JPH07146039A - Refrigerating cycle system - Google Patents

Refrigerating cycle system

Info

Publication number
JPH07146039A
JPH07146039A JP29516893A JP29516893A JPH07146039A JP H07146039 A JPH07146039 A JP H07146039A JP 29516893 A JP29516893 A JP 29516893A JP 29516893 A JP29516893 A JP 29516893A JP H07146039 A JPH07146039 A JP H07146039A
Authority
JP
Japan
Prior art keywords
accumulator
pressure container
evaporator
type compressor
container type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29516893A
Other languages
Japanese (ja)
Inventor
Yoshito Kimura
義人 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP29516893A priority Critical patent/JPH07146039A/en
Publication of JPH07146039A publication Critical patent/JPH07146039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent a liquid return to a compressor from an evaporator and liquid compression at the time of defrosting and moreover to prevent shortage of a lubricating oil in the compressor due to the stay of the lubricating oil in an accumulator after the start of the compressor at the time of an ordinary operation of a refrigerator. CONSTITUTION:In a refrigerating cycle system 9 wherein a high-pressure container type compressor 1, a condenser 2, a pressure reducing means 3 and an evaporator 4 are connected sequentially circularly, an accumulator 5 and a first piping one end of which is connected to the upper part of the accumulator and the other onto the evaporator 4 side are provided. Moreover, a second piping 12 one side of which is inserted into the accumulator 5 to the inner upper part from the lower part thereof and the other connected onto the high- pressure container type compressor 1 side, and a capillary tube 14 one side of which is connected to the upper part of the side wall 13 of the second piping 13 positioned inside the accumulator 5 and the other positioned at the inner lower part of the accumulator 5, are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、除霜ヒータにて蒸発器
の除霜を行う冷蔵庫等の冷凍サイクルシステムに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating cycle system such as a refrigerator for defrosting an evaporator with a defrost heater.

【0002】[0002]

【従来の技術】従来の冷凍サイクルシステムは、特開平
3−194376号公報にて知られるような構成であ
る。以下、図2により説明を行う。
2. Description of the Related Art A conventional refrigeration cycle system has a structure as disclosed in Japanese Patent Laid-Open No. 3-194376. Hereinafter, description will be given with reference to FIG.

【0003】1は、冷媒ガスを圧縮する高圧容器型圧縮
機であり、高圧容器型圧縮機1内には高圧容器型圧縮機
1の摺動部の潤滑を行う潤滑油が貯留されている。2は
高圧容器型圧縮機1から吐出された高圧冷媒ガスを凝縮
させる凝縮器、3は減圧手段であり、4は蒸発器であ
り、5はアキュームレータである。また、アキュームレ
ータ5の上部に蒸発器4出口側を接続し、下部に高圧容
器型圧縮機1吸入側を接続し、その吸入配管6はアキュ
ームレータ5内に挿入され上方に延びており、その管壁
に油戻し孔7が設けられている。また、蒸発器4の近傍
には除霜用ヒータ8が設けられている。
Reference numeral 1 is a high pressure container type compressor for compressing a refrigerant gas, and lubricating oil for lubricating the sliding portion of the high pressure container type compressor 1 is stored in the high pressure container type compressor 1. Reference numeral 2 is a condenser for condensing the high-pressure refrigerant gas discharged from the high-pressure container type compressor 1, 3 is a pressure reducing means, 4 is an evaporator, and 5 is an accumulator. Further, the upper side of the accumulator 5 is connected to the outlet side of the evaporator 4, and the lower side thereof is connected to the suction side of the high-pressure container type compressor 1, and its suction pipe 6 is inserted into the accumulator 5 and extends upward. Is provided with an oil return hole 7. Further, a heater 8 for defrosting is provided near the evaporator 4.

【0004】次に、上記構成の動作について説明する。
高圧容器型圧縮機1を運転すると高温高圧の冷媒が吐出
され、凝縮器2で、外気と熱交換して凝縮液化し、キャ
ピラリチューブ3に流入する。減圧手段3、たとえばキ
ャピラリーチューブで冷媒は減圧され、蒸発器4で蒸発
し、アキュームレータ5を経由して、高圧容器型圧縮機
1へ吸い込まれる。
Next, the operation of the above configuration will be described.
When the high-pressure container compressor 1 is operated, a high-temperature and high-pressure refrigerant is discharged, and the condenser 2 exchanges heat with the outside air to be condensed and liquefied, and then flows into the capillary tube 3. The refrigerant is decompressed by the decompression means 3, for example, a capillary tube, evaporated by the evaporator 4, and sucked into the high-pressure container compressor 1 via the accumulator 5.

