating film with a large amount of energy, when the insulating film is thin, a large amount of oxygen ions are formed on the surface of the underlying silicon or the like. It reaches the surface, and oxidation on this surface easily proceeds. On the other hand, the oxygen radicals are gradually diffused from the surface to the inside of the insulating film and are introduced into the film. It is possible to supplement defective oxygen while suppressing it more effectively.

【0026】また上記実施例において、上部電極TiN
薄膜10の形成後に、1.0 ×10-5Torr以下の真空また
は、常圧以下の窒素またはアルゴン中500 〜800 ℃で熱
処理を行うことにより、TiN薄膜10により過剰の酸
素の混入を防止することができ、より良質な高誘電率絶
縁膜を形成することができる。
In the above embodiment, the upper electrode TiN is used.
After the thin film 10 is formed, the TiN thin film 10 can prevent excess oxygen from being mixed by performing heat treatment at 500 to 800 ° C. in nitrogen or argon at a vacuum of 1.0 × 10 −5 Torr or less or atmospheric pressure or less. As a result, a high-quality high-dielectric-constant insulating film can be formed.

【0027】次に第3の実施例について説明する。この
実施例においても、図1を用いて説明を行うとする。第
3の実施例が第1の実施例と異なる点は、Ta25
を形成した後、大気にさらすことなく、1 〜10分間、50
〜700 Wのマイクロ波放電による酸素プラズマを、0.1
〜3.0Torr の酸素中500 〜850 ℃に加熱したウエハ上に
導入する点である。その後のTiN薄膜の形成及びキャ
パシタ・電極の加工は第1の実施例と同様に行う。
Next, a third embodiment will be described. Also in this embodiment, description will be made with reference to FIG. The third embodiment is different from the first embodiment in that after the Ta 2 O 5 film is formed, it is exposed to the atmosphere for 1 to 10 minutes without being exposed to air.
Oxygen plasma by microwave discharge of ~ 700 W
This is the point of introduction on a wafer heated to 500 to 850 ° C. in oxygen of to 3.0 Torr. Subsequent formation of the TiN thin film and processing of the capacitors and electrodes are performed in the same manner as in the first embodiment.

【0028】図4は、本実施例を行うための半導体装置
の製造装置の概略図である。本製造装置が図2及び図3
に示した製造装置と異なる点は、熱処理室に酸素プラズ
マを独立に供給するための放電部が熱処理室11B−3
に接続されている点である。図4(a)はダウンフロー
型の装置である。マイクロ波はマイクロ波発生器21よ
り、導波管20を通り放電部19へ導入され、酸素プラ
ズマを発生する。この酸素プラズマを輸送管22を通し
て熱処理室11B−3に導入するものである。図4
(b)はECR(Electron Cyclotron Resonance )
型の装置である。マイクロ波発生器21で3発生したマ
イクロ波は導波管20により放電部19へ導入され、励
磁コイル23により、酸素プラズマが発生する。
FIG. 4 is a schematic view of a semiconductor device manufacturing apparatus for carrying out this embodiment. This manufacturing apparatus is shown in FIG. 2 and FIG.
The difference from the manufacturing apparatus shown in FIG. 3 is that the discharge part for independently supplying oxygen plasma to the heat treatment chamber has a heat treatment chamber 11B-3.
Is connected to. FIG. 4A shows a downflow type device. The microwave is introduced from the microwave generator 21 into the discharge section 19 through the waveguide 20, and oxygen plasma is generated. This oxygen plasma is introduced into the heat treatment chamber 11B-3 through the transport pipe 22. Figure 4
(B) is ECR (Electron Cyclotron Resonance)
Type device. The microwaves generated by the microwave generator 21 are introduced into the discharge unit 19 by the waveguide 20, and the excitation coil 23 generates oxygen plasma.