【0005】また、このとき幾分かの潤滑油も冷媒と一
緒に冷凍サイクル中を循環するが、アキュームレータ5
の上部に蒸発器4出口側を、下部に高圧容器型圧縮機1
吸入側を接続してあり、その吸入配管6はアキュームレ
ータ5内に挿入され上方に延びており、その管壁に油戻
し孔7が設けられているので潤滑油がアキュームレータ
5内に滞留することがない。除霜時は高圧容器型圧縮機
1を停止し、除霜用ヒータ8に通電して蒸発機4を加熱
する。これにより霜が融解し除霜を行う。除霜終了後、
再び高圧容器型圧縮機1を起動し運転を行う。
At this time, some lubricating oil circulates in the refrigeration cycle together with the refrigerant, but the accumulator 5
The outlet side of the evaporator 4 is at the upper part of the compressor and the high pressure container type compressor 1 is at the lower part.
The suction side is connected, and the suction pipe 6 is inserted into the accumulator 5 and extends upward. Since the oil return hole 7 is provided in the pipe wall, the lubricating oil may stay in the accumulator 5. Absent. During defrosting, the high pressure container type compressor 1 is stopped and the defrosting heater 8 is energized to heat the evaporator 4. This melts the frost and defrosts it. After defrosting,
The high-pressure container type compressor 1 is activated again to operate.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、除霜時、除霜用ヒータ8の通電によって
蒸発器4内の冷媒が加熱される。これによって蒸発器4
内は昇圧し、液冷媒が蒸発器4より流出し、アキューム
レータ5内に放出されるが、油戻し孔7を通じて高圧容
器型圧縮機1内に流れ込む。この結果、高圧容器型圧縮
機1内の摺動部材は液冷媒により潤滑油が洗い流され、
除霜終了後に高圧容器型圧縮機1は潤滑油が切れた状態
で起動するため摺動部材の摩耗が促進される問題があっ
た。
However, in the above-mentioned conventional configuration, the refrigerant in the evaporator 4 is heated by the energization of the defrosting heater 8 during defrosting. This makes the evaporator 4
The inside pressure is increased, and the liquid refrigerant flows out of the evaporator 4 and is discharged into the accumulator 5, but flows into the high pressure container type compressor 1 through the oil return hole 7. As a result, the lubricating oil is washed off by the liquid refrigerant on the sliding member in the high-pressure container type compressor 1,
After the defrosting was completed, the high-pressure container compressor 1 was started in a state where the lubricating oil was depleted, and thus there was a problem that the abrasion of the sliding member was promoted.

【0007】また、冷蔵庫通常運転時の高圧容器型圧縮
機1の起動時、蒸発器4内の液冷媒が短時間でアキュー
ムレータ5内に流れ込むが、貯留されずに油戻し孔7よ
り蒸発すること無く高圧容器型圧縮機1へ吸い込まれ、
高圧容器型圧縮機1が液圧縮を行う恐れがあった。
Further, when the high-pressure container type compressor 1 is started during normal operation of the refrigerator, the liquid refrigerant in the evaporator 4 flows into the accumulator 5 in a short time, but it is not stored and evaporated from the oil return hole 7. Without being sucked into the high pressure container type compressor 1,
There was a risk that the high-pressure container compressor 1 would perform liquid compression.

【0008】また、蒸発器4より流出する液冷媒を十分
貯留するように油戻し孔7を吸入配管6の上方に設けた
ものでは、高圧容器型圧縮機1の運転停止時に高圧容器
型圧縮機1から逆流してくる潤滑油がアキュームレータ
5内に滞留し、高圧容器型圧縮機1が再起動後もしばら
くは高圧容器型圧縮機1内へと戻らない。これによって
高圧容器型圧縮機1内の潤滑油が減少し、高圧容器型圧
縮機1の摺動部材に損傷を与えることとなり、いずれも
高圧容器型圧縮機1の信頼性の上で大きな課題であっ
た。
Further, in the case where the oil return hole 7 is provided above the suction pipe 6 so as to sufficiently store the liquid refrigerant flowing out from the evaporator 4, the high pressure container type compressor 1 when the operation of the high pressure container type compressor 1 is stopped. Lubricating oil flowing back from 1 accumulates in the accumulator 5 and does not return to the inside of the high pressure container type compressor 1 for a while even after the high pressure container type compressor 1 is restarted. As a result, the lubricating oil in the high-pressure container type compressor 1 is reduced, and the sliding members of the high-pressure container type compressor 1 are damaged, both of which are major problems in reliability of the high-pressure container type compressor 1. there were.

【0009】本発明は従来の課題を解決するもので、除
霜時における蒸発器から高圧容器型圧縮機への液戻りと
高圧容器型圧縮機起動時の液圧縮を防止し、さらに冷蔵
庫の通常運転時における高圧容器型圧縮機の停止時に流
出する潤滑油が起動後にもアキュームレータ内に滞留す
ることで高圧容器型圧縮機内が潤滑油不足となることを
防止することができる冷蔵庫を提供することを目的とす
る。
The present invention solves the conventional problems by preventing the liquid from returning from the evaporator to the high pressure container type compressor during defrosting and the liquid compression at the time of starting the high pressure container type compressor, and more To provide a refrigerator that can prevent a shortage of lubricating oil in the high-pressure container type compressor by preventing the lubricating oil flowing out when the high-pressure container type compressor is stopped during operation from staying in the accumulator even after starting. To aim.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に、本発明は、高圧容器型圧縮機と、凝縮器と、減圧手
段と、蒸発器と、アキュームレータとを順次環状に接続
し、一方を前記アキュームレータ上部に他方を前記蒸発
器側に接続した第1の配管と、一方を前記アキュームレ
ータ下部より前記アキュームレータ内部上方まで挿入
し、他方を前記高圧容器型圧縮機側に接続した第2の配
管と、一方を第2の配管の前記アキュームレータ内部に
位置する管壁の上部に管内と連通して接続し、他方を前
記アキュームレータ内底部近傍に開口する毛細管とを備
えたものである。
In order to achieve this object, the present invention comprises a high-pressure vessel compressor, a condenser, a pressure reducing means, an evaporator, and an accumulator, which are sequentially connected in an annular shape. A first pipe connecting the other to the evaporator side on the accumulator upper part, and a second pipe connecting one to the inside of the accumulator from the lower part of the accumulator and the other connected to the high pressure vessel compressor side. And one of the second pipes is connected to an upper portion of a pipe wall located inside the accumulator so as to communicate with the inside of the pipe, and the other is provided with a capillary pipe that is opened near the bottom of the accumulator.

【0011】[0011]

【作用】上記構成により本発明の冷凍サイクルシステム
は、除霜時に蒸発器より流出する液冷媒をアキュームレ
ータ内に貯留することができるので、液冷媒が高圧容器
型圧縮機内にまで流入することがない。これによって、
前記高圧容器型圧縮機内の摺動部材が潤滑油ぎれにより
摩耗促進されるのを防止することができる。
With the above structure, the refrigeration cycle system of the present invention can store the liquid refrigerant flowing out of the evaporator during defrosting in the accumulator, so that the liquid refrigerant does not flow into the high-pressure container compressor. . by this,
It is possible to prevent the sliding member in the high-pressure container type compressor from being abraded and accelerated by wear of the lubricating oil.

【0012】また、冷蔵庫の通常運転時の前記高圧容器
型圧縮機起動時には、短時間で前記蒸発器内の液冷媒が
流出するが、アキュームレータ内で一旦貯留され、蒸発
してガス状態となって前記高圧容器型圧縮機へ吸い込ま
れるので、前記高圧容器型圧縮機起動時の液圧縮を防止
することができる。
Further, when the high-pressure container type compressor is started during normal operation of the refrigerator, the liquid refrigerant in the evaporator flows out in a short time, but is temporarily stored in the accumulator and evaporated to become a gas state. Since it is sucked into the high-pressure container type compressor, it is possible to prevent liquid compression when the high-pressure container type compressor is started.