【0029】なお、図4及び前述した図3で、熱処理室
に酸素プラズマを発生させる電極等を備えている装置に
ついて説明したが、放電用電極は、反応室に備えられて
いても良く、また、反応室に酸素プラズマを供給するた
めの放電部が接続されていても良い。
4 and the above-described FIG. 3, the apparatus provided with an electrode for generating oxygen plasma in the heat treatment chamber has been described, but the discharge electrode may be provided in the reaction chamber. A discharge unit for supplying oxygen plasma to the reaction chamber may be connected.

【0030】上記第2及び第3の実施例は、Ta25
膜を形成した後に、大気解放せずに連続で酸素ラジカル
を含む酸素雰囲気中で熱処理を行っている。酸素ラジカ
ルは酸化力が強いため、酸素ラジカルを含む酸素雰囲気
中で熱処理をすることにより、Ta25 膜形成時に欠
損した酸素を前記第1の実施例に比べても大幅に補うこ
とができ、酸素欠損による前記膜のリーク電流をかなり
低く抑えることができる。また上記したように、酸素ラ
ジカルが支配的となる条件下では、絶縁膜の下地材料の
酸化もほとんどない。
The second and third embodiments are based on Ta 2 O 5
After forming the film, heat treatment is continuously performed in an oxygen atmosphere containing oxygen radicals without exposing to the atmosphere. Since oxygen radicals have a strong oxidizing power, heat treatment in an oxygen atmosphere containing oxygen radicals makes it possible to largely supplement the oxygen deficient at the time of forming the Ta 2 O 5 film, as compared with the first embodiment. The leak current of the film due to oxygen deficiency can be suppressed to a considerably low level. Further, as described above, under the condition where oxygen radicals dominate, the base material of the insulating film is hardly oxidized.

【0031】次に第4の実施例について説明する。この
実施例においても、図1を用いて説明を行うとする。ま
た本実施例では、図3に示す装置を用いた。第4の実施
例が第1の実施例と異なる点は、Ta25 膜9を形成
した後、大気にさらすことなく300 〜500 ℃で、1 〜10
分間、50〜300 WのRF波放電による酸素プラズマ中に
さらした後、大気にさらすことなく0.1 〜3.0Torr の酸
素中500 〜800 ℃で熱処理を行う点である。その後のTi
N 薄膜の形成及びキャパシタ・電極の加工は第1の実施
例と同様に行う。
Next, a fourth embodiment will be described. Also in this embodiment, description will be made with reference to FIG. In this example, the device shown in FIG. 3 was used. The fourth embodiment is different from the first embodiment in that after the Ta 2 O 5 film 9 is formed, it is exposed to the atmosphere at 300 to 500 ° C. for 1 to 10 ° C.
After exposing to oxygen plasma by RF wave discharge of 50 to 300 W for 1 minute, heat treatment is performed at 500 to 800 ° C. in oxygen of 0.1 to 3.0 Torr without being exposed to the atmosphere. Subsequent Ti
The N thin film is formed and the capacitors and electrodes are processed in the same manner as in the first embodiment.

【0032】上記第4の実施例は、Ta25 膜を形成
した後に、大気解放せずに連続で酸素ラジカルを含む酸
素雰囲気中で熱処理を行い、さらに、大気解放せずに連
続で減圧酸素雰囲気中で熱処理を行っている。本実施例
は、前記温度範囲内で、熱処理を2回に分けて行うこと
により、前記第1乃至第3の実施例と同等またはそれ以
上に、前記膜の誘電率の低下を防止するとともにこのリ
ーク電流を低く抑えることができる。
In the fourth embodiment, after the Ta 2 O 5 film is formed, heat treatment is continuously performed in an oxygen atmosphere containing oxygen radicals without being exposed to the atmosphere, and the pressure is continuously reduced without being exposed to the atmosphere. Heat treatment is performed in an oxygen atmosphere. In the present embodiment, the heat treatment is performed twice in the temperature range to prevent the dielectric constant of the film from lowering to the same extent as in the first to third embodiments or more. The leak current can be kept low.

【0033】なお、図3(b)及び図4(a)、(b)
の装置を用いて、高誘電率絶縁膜を形成した場合のリー
ク電流と、従来の方法で形成した場合のリーク電流とを
比較すると図6のようになり、本発明の方がリーク電流
が大幅に小さくなる。また、本発明で形成したTa2
5 の比誘電率は35〜36となり従来の方法で形成した
Ta25 の比誘電率20〜21に比べ高い誘電率が得
られることがわかった。
3 (b) and 4 (a), (b)
When the leakage current in the case of forming the high dielectric constant insulating film and the leakage current in the case of forming it by the conventional method are compared by using the device of FIG. 6, it becomes as shown in FIG. 6, and the leakage current of the present invention is significantly larger. Becomes smaller. In addition, Ta 2 O formed by the present invention
It was found that the relative permittivity of No. 5 was 35 to 36, and a higher permittivity than that of Ta 2 O 5 formed by the conventional method was obtained.

【0034】以上、ストレージノード電極をシリンダ構
造とした場合のDRAMセルキャパシタに対してTa2
5 膜9をCVD法で形成する方法について述べたが、
シリンダ型のストレジノード電極を用いた場合以外にも
適用可能であり、その場合CVD法だけでなくスパッタ
法によるTa25 成膜の場合にも本発明を実施するこ
とができる。
As described above, Ta 2 is applied to the DRAM cell capacitor when the storage node electrode has a cylinder structure.
The method of forming the O 5 film 9 by the CVD method has been described.
The present invention can be applied not only to the case of using the cylinder type storage node electrode, but in that case, the present invention can be applied not only to the CVD method but also to the Ta 2 O 5 film formation by the sputtering method.

【0035】図5は、スパッタ法で高誘電率絶縁膜を形
成する場合の半導体装置の製造装置の概略図である。本
製造装置が図2乃至図4に示した製造装置と異なる点
は、反応室にスパッタ用ターゲット24を備えている点
である。この装置等において、ターゲット24としてT
aターゲットを用いて酸素とアルゴンの混合ガス中でス
パッタすることにより、Ta25 膜を形成する化成ス
パッタ法やタンタル酸化物をターゲットとして用いてT
25 膜を形成するスパッタ法を実施できる。
FIG. 5 is a schematic view of a semiconductor device manufacturing apparatus in the case of forming a high dielectric constant insulating film by a sputtering method. The present manufacturing apparatus is different from the manufacturing apparatus shown in FIGS. 2 to 4 in that a sputtering target 24 is provided in the reaction chamber. In this device or the like, the target 24 is T
a target is sputtered in a mixed gas of oxygen and argon to form a Ta 2 O 5 film, and a tantalum oxide is used as a target.
A sputtering method for forming an a 2 O 5 film can be performed.

【0036】以上の方法で高誘電率絶縁膜を形成した場
合のリーク電流と従来の方法で形成した場合のリーク電
流を比較すると図6のようになり、本発明の方がリーク
電流が大幅に小さくなる。また、本発明で形成したTa
25 の比誘電率は35〜36となり従来の方法で形成
したTa25 の比誘電率24〜25に比べ高い誘電率
が得られることがわかった。
A comparison between the leakage current when the high dielectric constant insulating film is formed by the above method and the leakage current when the conventional method is formed is as shown in FIG. 6, and the leakage current of the present invention is significantly larger. Get smaller. In addition, Ta formed by the present invention
It was found that the relative permittivity of 2 O 5 is 35 to 36, which is higher than the relative permittivity of 24 to 25 of Ta 2 O 5 formed by the conventional method.

【0037】また、金属酸化物からなる高誘電率絶縁膜
はTa25 膜だけに限らず、SrTiO3 、BaTi
3 、Pb(Zrx Ti1-x )O3 などの金属酸化物か
らなる高誘電率絶縁膜についても本発明を実施できる。
また、キャパシタ上下の電極材料もn+ 型多結晶シリコ
ン、TiNに限らず他の導電体例えばW、Mo、Pt、
Ni等を用いることができる。その他、本発明の要旨を
逸脱しない範囲で種々変形して実施することができる。
The high dielectric constant insulating film made of a metal oxide is not limited to the Ta 2 O 5 film, but may be SrTiO 3 or BaTi.
O 3, also Pb (Zr x Ti 1-x ) O 3 high dielectric constant insulating film made of a metal oxide such as the present invention may be implemented.
The electrode material above and below the capacitor is not limited to n + -type polycrystalline silicon or TiN, but other conductors such as W, Mo, Pt,
Ni or the like can be used. In addition, various modifications can be made without departing from the scope of the present invention.