【0013】さらに、冷蔵庫の通常運転時における前記
高圧容器型圧縮機の停止時に前記高圧容器型圧縮機から
逆流してくる潤滑油は、アキュームレータ内に貯留され
前記蒸発機までは逆流することがない。前記高圧容器型
圧縮機の起動後には潤滑油は前記アキュームレータ内下
部に位置する毛細管を通じて前記高圧容器型圧縮機側へ
と戻っていくので、前記高圧容器型圧縮機内の潤滑油が
不足することを防止することができる。
Further, the lubricating oil flowing back from the high pressure container type compressor when the high pressure container type compressor is stopped during normal operation of the refrigerator is stored in the accumulator and does not flow back to the evaporator. . After the high pressure container type compressor is activated, the lubricating oil returns to the high pressure container type compressor side through the capillary located in the lower part of the accumulator, so that the lubricating oil in the high pressure container type compressor is insufficient. Can be prevented.

【0014】[0014]

【実施例】以下、本発明による冷凍サイクルシステムの
実施例について図面を参照しながら説明する。なお、従
来と同一構成については、同一の符号を付し、詳細な説
明を省略する。
Embodiments of the refrigeration cycle system according to the present invention will be described below with reference to the drawings. It should be noted that the same components as those of the related art will be denoted by the same reference numerals and detailed description thereof will be omitted.

【0015】図1は本発明の実施例による冷凍サイクル
システムの構成図である。図1において、冷凍サイクル
システム9は高圧容器型圧縮機1と、凝縮器2と、減圧
手段であるキャピラリーチューブ3と、蒸発器4と、ア
キュームレータ5とを順次環状に接続してある。
FIG. 1 is a block diagram of a refrigeration cycle system according to an embodiment of the present invention. In FIG. 1, a refrigeration cycle system 9 includes a high-pressure container compressor 1, a condenser 2, a capillary tube 3 as a pressure reducing means, an evaporator 4, and an accumulator 5 which are sequentially connected in an annular shape.

【0016】蒸発器4とアキュームレータ5と高圧容器
型圧縮機1との接続は、一方をアキュームレータ5上部
に他方を蒸発器4側に接続した第1の配管10と、一方
をアキュームレータ5下部よりアキュームレータ5内部
上方まで挿入して液溜部11を形成し、他方を高圧容器
型圧縮機1側に接続し第2の配管12とにより行われて
いる。
The evaporator 4, the accumulator 5 and the high-pressure container compressor 1 are connected to each other by a first pipe 10 having one connected to the upper part of the accumulator 5 and the other connected to the evaporator 4 side, and one connected from the lower part of the accumulator 5 to the accumulator 5. 5 is inserted into the upper part of the inside to form the liquid reservoir 11, and the other is connected to the high-pressure container type compressor 1 side by the second pipe 12.

【0017】さらに、一方を第2の配管12のアキュー
ムレータ5内部に位置する管壁13の上部に、例えば液
溜部に貯留される冷媒の液面よりも上部となる位置に連
通して接続し、他方はアキュームレータ5内底部近傍に
開口する毛細管14を設けてある。
Further, one of the second pipes 12 is connected to the upper portion of the pipe wall 13 located inside the accumulator 5 so as to communicate with, for example, a position above the liquid surface of the refrigerant stored in the liquid reservoir. , The other is provided with a capillary tube 14 that opens near the inner bottom of the accumulator 5.

【0018】また、アキュームレータ5内部において、
第1の配管10と第2の配管12とは互いの管口部が対
向しないようにずらして設けてある。
In addition, inside the accumulator 5,
The first pipe 10 and the second pipe 12 are provided so as to be offset from each other so that their pipe openings do not face each other.