【0038】[0038]

【発明の効果】以上説明してきたように、本発明の方法
によれば、金属酸化物からなる高誘電率絶縁膜を形成し
た後に真空を破らずに熱処理を行うことにより、誘電率
の高く、リーク電流の小さい高誘電率絶縁膜を形成する
ことができる。
As described above, according to the method of the present invention, a high dielectric constant can be obtained by performing heat treatment without breaking the vacuum after forming a high dielectric constant insulating film made of a metal oxide. It is possible to form a high dielectric constant insulating film having a small leak current.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1乃至第4の実施例を説明するた
めの工程断面図。
FIG. 1 is a process sectional view for explaining first to fourth embodiments of the present invention.

【図2】 本発明の第1の実施例を説明するための装置
概略図。
FIG. 2 is a schematic view of an apparatus for explaining the first embodiment of the present invention.

【図3】 本発明の第2及び第4の実施例を説明するた
めの装置概略図。
FIG. 3 is a schematic view of an apparatus for explaining second and fourth embodiments of the present invention.

【図4】 本発明の第3の実施例を説明するための装置
概略図。
FIG. 4 is a schematic view of an apparatus for explaining a third embodiment of the present invention.

【図5】 本発明の第1乃至第4の実施例にいおいて、
スパッタ法でTa25を形成する場合の実施例を説明
するための装置概略図
FIG. 5 is a diagram showing the first to fourth embodiments of the present invention.
Schematic diagram of an apparatus for explaining an embodiment when Ta 2 O 5 is formed by a sputtering method

【図6】 本発明と従来例を比較するためのリーク電流
特性図。
FIG. 6 is a leak current characteristic diagram for comparing the present invention with a conventional example.

【符号の説明】[Explanation of symbols]

1・・・シリコン基板 2・・・素子分離酸化膜 3・・・ゲート電極 4・・・拡散層 5・・・層間絶縁膜 6・・・ビット線 7・・・n+ 多結晶シリコン 8・・・シリコン窒化物 9・・・Ta25 膜 10・・TiN膜 11a、c・・ヒーター 12・・サセプター 13・・ターボ分子ポンプ 14・・ドライポンプ 15・・ガス導入ノズル 16・・アイソレーションバルブ 17・・放電用電極 18・・RF発生器 19・・放電部 20・・導波管 21・・マイクロ波発生器 22・・輸送管 23・・励磁コイル 24・・スパッタ用ターゲット1 ... Silicon substrate 2 ... Element isolation oxide film 3 ... Gate electrode 4 ... Diffusion layer 5 ... Interlayer insulating film 6 ... Bit line 7 ... N + polycrystalline silicon 8.・ ・ Silicon nitride 9 ・ ・ ・ Ta 2 O 5 film 10 ・ TiN film 11a, c ・ ・ Heater 12 ・ ・ Susceptor 13 ・ ・ Turbo molecular pump 14 ・ ・ Dry pump 15 ・ ・ Gas introduction nozzle 16 ・ ・ Iso Ration valve 17-Discharge electrode 18-RF generator 19-Discharge unit 20-Waveguide 21-Microwave generator 22-Transport tube 23-Excitation coil 24-Sputtering target