【0019】また、蒸発器4の近傍には除霜手段である
除霜用ヒータ8が設けてある。以上のように構成された
冷凍サイクルシステムについて、以下その動作を説明す
る。図示しない制御手段によって通常運転中高圧容器型
圧縮機1は作動停止を繰り返す。さらに、除霜時には図
示しない制御手段によって所定のタイミングで除霜用ヒ
ータ8に通電される。除霜用ヒータ8の発熱により、蒸
発器4表面に付着した霜が、除霜用ヒータ8からの輻射
熱や近傍の空気の対流、また、蒸発器4の除霜用ヒータ
8近傍部で熱せられた内部の冷媒の蒸発、凝縮による熱
搬送により、融解する。この結果、蒸発器4表面の霜は
完全に融解する。
A defrosting heater 8 which is a defrosting means is provided near the evaporator 4. The operation of the refrigeration cycle system configured as described above will be described below. During normal operation, the high-pressure container compressor 1 is repeatedly stopped by a control means (not shown). Further, during defrosting, the defrosting heater 8 is energized at a predetermined timing by a control unit (not shown). Due to the heat generated by the defrosting heater 8, the frost adhering to the surface of the evaporator 4 is heated by the radiation heat from the defrosting heater 8 and the convection of air in the vicinity, and in the vicinity of the defrosting heater 8 of the evaporator 4. It is melted by heat transfer by evaporation and condensation of the internal refrigerant. As a result, the frost on the surface of the evaporator 4 is completely melted.

【0020】また、除霜中に除霜ヒータ8で蒸発器4内
の冷媒が加熱されると蒸発器4内は昇圧し、再凝縮した
液冷媒が蒸発器4より流出して、第1の配管10を通じ
てアキュームレータ5内へ放出され、液溜部11に貯留
される。この時毛細管14のアキュームレータ5内下部
に位置する一端は液溜部11に貯留された冷媒中にあっ
ても、もう一端が液溜部11に貯留された冷媒の液面よ
り上部で第2の配管12の管壁13と接続してあるの
で、毛細管14を通じて冷媒が高圧容器型圧縮機1側へ
と戻っていくことはない。
When the refrigerant in the evaporator 4 is heated by the defrost heater 8 during defrosting, the pressure inside the evaporator 4 rises, and the recondensed liquid refrigerant flows out from the evaporator 4 to generate the first refrigerant. It is discharged into the accumulator 5 through the pipe 10 and stored in the liquid reservoir 11. At this time, even if one end of the capillary tube 14 located in the lower part inside the accumulator 5 is in the refrigerant stored in the liquid reservoir 11, the other end is a second part above the liquid surface of the refrigerant stored in the liquid reservoir 11. Since it is connected to the pipe wall 13 of the pipe 12, the refrigerant never returns to the high-pressure container compressor 1 side through the capillary 14.

【0021】その後高圧容器型圧縮機1が起動すると、
貯留された液冷媒は蒸発しガス状態となって第2の配管
12の管口部より、高圧容器型圧縮機1へと吸い込まれ
ていく。同時に毛細管14に液冷媒が吸い込まれるが、
第2の配管12に比べて十分に管内径が小さいので、第
2の配管12の管口部から吸い込まれるガス量に比べて
わずかであり、高圧容器型圧縮機1に液冷媒が流れ込む
ことは無い。
After that, when the high pressure container type compressor 1 is started,
The stored liquid refrigerant evaporates into a gas state and is sucked into the high-pressure container type compressor 1 through the pipe opening of the second pipe 12. At the same time, the liquid refrigerant is sucked into the capillary tube 14,
Since the inner diameter of the pipe is sufficiently smaller than that of the second pipe 12, the amount of gas sucked from the pipe mouth of the second pipe 12 is small, and the liquid refrigerant does not flow into the high-pressure container compressor 1. There is no.

【0022】除霜終了時、図示しない制御手段による所
定のタイミングで除霜用ヒータ8の通電が終了する。こ
の時、蒸発器4内の冷媒が蒸発器4内で再凝縮する。さ
らに高圧容器型圧縮機1の起動時に、この再凝縮した液
冷媒が蒸発器4より流出する。蒸発器4から流出してき
た液冷媒は第1の配管10を通じてアキュームレータ5
内に放出されて、液溜部11に一旦貯留される。貯留さ
れた液冷媒は蒸発しガス状態となって第2の配管12に
吸い込まれ、高圧容器型圧縮機1へと吸い込まれる。こ
のときにおいても毛細管14を通じて液冷媒が高圧容器
型圧縮機1へと流れ込むことは無い。
Upon completion of defrosting, energization of the defrosting heater 8 is completed at a predetermined timing by a control means (not shown). At this time, the refrigerant in the evaporator 4 is recondensed in the evaporator 4. Further, when the high-pressure container compressor 1 is started, the recondensed liquid refrigerant flows out from the evaporator 4. The liquid refrigerant flowing out from the evaporator 4 is passed through the first pipe 10 to the accumulator 5
It is released into the interior and temporarily stored in the liquid reservoir 11. The stored liquid refrigerant evaporates into a gas state, is sucked into the second pipe 12, and is sucked into the high-pressure container compressor 1. Even at this time, the liquid refrigerant does not flow into the high-pressure container type compressor 1 through the capillary tube 14.