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成された第1の導電層上に金
属酸化物からなる絶縁膜を形成する工程と、前記基板を
大気開放せずに連続で減圧酸素雰囲気中で前記絶縁膜の
熱処理を行う工程と、前記絶縁膜上に第2の導電層を形
成する工程とを含むことを特徴とする半導体装置の製造
方法。
1. A step of forming an insulating film made of a metal oxide on a first conductive layer formed on a substrate, and a step of continuously forming the insulating film in a reduced pressure oxygen atmosphere without exposing the substrate to the atmosphere. A method of manufacturing a semiconductor device, comprising: a step of performing heat treatment; and a step of forming a second conductive layer on the insulating film.
【請求項2】 前記減圧酸素雰囲気中には、酸素ラジカ
ルを含むことを特徴とする請求項1記載の半導体装置の
製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the reduced-pressure oxygen atmosphere contains oxygen radicals.
【請求項3】 基板上に形成された第1の導電層上に金
属酸化物からなる絶縁膜を形成する工程と、前記基板を
大気開放せずに連続で減圧酸素雰囲気中で前記絶縁膜の
熱処理を行う工程と、大気開放せずに連続で減圧下にお
いて酸素ラジカルを含む酸素雰囲気中で前記絶縁膜の熱
処理を行う工程と、前記絶縁膜上に第2の導電層を形成
する工程とを含むことを特徴とする半導体装置の製造方
法。
3. A step of forming an insulating film made of a metal oxide on a first conductive layer formed on a substrate, and a step of continuously forming the insulating film in a reduced pressure oxygen atmosphere without exposing the substrate to the atmosphere. A step of performing a heat treatment, a step of continuously performing a heat treatment on the insulating film in an oxygen atmosphere containing oxygen radicals under reduced pressure without exposing to the atmosphere, and a step of forming a second conductive layer on the insulating film. A method of manufacturing a semiconductor device, comprising:
【請求項4】 前記減圧酸素雰囲気中で熱処理を行う時
の温度を500〜850℃に設定することを特徴とする
請求項1及び3記載の半導体装置の製造方法。
4. The method for manufacturing a semiconductor device according to claim 1, wherein the temperature at which the heat treatment is performed in the reduced pressure oxygen atmosphere is set to 500 to 850 ° C.
【請求項5】 基板表面に形成された第1の導電層上に
金属酸化物からなる絶縁膜を形成する工程と、前記基板
を反応容器内に保持し、この反応容器内に酸素を含むガ
スを導入し、このガスを前記基板の電位が浮遊電位とな
るように励起することにより酸素ラジカルを生成せしめ
るとともに、前記基板を大気開放せずに連続で前記酸素
ラジカルを含む雰囲気中で前記絶縁膜の熱処理を行う工
程と、前記絶縁膜上に第2の導電層を形成する工程とを
含むことを特徴とする半導体装置の製造方法。
5. A step of forming an insulating film made of a metal oxide on a first conductive layer formed on the surface of a substrate, and holding the substrate in a reaction vessel, and a gas containing oxygen in the reaction vessel. And generate oxygen radicals by exciting this gas so that the potential of the substrate becomes a floating potential, and the insulating film in an atmosphere containing the oxygen radicals continuously without exposing the substrate to the atmosphere. And a step of forming a second conductive layer on the insulating film, the method of manufacturing a semiconductor device.
【請求項6】 基板表面に形成された第1の導電層上に
金属酸化物からなる絶縁膜を形成する工程と、前記基板
を反応容器内に保持し、この容器の外部で酸素を含むガ
スを励起することにより酸素ラジカルを生成せしめ、こ
の酸素ラジカルを前記反応容器内に導入するとともに、
前記基板を大気開放せずに連続で前記酸素ラジカルを含
む雰囲気中で前記絶縁膜の熱処理を行う工程と、前記絶
縁膜上に第2の導電層を形成する工程とを含むことを特
徴とする半導体装置の製造方法。
6. A step of forming an insulating film made of a metal oxide on a first conductive layer formed on the surface of a substrate, and holding the substrate in a reaction vessel, and a gas containing oxygen outside the vessel. To generate oxygen radicals by exciting, and introduce the oxygen radicals into the reaction vessel,
A heat treatment of the insulating film in an atmosphere containing the oxygen radicals continuously without exposing the substrate to the atmosphere; and a step of forming a second conductive layer on the insulating film. Manufacturing method of semiconductor device.
【請求項7】 前記酸素ラジカルを含む雰囲気中で前記
絶縁膜の熱処理を行う時の温度を300〜500℃に設
定することを特徴とする請求項2、3、5及び6記載の
半導体装置の製造方法。
7. The semiconductor device according to claim 2, wherein the temperature at which the insulating film is heat-treated in the atmosphere containing the oxygen radicals is set to 300 to 500 ° C. Production method.
【請求項8】 前記絶縁膜の熱処理は、前記第2の導電
層を形成した後に行うものであることを特徴とする請求
項1、3、5及び6記載の半導体装置の製造方法。
8. The method of manufacturing a semiconductor device according to claim 1, wherein the heat treatment of the insulating film is performed after forming the second conductive layer.
【請求項9】 基板が収容されその上に金属酸化物膜が
成膜される第1の反応容器と、前記基板が収容される第
2の反応容器と、この反応容器内の内壁又は内部に設け
られた第1及び第2の電極の少なくとも一方に高周波電
力を印加する高周波電力印加手段と、基板が保持され、
浮遊電位となるように前記第2の反応容器内に設置され
た基板保持部と、前記第2の反応容器内の前記基板を加
熱する基板加熱手段と、前記第2の反応容器内に酸素を
含むガスを導入するガス導入手段と、前記第1及び第2
の反応容器内をそれぞれ減圧に排気する少なくとも一つ
の排気手段と、前記第1及び第2の反応容器に対して接
続され、かつ真空に排気され、これらの反応容器の間で
前記基板を搬送する真空搬送手段とを備えたことを特徴
とする半導体装置の製造装置。
9. A first reaction container in which a substrate is housed and a metal oxide film is formed thereon, a second reaction container in which the substrate is housed, and an inner wall or inside of the reaction container. High frequency power applying means for applying high frequency power to at least one of the provided first and second electrodes, and the substrate are held,
A substrate holding part installed in the second reaction container so as to have a floating potential, a substrate heating means for heating the substrate in the second reaction container, and oxygen in the second reaction container. Gas introduction means for introducing a gas containing the first and second
Connected to the first and second reaction vessels and evacuated to a vacuum, and transporting the substrate between these reaction vessels. An apparatus for manufacturing a semiconductor device, comprising: vacuum transfer means.
【請求項10】 基板が収容されその上に金属酸化物膜
が成膜される第1の反応容器と、前記基板が収容される
第2の反応容器と、この反応容器の外部に、この反応容
器と接続して設けられる放電部と、この放電部を介して
前記第2の反応容器に酸素を含むガスを供給するするガ
ス供給手段と、前記第2の反応容器内の前記基板を加熱
する基板加熱手段と、前記第1及び第2の反応容器内を
それぞれ減圧に排気する少なくとも一つの排気手段と、
前記第1及び第2の反応容器に対して接続され、かつ真
空に排気され、これらの反応容器の間で前記基板を搬送
する真空搬送手段とを備えたことを特徴とする半導体装
置の製造装置。
10. A first reaction container in which a substrate is housed and a metal oxide film is formed thereon, a second reaction container in which the substrate is housed, and the reaction is provided outside the reaction container. A discharge part connected to the container, gas supply means for supplying a gas containing oxygen to the second reaction container via the discharge part, and heating the substrate in the second reaction container. A substrate heating means, and at least one exhaust means for exhausting the first and second reaction vessels to a reduced pressure.
An apparatus for manufacturing a semiconductor device, comprising: vacuum transfer means connected to the first and second reaction vessels, evacuated to a vacuum, and transporting the substrate between the reaction vessels. .
JP14998293A 1993-06-22 1993-06-22 Semiconductor device manufacturing method and manufacturing apparatus Expired - Fee Related JP3230901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14998293A JP3230901B2 (en) 1993-06-22 1993-06-22 Semiconductor device manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14998293A JP3230901B2 (en) 1993-06-22 1993-06-22 Semiconductor device manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH0714986A true JPH0714986A (en) 1995-01-17
JP3230901B2 JP3230901B2 (en) 2001-11-19