【0023】また、冷蔵庫の通常運転時における高圧容
器型圧縮機1の停止時には、高圧容器型圧縮機1内部で
高低圧がリークすることで高圧容器型圧縮機1内部の潤
滑油が蒸発器4側へと流出する。流出した潤滑油は、第
2の配管12を通じてアキュームレータ5まで逆流し、
アキュームレータ5内に貯留される。アキュームレータ
5の内容量は高圧容器型圧縮機1より逆流する潤滑油の
量よりも大きくしているため、逆流した潤滑油が蒸発機
4まで至る事はない。高圧容器型圧縮機1が起動する
と、アキュームレータ5内に貯留された潤滑油は一端を
アキュームレータ5内底部近傍に開口する毛細管14を
通じて高圧容器型圧縮機1へと戻っていくが、毛細管1
4の管内径は第2の配管12に比べて十分に小さく、急
激に油戻りが生じることがないので高圧容器型圧縮機1
がオイル圧縮を起こすことはない。
When the high pressure container type compressor 1 is stopped during normal operation of the refrigerator, high pressure and low pressure leak inside the high pressure container type compressor 1 so that the lubricating oil inside the high pressure container type compressor 1 is evaporated. It flows to the side. The lubricating oil that has flowed out flows back to the accumulator 5 through the second pipe 12,
It is stored in the accumulator 5. Since the internal volume of the accumulator 5 is larger than the amount of lubricating oil that flows backward from the high-pressure container compressor 1, the lubricating oil that flows backward does not reach the evaporator 4. When the high pressure container type compressor 1 is activated, the lubricating oil stored in the accumulator 5 returns to the high pressure container type compressor 1 through the capillary tube 14 having one end opening near the bottom of the accumulator 5;
The inner diameter of the pipe 4 is sufficiently smaller than that of the second pipe 12, and oil does not suddenly return to the high pressure container type compressor 1.
Does not cause oil compression.

【0024】以上のように本実施例は、高圧容器型圧縮
機1と、凝縮器2と、減圧手段であるキャピラリーチュ
ーブ3と、蒸発器4と、これらを順次環状に接続した冷
凍サイクルシステム9において、高圧容器型圧縮機1
と、蒸発器4との間に接続されたアキュームレータ5
と、一方をアキュームレータ5上部に他方を蒸発器4側
に接続した第1の配管10と、一方をアキュームレータ
5下部よりアキュームレータ5内部上方まで挿入して液
溜部11を形成し、他方を高圧容器型圧縮機1側に接続
した第2の配管12と、一方を第2の配管12のアキュ
ームレータ5内部に位置する管壁13の上部に、例えば
液溜部に貯留される冷媒の液面よりも上部となる位置に
連通して接続し、他方はアキュームレータ5内底部近傍
に開口する毛細管14と、蒸発器4の近傍に設けた除霜
用ヒータ8により構成したので、除霜中に蒸発器4より
高圧容器型圧縮機1に液冷媒が流入するのを防止するこ
とができる。
As described above, in this embodiment, the high pressure container type compressor 1, the condenser 2, the capillary tube 3 as the pressure reducing means, the evaporator 4 and the refrigeration cycle system 9 in which these are sequentially connected in an annular shape are provided. In, high pressure container type compressor 1
And an accumulator 5 connected between the evaporator 4 and
And a first pipe 10 in which one is connected to the upper part of the accumulator 5 and the other is connected to the evaporator 4 side, and one is inserted from the lower part of the accumulator 5 to a position above the inside of the accumulator 5 to form a liquid reservoir 11, and the other is a high-pressure container. The second pipe 12 connected to the die compressor 1 side and one of the second pipe 12 above the pipe wall 13 located inside the accumulator 5 of the second pipe 12, for example, from the liquid surface of the refrigerant stored in the liquid reservoir. Since the upper end is connected to the other end, the other end is formed by a capillary tube 14 that opens near the bottom of the accumulator 5 and a defrosting heater 8 that is provided near the evaporator 4, the evaporator 4 can be connected during defrosting. It is possible to prevent the liquid refrigerant from flowing into the high-pressure container compressor 1.

【0025】また、除霜終了後の高圧容器型圧縮機1起
動時に、液圧縮を防止することができる。
Liquid compression can be prevented when the high-pressure container type compressor 1 is started after defrosting is completed.

【0026】さらに、冷蔵庫の通常運転時における高圧
容器型圧縮機1の起動後に高圧容器型圧縮機1内の潤滑
油が不足するのを防止することができる。
Further, it is possible to prevent a shortage of the lubricating oil in the high pressure container type compressor 1 after the high pressure container type compressor 1 is started during the normal operation of the refrigerator.

【0027】さらにまた、アキュームレータ5内部にお
いて、第1の配管10と第2の配管12とは互いの管口
部が対向しないようにずらして設けてあるので冷媒や潤
滑油がアキュームレータ内に放出されずに配管から配管
へと直接進むことはない。
Furthermore, since the first pipe 10 and the second pipe 12 are provided inside the accumulator 5 so that their pipe openings do not face each other, refrigerant and lubricating oil are discharged into the accumulator. Without going straight from pipe to pipe.

【0028】なお、減圧装置3はキャピラリーチューブ
としたが、膨張弁であってもよい。また、同様の機能を
を有する他の減圧手段であってもよい。
Although the decompression device 3 is a capillary tube, it may be an expansion valve. Further, other depressurizing means having the same function may be used.

【0029】さらになお、毛細管14は一方を第2の配
管12のアキュームレータ5内部に位置する管壁13の
上部に接続するとしたが、毛細管14の中間部を少なく
とも1度は第2の配管12の管壁13の上部より上に持
ち上げてトラップをつくることで管壁13のどこに連通
して接続しても同様の効果が得られる。
Furthermore, although it has been stated that one end of the capillary tube 14 is connected to the upper part of the tube wall 13 located inside the accumulator 5 of the second pipe 12, the middle portion of the capillary tube 14 is at least once connected to the second pipe 12. The same effect can be obtained regardless of where the tube wall 13 is communicated by connecting the tube wall 13 by raising the tube wall 13 from above the tube wall 13 to form a trap.

【0030】[0030]

【発明の効果】以上説明したように本発明の冷凍サイク
ルシステムは、高圧容器型圧縮機と、凝縮器と、減圧手
段と、蒸発器と、アキュームレータとを順次環状に接続
し、一方を前記アキュームレータ上部に他方を前記蒸発
器側に接続した第1の配管と、一方を前記アキュームレ
ータ下部より前記アキュームレータ内部上方まで挿入
し、他方を前記高圧容器型圧縮機側に接続した第2の配
管と、一方を第2の配管の前記アキュームレータ内部に
位置する管壁の上部に管内と連通して接続し、他方を前
記アキュームレータ内底部近傍に開口する毛細管とを備
えているので、除霜中に高圧容器型圧縮機に液冷媒が流
入し、摺動部材の潤滑油を洗い流すのを防止すると共
に、除霜終了後の高圧容器型圧縮機起動時に液圧縮を防
止することができる。
As described above, in the refrigeration cycle system of the present invention, the high pressure container type compressor, the condenser, the pressure reducing means, the evaporator, and the accumulator are sequentially connected in an annular shape, one of which is the accumulator. A first pipe connecting the other to the evaporator side at the upper part, and a second pipe connecting one to the inside of the accumulator from the lower part of the accumulator and the other connecting the other to the high-pressure vessel compressor side. Is connected to the upper part of the pipe wall located inside the accumulator of the second pipe so as to communicate with the inside of the accumulator, and the other is provided with a capillary pipe that opens to the vicinity of the bottom inside the accumulator. It is possible to prevent the liquid refrigerant from flowing into the compressor and wash out the lubricating oil of the sliding member, and also to prevent the liquid compression at the time of starting the high-pressure container type compressor after defrosting is completed.