Family

ID=15486885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14998293A Expired - Fee Related JP3230901B2 (en) 1993-06-22 1993-06-22 Semiconductor device manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3230901B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168212A (en) * 1997-12-02 1999-06-22 Tadahiro Omi Semiconductor device
JP2000174226A (en) * 1998-12-01 2000-06-23 Fujitsu Ltd High dielectric capacitor, semiconductor device and manufacture thereof
KR100269314B1 (en) * 1997-02-17 2000-10-16 윤종용 Method for manufacturing a capacitor of a semiconductor device using a plasma processing
JP2001036046A (en) * 1999-06-29 2001-02-09 Hyundai Electronics Ind Co Ltd Capacitor of semiconductor memory device and its manufacture
JP2001036031A (en) * 1999-06-25 2001-02-09 Hyundai Electronics Ind Co Ltd Capacitor of semiconductor memory device and its manufacture
JP2001144272A (en) * 1999-11-09 2001-05-25 Hyundai Electronics Ind Co Ltd Method for fabricating capacitor of semiconductor device
JP2001237401A (en) * 1999-12-22 2001-08-31 Hynix Semiconductor Inc Semiconductor device comprising high-dielectric capacitor dielectric and its manufacturing method
US6300212B1 (en) 1997-07-29 2001-10-09 Nec Corporation Method of fabricating semiconductor device having memory capacitor including ferroelectric layer made of composite metal oxide
JP2002033321A (en) * 2000-04-14 2002-01-31 Trikon Holdings Ltd Method of depositing dielectric
KR100321702B1 (en) * 1998-12-22 2002-03-08 박종섭 Method for forming tantalum oxide and method for fabricating capacitor by the same
US6495412B1 (en) 1998-09-11 2002-12-17 Fujitsu Limited Semiconductor device having a ferroelectric capacitor and a fabrication process thereof
JP2004523134A (en) * 2000-09-19 2004-07-29 マットソン テクノロジイ インコーポレイテッド Method of forming dielectric film
US6939760B2 (en) 2002-07-02 2005-09-06 Elpida Memory, Inc. Method for semiconductor device manufacturing to include multistage chemical vapor deposition of material oxide film
JP2007266616A (en) * 1999-01-12 2007-10-11 Lucent Technol Inc Method of manufacturing integrated circuit capacitor using tantalum pentoxide layer
JP2008510319A (en) * 2004-08-18 2008-04-03 東京エレクトロン株式会社 Method and system for improving a gate dielectric stack having a high dielectric constant layer using plasma treatment
JP2008172244A (en) * 2007-01-09 2008-07-24 Korea Electronics Telecommun Method of forming zno semiconductor film for electron device, and thin-film transistor including semiconductor film
JP2015159269A (en) * 2014-01-27 2015-09-03 スタンレー電気株式会社 p-TYPE ZnO SEMICONDUCTOR LAYER MANUFACTURING METHOD AND ZnO SEMICONDUCTOR ELEMENT MANUFACTURING METHOD