【0031】さらに、冷蔵庫の通常運転時における高圧
容器型圧縮機の起動後に潤滑油が高圧容器型圧縮機内で
不足するのを防止することができる。
Further, it is possible to prevent the lubricating oil from running short in the high-pressure container type compressor after the high-pressure container type compressor is started during the normal operation of the refrigerator.

【0032】これらによって高圧容器型圧縮機の信頼性
の上で多大な効果を有する。
These have a great effect on the reliability of the high-pressure container type compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の冷凍サイクルシステムの構成
FIG. 1 is a configuration diagram of a refrigeration cycle system according to an embodiment of the present invention.

【図2】従来の冷凍サイクルシステムの構成図FIG. 2 is a configuration diagram of a conventional refrigeration cycle system.

【符号の説明】[Explanation of symbols]

1 高圧容器型圧縮機 2 凝縮器 3 減圧手段 4 蒸発器 5 アキュームレータ 10 第1の配管 12 第2の配管 14 毛細管 DESCRIPTION OF SYMBOLS 1 High-pressure container type compressor 2 Condenser 3 Decompression means 4 Evaporator 5 Accumulator 10 First piping 12 Second piping 14 Capillary tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高圧容器型圧縮機と、凝縮器と、減圧手
段と、蒸発器と、アキュームレータとを順次環状に接続
し、一方を前記アキュームレータ上部に他方を前記蒸発
器側に接続した第1の配管と、一方を前記アキュームレ
ータ下部より前記アキュームレータ内部上方まで挿入
し、他方を前記高圧容器型圧縮機側に接続した第2の配
管と、一方を第2の配管の前記アキュームレータ内部に
位置する管壁の上部に管内と連通して接続し、他方を前
記アキュームレータ内底部近傍に開口する毛細管とを備
えた冷凍サイクルシステム。
1. A high pressure container type compressor, a condenser, a pressure reducing means, an evaporator and an accumulator are sequentially connected in an annular shape, one of which is connected to the upper part of the accumulator and the other of which is connected to the evaporator side. And a second pipe in which one is inserted from the lower part of the accumulator to a position above the inside of the accumulator and the other is connected to the high-pressure container type compressor side, and one is located inside the accumulator of the second pipe. A refrigeration cycle system comprising: a capillary connected to an upper part of a wall so as to communicate with the inside of the pipe, and the other open to a vicinity of a bottom of the accumulator.
JP29516893A 1993-11-25 1993-11-25 Refrigerating cycle system Pending JPH07146039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29516893A JPH07146039A (en) 1993-11-25 1993-11-25 Refrigerating cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29516893A JPH07146039A (en) 1993-11-25 1993-11-25 Refrigerating cycle system

Publications (1)

Publication Number Publication Date
JPH07146039A true JPH07146039A (en) 1995-06-06

Family

ID=17817120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29516893A Pending JPH07146039A (en) 1993-11-25 1993-11-25 Refrigerating cycle system

Country Status (1)

Country Link
JP (1) JPH07146039A (en)

Similar Documents

Publication Publication Date Title
EP0529293B1 (en) Refrigerating system
JPH07146039A (en) Refrigerating cycle system
JPH07190515A (en) Freezer
JP4984770B2 (en) refrigerator
JPH07248164A (en) Refrigerator
JPH102640A (en) Refrigerator
JPH10220932A (en) Method of defrosting refrigerator
JPH09210515A (en) Refrigerating device
JPH07120109A (en) Refrigerating cycle system
JPH109690A (en) Refrigerator
JP2009068737A (en) Refrigerator
JPH08313073A (en) Refrigerating apparatus
JP2002005557A (en) Refrigerator
JPH051868A (en) Refrigerating device
JPH08247625A (en) Refrigerating cycle
JP3342130B2 (en) Refrigeration equipment
JP2509736B2 (en) Refrigeration cycle
JP2725829B2 (en) Refrigeration equipment
KR100287714B1 (en) A prevention apparatus of refrigerant noise for refrigerator
JPH08136112A (en) Refrigerator
JP3941347B2 (en) refrigerator
JPH11304265A (en) Air conditioner
KR100377752B1 (en) A heat-exchange cycle for refrigerator
JP2000220944A (en) Refrigerator
JPH06313636A (en) Refrigerating equipment