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100269314B1 (en) * 1997-02-17 2000-10-16 윤종용 Method for manufacturing a capacitor of a semiconductor device using a plasma processing
US6300212B1 (en) 1997-07-29 2001-10-09 Nec Corporation Method of fabricating semiconductor device having memory capacitor including ferroelectric layer made of composite metal oxide
JPH11168212A (en) * 1997-12-02 1999-06-22 Tadahiro Omi Semiconductor device
US6495412B1 (en) 1998-09-11 2002-12-17 Fujitsu Limited Semiconductor device having a ferroelectric capacitor and a fabrication process thereof
JP2000174226A (en) * 1998-12-01 2000-06-23 Fujitsu Ltd High dielectric capacitor, semiconductor device and manufacture thereof
KR100321702B1 (en) * 1998-12-22 2002-03-08 박종섭 Method for forming tantalum oxide and method for fabricating capacitor by the same
JP2007266616A (en) * 1999-01-12 2007-10-11 Lucent Technol Inc Method of manufacturing integrated circuit capacitor using tantalum pentoxide layer
JP2001036031A (en) * 1999-06-25 2001-02-09 Hyundai Electronics Ind Co Ltd Capacitor of semiconductor memory device and its manufacture
JP4486735B2 (en) * 1999-06-25 2010-06-23 株式会社ハイニックスセミコンダクター Manufacturing method of capacitor of semiconductor memory device
JP2001036046A (en) * 1999-06-29 2001-02-09 Hyundai Electronics Ind Co Ltd Capacitor of semiconductor memory device and its manufacture
JP2001144272A (en) * 1999-11-09 2001-05-25 Hyundai Electronics Ind Co Ltd Method for fabricating capacitor of semiconductor device
JP2001237401A (en) * 1999-12-22 2001-08-31 Hynix Semiconductor Inc Semiconductor device comprising high-dielectric capacitor dielectric and its manufacturing method
JP2002033321A (en) * 2000-04-14 2002-01-31 Trikon Holdings Ltd Method of depositing dielectric
JP2004523134A (en) * 2000-09-19 2004-07-29 マットソン テクノロジイ インコーポレイテッド Method of forming dielectric film
US6939760B2 (en) 2002-07-02 2005-09-06 Elpida Memory, Inc. Method for semiconductor device manufacturing to include multistage chemical vapor deposition of material oxide film
JP2008510319A (en) * 2004-08-18 2008-04-03 東京エレクトロン株式会社 Method and system for improving a gate dielectric stack having a high dielectric constant layer using plasma treatment
JP2008172244A (en) * 2007-01-09 2008-07-24 Korea Electronics Telecommun Method of forming zno semiconductor film for electron device, and thin-film transistor including semiconductor film
JP4616359B2 (en) * 2007-01-09 2011-01-19 韓國電子通信研究院 Method for forming ZnO semiconductor film for electronic device and thin film transistor including the semiconductor film
JP2015159269A (en) * 2014-01-27 2015-09-03 スタンレー電気株式会社 p-TYPE ZnO SEMICONDUCTOR LAYER MANUFACTURING METHOD AND ZnO SEMICONDUCTOR ELEMENT MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP3230901B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
US6897149B2 (en) Method of producing electronic device material
US6426308B1 (en) Methods for forming films having high dielectric constants
JP4429300B2 (en) Manufacturing method of electronic device material
JPH0714986A (en) Method and apparatus for manufacturing semiconductor device
US5629043A (en) Silicon nitride film formation method
KR20010027867A (en) Thin film formation apparatus and method for forming capacitor of semiconductor device using the same
JP2002517914A (en) Method and apparatus for forming a dielectric layer
JPH1154721A (en) Manufacture of semiconductor device and manufacturing equipment
JP4522916B2 (en) Plasma nitriding method, control program, computer storage medium, and plasma processing apparatus
US7622402B2 (en) Method for forming underlying insulation film
JP2000260767A (en) Manufacture of semiconductor device
US5677226A (en) Method of making integrated circuits
US6551896B2 (en) Capacitor for analog circuit, and manufacturing method thereof
JP4083000B2 (en) Insulating film formation method
JP2002353214A (en) Method for manufacturing semiconductor device
US6329237B1 (en) Method of manufacturing a capacitor in a semiconductor device using a high dielectric tantalum oxide or barium strontium titanate material that is treated in an ozone plasma
JP3450463B2 (en) Method for manufacturing semiconductor device
JP2855978B2 (en) Method for manufacturing silicon nitride film
JP2001053255A (en) Manufacture of capacitor of semiconductor memory element
JP4655321B2 (en) Heat treatment method
KR100219518B1 (en) Method of fabricating a capacitor of semiconductor device
JP2000200883A (en) Manufacture of memory cell capacitor and substrate processing equipment
JPH07240410A (en) Formation of silicon nitride film
KR20020001253A (en) Method of oxidation for polycide in a flash EEPROM
JPH06124893A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees