JPH07141714A - Optical information detector - Google Patents

Optical information detector

Info

Publication number
JPH07141714A
JPH07141714A JP5290578A JP29057893A JPH07141714A JP H07141714 A JPH07141714 A JP H07141714A JP 5290578 A JP5290578 A JP 5290578A JP 29057893 A JP29057893 A JP 29057893A JP H07141714 A JPH07141714 A JP H07141714A
Authority
JP
Japan
Prior art keywords
magneto
optical
recording medium
luminous flux
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5290578A
Other languages
Japanese (ja)
Inventor
Yasuaki Morimoto
寧章 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical NKK Corp
Priority to JP5290578A priority Critical patent/JPH07141714A/en
Publication of JPH07141714A publication Critical patent/JPH07141714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To lower a noise level at the time of reproducing without largely converging the spot diameter of a beam for irradiation by disposing two shielding plates maintaining a specified spacing in positions orthogonal with a direction where recording information moves. CONSTITUTION:The exit light from a semiconductor laser 1 is cast through a collimator lens 2, a polarization beam splitter 3 and an objective lens 4 onto a recording surface 6 of a magneto-optical recording medium 5. The reflected luminous flux thereof is made incident on a magneto-optical signal detecting optical system and a part of the incident luminous flux is shielded by the band- shaped two shielding plates 7a, 7b arranged to intersect orthogonally with the direction where the recording information moves. The plates 7a, 7b are arranged so as to position nearly symmetrically with the diameter position of the luminous flux. The non-shielding luminous flux is made incident via a half-wave plate 8 on a splitter 9 and is separated to two linearly polarized light beams of the planes of polarization intersecting orthogonally with each other. These polarized light beams are passed respectively through converging lenses 10, 11, photodetectors 12, 13 and a differential amplifier, by which the magneto- optical signals are obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光磁気記録媒体上に情
報を記録、再生する装置に関し、更に詳しくは、高密度
に記録された情報を高品質に検出可能な装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for recording and reproducing information on a magneto-optical recording medium, and more particularly to an apparatus capable of detecting information recorded at high density with high quality.

【0002】[0002]

【従来の技術】超解像を利用した光磁気記録媒体上に高
密度に記録された情報を検出する従来の光情報検出装置
は、基本的に通常の光磁気信号検出系を有する光情報検
出装置と全く同一である。
2. Description of the Related Art A conventional optical information detecting device for detecting information recorded at high density on a magneto-optical recording medium utilizing super-resolution is basically an optical information detecting system having an ordinary magneto-optical signal detecting system. It is exactly the same as the device.

【0003】図3に簡単な光学系の構成を示した。半導
体レーザー14から出射した光束は、コリメーターレン
ズ15により平行光に変換され、偏光ビームスプリッタ
ー16を通過し、対物レンズ17により光磁気記録媒体
18に回折限界まで絞り込まれる。光磁気記録媒体18
から反射した光束は、再び対物レンズ17を通過し、平
行光となり、偏光ビームスプリッター16により光磁気
信号検出光学系に導かれる。次に、1/2波長板19を
通過し、偏光ビームスプリッター20により偏光検波さ
れた二つの光束がそれぞれ収束レンズ21及び22を介
してフォトディテクター23及び24により光電変換さ
れ、更に差動アンプを介して光磁気信号が検出される。
FIG. 3 shows the structure of a simple optical system. The light beam emitted from the semiconductor laser 14 is converted into parallel light by the collimator lens 15, passes through the polarization beam splitter 16, and is narrowed down by the objective lens 17 to the magneto-optical recording medium 18 to the diffraction limit. Magneto-optical recording medium 18
The light beam reflected from the beam again passes through the objective lens 17, becomes parallel light, and is guided to the magneto-optical signal detection optical system by the polarization beam splitter 16. Next, the two light fluxes passing through the half-wave plate 19 and polarization-detected by the polarization beam splitter 20 are photoelectrically converted by the photodetectors 23 and 24 via the converging lenses 21 and 22, respectively, and further, a differential amplifier is provided. A magneto-optical signal is detected via the.

【0004】[0004]

【発明が解決しようとする課題】磁気超解像を利用した
光磁気ディスクに、照射ビームのスポット径よりも極め
て小さい磁気ドメインを記録し、それを再生した場合、
磁気超解像により通常の光磁気ディスクとは比較になら
ないほどの信号対雑音比が得られる。しかし、照射ビー
ムのスポット径は波長と対物レンズの開口数で決まって
いるので、磁気ドメイン周辺、即ち磁気超解像を誘導す
るマスク部分に照射される光量は、信号出力に何ら寄与
していない。単にフォトディテクターのショットノイズ
を増加させていることになる。
When a magnetic domain which is much smaller than the spot diameter of the irradiation beam is recorded on a magneto-optical disk utilizing magnetic super-resolution and is reproduced,
Magnetic super-resolution provides a signal-to-noise ratio that is incomparable to that of ordinary magneto-optical disks. However, since the spot diameter of the irradiation beam is determined by the wavelength and the numerical aperture of the objective lens, the amount of light irradiated to the periphery of the magnetic domain, that is, the mask portion that induces magnetic super-resolution does not contribute to the signal output. . It simply increases the shot noise of the photo detector.

【0005】本発明が解決しようとする課題は、照射ビ
ームのスポット径を大幅に絞ることなく、再生時のノイ
ズレベルの低減が可能な光情報検出装置を提供すること
にある。
The problem to be solved by the present invention is to provide an optical information detecting device capable of reducing the noise level during reproduction without significantly reducing the spot diameter of the irradiation beam.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、磁気超解像を用いた光磁気記録媒体に記録
された情報を読み出す光情報検出装置において、光源か
ら出射した光束が前記光磁気記録媒体上に回折限界まで
に絞り込まれる第1の手段を経て、さらに前記光磁気記
録媒体から反射された光束が光電変換素子に導かれる第
2の手段を経たのちに、前記光磁気記録媒体上の記録情
報が移動する方向と直交する位置に一定間隔を保った帯
状の二つの遮蔽板を設けたことを特徴とする光情報検出
装置を提供する。
In order to solve the above problems, the present invention provides an optical information detecting device for reading out information recorded on a magneto-optical recording medium using magnetic super-resolution, in which a light beam emitted from a light source is After passing through the first means for narrowing the diffraction limit on the magneto-optical recording medium, and further for the second means for guiding the light flux reflected from the magneto-optical recording medium to the photoelectric conversion element, the magneto-optical recording is performed. There is provided an optical information detection device characterized in that two strip-shaped shield plates, which are kept at constant intervals, are provided at positions orthogonal to the direction in which recorded information moves on a recording medium.

【0007】本発明の光情報検出装置においては、磁気
超解像を利用した光磁気記録媒体から反射された光束が
光電変換素子に導かれる光路中に記録情報が移動する方
向に対して直交するように一定の間隔に保たれた帯状の
二つの遮蔽板を設けるが、この時、二つの遮蔽板は光束
の直径位置が対象軸になるように配置することが好まし
い。ここで、光束は発散光あるいは収束光のいずれでも
構わないが、特に収束光の場合遮蔽板は焦平面に一致し
ないことが重要である。
In the optical information detecting apparatus of the present invention, the light flux reflected from the magneto-optical recording medium utilizing magnetic super-resolution is orthogonal to the direction in which the recorded information moves in the optical path in which it is guided to the photoelectric conversion element. As described above, two strip-shaped shield plates which are kept at a constant interval are provided. At this time, it is preferable that the two shield plates are arranged so that the diameter position of the light flux becomes the target axis. Here, the light flux may be either divergent light or convergent light, but especially in the case of convergent light, it is important that the shielding plate does not coincide with the focal plane.

【0008】[0008]

【作用】本発明の光情報検出装置では、回折限界に絞り
込まれたビームスポットが超解像を利用した光磁気記録
媒体の記録面に照射された場合、そのビーム中心の要素
とビーム周辺の要素は記録面から反射され、対物レンズ
を通過した後、新たな回折分布に変換される。この新た
に変換された回折分布においては、記録面における中心
部の要素が支配的な領域、周辺部の要素が支配的な領
域、またどちらの要素も支配的な領域が存在する。従っ
て、記録面における周辺部の要素が支配的な領域を遮蔽
することによって、信号振幅を低下させることなく、フ
ォトディテクターに入射する光量を低減することができ
るため、結果的にフォトディテクターが発生するショッ
トノイズを抑圧できる。
In the optical information detecting device of the present invention, when the beam spot narrowed to the diffraction limit is applied to the recording surface of the magneto-optical recording medium utilizing super-resolution, the element at the beam center and the element at the beam periphery are provided. Is reflected from the recording surface, passes through the objective lens, and is converted into a new diffraction distribution. In this newly converted diffraction distribution, there is a region where the central element on the recording surface is dominant, a region where the peripheral element is dominant, and a region where both elements are dominant. Therefore, the amount of light incident on the photodetector can be reduced without reducing the signal amplitude by blocking the area where the peripheral elements on the recording surface are dominant, resulting in the occurrence of photodetector. Shot noise can be suppressed.

【0009】[0009]

【実施例】以下、図面を用いた実施例により本発明を詳
しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to embodiments using the drawings.

【0010】図1は本発明の実施例を示すブロックダイ
アグラムである。半導体レーザー1から出射した光束
は、コリメーターレンズ2により一旦平行光に変換さ
れ、偏光ビームスプリッター3を通過し、対物レンズ4
に入射する。対物レンズ4によって回折限界に絞り込ま
れたビームスポットは、超解像を利用した光磁気記録媒
体5の記録面6に照射される。記録面6に照射されたビ
ームは、記録面を昇温することによって磁気超解像を誘
導し、照射ビームの中心部が記録された光磁気効果を受
け、反射される。反射された光束は、対物レンズ4を再
び通過し、偏光ビームスプリッター3により光磁気信号
検出光学系に導かれる。光磁気信号検出光学系に入射す
る光束の一部は、記録情報が移動する方向に対して直交
するように配置された帯状の二つの遮蔽板7a及び7b
によって遮蔽される。ここで、二つの遮蔽板7a及び7
bは、光束の直径位置に対してほぼ対称になるように配
置されている。遮蔽されなかった光束は、1/2波長板
8を介して偏光ビームスプリッター9に入射し、偏光検
波され、偏光面が互いに直交する二つの直線偏光に分離
された光束は、それぞれ収束レンズ10、11を介して
フォトディテクター12、13により光電変換され、プ
リアンプにより増幅される。次に、差動アンプによって
差動検出され、最終的な光磁気信号が得られる。
FIG. 1 is a block diagram showing an embodiment of the present invention. The light beam emitted from the semiconductor laser 1 is once converted into parallel light by the collimator lens 2, passes through the polarization beam splitter 3, and then the objective lens 4
Incident on. The beam spot narrowed to the diffraction limit by the objective lens 4 is applied to the recording surface 6 of the magneto-optical recording medium 5 using super-resolution. The beam irradiated on the recording surface 6 induces a magnetic super-resolution by raising the temperature of the recording surface, and the central portion of the irradiation beam is subjected to the recorded magneto-optical effect and is reflected. The reflected light flux passes through the objective lens 4 again and is guided to the magneto-optical signal detection optical system by the polarization beam splitter 3. A part of the light flux incident on the magneto-optical signal detecting optical system has two strip-shaped shield plates 7a and 7b arranged so as to be orthogonal to the direction in which the recorded information moves.
Shielded by. Here, the two shielding plates 7a and 7
b is arranged so as to be substantially symmetrical with respect to the diameter position of the light beam. The unshielded light flux enters the polarization beam splitter 9 through the half-wave plate 8, is polarization-detected, and is separated into two linearly polarized lights whose polarization planes are orthogonal to each other. It is photoelectrically converted by photodetectors 12 and 13 via 11, and amplified by a preamplifier. Next, differential detection is performed by a differential amplifier, and a final magneto-optical signal is obtained.

【0011】図2に磁気超解像光磁気記録媒体5及び遮
蔽板7a及び7bの挿入位置での光束と遮蔽板7a、7
bの関係を示した。本実施例に使用した磁気超解像光磁
気記録媒体5は、再生層にGdFeCoを、再生補助層
にTbFeCoを、中間層にGdFeCoを、記録層に
TbFeCoを夫々用いた四層構造で、磁気超解像光磁
気記録媒体5に示す縦の斜線領域は低温領域のマスクで
あり、横の斜線領域は高温領域のマスクである。光磁気
信号検出範囲は、ほぼ中央に位置している。
FIG. 2 shows the light flux at the insertion positions of the magnetic super-resolution magneto-optical recording medium 5 and the shield plates 7a and 7b and the shield plates 7a and 7b.
The relationship of b was shown. The magnetic super-resolution magneto-optical recording medium 5 used in this embodiment has a four-layer structure in which GdFeCo is used for the reproducing layer, TbFeCo is used for the auxiliary reproducing layer, GdFeCo is used for the intermediate layer, and TbFeCo is used for the recording layer. The vertical shaded area in the magnetic recording medium 5 is a mask for a low temperature area, and the horizontal shaded area is a mask for a high temperature area. The magneto-optical signal detection range is located almost in the center.

【0012】図4に磁気超解像ではない通常の光磁気記
録媒体にドゥーティー50%、ピット長0.46μmの
磁気ドメインを記録し、光磁気信号検出系に入射する光
束をナイフエッジ法により記録情報が移動する方向に徐
々に遮蔽したときの信号振幅S(r)の変化とその微分
値 −dS(r)/drを示した。照射光の波長は78
0nm、対物レンズの開口数は0.55、焦点距離は3.
9mmである。ナイフエッジにより光束を遮蔽していくと
光量は単調に減少するが、0.46μmという短い磁気
ドメインが生成する信号振幅は単調減少しないで、ナイ
フエッジが光束の直径位置の手前−1.0mmあたりから
増加に転じ、直径位置を過ぎ1.0mmあたりまで増加す
る。途中−0.5mmから0.5mmは信号振幅の変化はほ
とんどない。更に、1.0mm以上を遮蔽していくと減少
に転ずる。これを微分値−dS(r)/drを用いて説
明する。正領域の部分は記録面における照射ビーム内の
中央部の要素が支配的なところであり、負領域の部分は
記録面における周辺部の領域が支配的な領域である。ま
た、負領域に挟まれたゼロに近い値の領域は、記録面に
おける中央部及び周辺部の要素が同等に存在する領域で
ある。記録面における周辺部が支配的な−dS(r)/
drの負領域が遮蔽されることによって、0.46μm
の磁気ドメインが生成する信号振幅が増大し、キャリア
レベルが上昇する。
In FIG. 4, a magnetic domain having a duty of 50% and a pit length of 0.46 μm is recorded on an ordinary magneto-optical recording medium which is not magnetic super-resolution, and a light flux incident on the magneto-optical signal detection system is detected by the knife edge method. The change of the signal amplitude S (r) and the differential value -dS (r) / dr when the recording information is gradually shielded in the moving direction are shown. The wavelength of the irradiation light is 78
0 nm, the numerical aperture of the objective lens is 0.55, and the focal length is 3.
It is 9 mm. When the light flux is blocked by the knife edge, the amount of light decreases monotonically, but the signal amplitude generated by the short magnetic domain of 0.46 μm does not decrease monotonically. It starts to increase and passes through the diameter position and increases to around 1.0 mm. There is almost no change in the signal amplitude from -0.5 mm to 0.5 mm on the way. Furthermore, if it shields more than 1.0 mm, it will start to decrease. This will be described using the differential value −dS (r) / dr. In the positive area, the central element in the irradiation beam on the recording surface is dominant, and in the negative area, the peripheral area on the recording surface is dominant. A region having a value close to zero sandwiched between the negative regions is a region where elements in the central portion and the peripheral portion on the recording surface are equally present. Periphery on recording surface is dominant -dS (r) /
0.46 μm by blocking the negative region of dr
The amplitude of the signal generated by the magnetic domain of is increased and the carrier level is increased.

【0013】次に、上述の現象を磁気超解像を利用した
光磁気記録媒体に適用してみる。まず、0.46μmの
磁気ドメインを記録し、通常の光情報検出装置を用いて
線速8m/秒で再生すると、C/N比で48dBが得ら
れた。図4に示した−dS(r)/drが負の領域に遮
蔽板を配置した本発明の光情報検出装置を用いて同じ条
件で再生したところ、キャリアレベルには変化がほとん
どないが、ノイズレベルが2.5dBm低下した結果、
C/N比で2.5dB改善され、50.5dBが得られ
た。即ち、磁気超解像を利用した光磁気記録媒体では媒
体自身のマスク効果により記録面に照射されるビームス
ポットの周辺部分の影響が排除されているため、ビーム
スポット信号振幅に寄与していない。従って、図4に示
した−dS(r)/drの負の領域、即ち通常の光磁気
記録媒体においては、超解像を誘導する領域を遮蔽する
ことによって、信号振幅に何ら影響を与えることなくフ
ォトディテクター23、24に入射する光量を低減する
ことができ、結果的にフォトディテクター23、24が
発生するショットノイズを抑圧することができる。
Next, the above phenomenon will be applied to a magneto-optical recording medium utilizing magnetic super-resolution. First, when a 0.46 μm magnetic domain was recorded and reproduced at a linear velocity of 8 m / sec using an ordinary optical information detection device, a C / N ratio of 48 dB was obtained. When reproduction was performed under the same conditions using the optical information detection device of the present invention in which the shield plate was placed in the negative region of −dS (r) / dr shown in FIG. 4, there was almost no change in carrier level, but noise As a result of the level dropping by 2.5 dBm,
The C / N ratio was improved by 2.5 dB and 50.5 dB was obtained. That is, in the magneto-optical recording medium utilizing the magnetic super-resolution, the influence of the peripheral portion of the beam spot irradiated on the recording surface is eliminated by the mask effect of the medium itself, so that it does not contribute to the beam spot signal amplitude. Therefore, by blocking the negative region of -dS (r) / dr shown in FIG. 4, that is, the region inducing super-resolution in the ordinary magneto-optical recording medium, the signal amplitude is not affected at all. It is possible to reduce the amount of light incident on the photodetectors 23 and 24, and consequently suppress shot noise generated by the photodetectors 23 and 24.

【0014】[0014]

【発明の効果】本発明の光情報検出装置は、磁気超解像
光磁気記録媒体から反射された光束が対物レンズを通過
した後の平行光束あるいは収束光あるいは発散光のいず
れにおいても基本的に適用できる。即ち、実施例で説明
した如く対物レンズ通過後の光束に帯状の遮蔽板7a、
7bを記録情報が移動する方向に対して直交するように
直径位置を中心にしてほぼ対称的に配置するという極め
て単純な方法でノイズレベルの低減が実現できる。
The optical information detecting device of the present invention is basically applicable to any of parallel light flux, convergent light and divergent light after the light flux reflected from the magnetic super-resolution magneto-optical recording medium passes through the objective lens. . That is, as described in the embodiment, the band-shaped shield plate 7a for the light flux after passing through the objective lens,
The noise level can be reduced by a very simple method of arranging 7b substantially symmetrically about the diameter position so as to be orthogonal to the direction in which the recorded information moves.

【0015】また、本発明の光情報検出装置の場合、
0.5mm程度の幅の遮蔽板を二つ挿入し、精度は数10
μmでよいため組み立て調整は極めて容易である。
In the case of the optical information detecting device of the present invention,
Insert two shields with a width of about 0.5 mm, and the accuracy is several tens.
Assembling and adjusting is extremely easy because the size is only μm.

【0016】更に、本発明の光情報検出装置は、磁気超
解像光磁気記録媒体の記録容量を更に15%以上高密度
化できるものである。また、磁気超解像を持たない通常
の光磁気記録媒体を再生しても何ら支障はないため互換
性には全く問題がない。
Further, the optical information detection device of the present invention can further increase the recording capacity of the magnetic super-resolution magneto-optical recording medium by 15% or more. In addition, since there is no problem even if an ordinary magneto-optical recording medium having no magnetic super-resolution is reproduced, there is no problem in compatibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光情報検出装置のブロックダイアグラ
ムである。
FIG. 1 is a block diagram of an optical information detection device of the present invention.

【図2】遮蔽板と光磁気記録媒体及び遮蔽する位置での
光束との関係を示す模式図である。
FIG. 2 is a schematic diagram showing a relationship between a shielding plate, a magneto-optical recording medium, and a light beam at a shielding position.

【図3】従来の光情報検出装置を示すブロックダイアグ
ラムである。
FIG. 3 is a block diagram showing a conventional optical information detection device.

【図4】通常の光磁気記録媒体にドゥーティー50%で
0.46μmの磁気ドメインを記録し、再生する際にナ
イフエッジ法を用いて信号振幅の変化を示した図表であ
る。
FIG. 4 is a chart showing a change in signal amplitude by using a knife edge method when recording and reproducing a 0.46 μm magnetic domain in a normal magneto-optical recording medium at a duty of 50%.

【符号の説明】[Explanation of symbols]

1 半導体レーザー 2 コリメーターレンズ 3 偏光ビームスプリッター 4 対物レンズ 5 磁気超解像光磁気記録媒体 6 記録面 7a 遮蔽板 7b 遮蔽板 8 1/2波長板 9 偏光ビームスプリッタ 10 収束レンズ 11 収束レンズ 12 フォトディテクター 13 フォトディテクター 14 半導体レーザー 15 コリメーターレンズ 16 偏光ビームスプリッター 17 対物レンズ 18 光磁気記録媒体 19 1/2波長板 20 偏光ビームスプリッター 21 収束レンズ 22 収束レンズ 23 フォトディテクター 24 フォトディテクター 1 Semiconductor Laser 2 Collimator Lens 3 Polarizing Beam Splitter 4 Objective Lens 5 Magnetic Super Resolution Magneto-Optical Recording Medium 6 Recording Surface 7a Shielding Plate 7b Shielding Plate 8 1/2 Wavelength Plate 9 Polarizing Beam Splitter 10 Converging Lens 11 Converging Lens 12 Photo Detector 13 Photodetector 14 Semiconductor laser 15 Collimator lens 16 Polarizing beam splitter 17 Objective lens 18 Magneto-optical recording medium 19 1/2 wavelength plate 20 Polarizing beam splitter 21 Converging lens 22 Converging lens 23 Photodetector 24 Photodetector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気超解像を用いた光磁気記録媒体に記
録された情報を読み出す光情報検出装置において、光源
から出射した光束が前記光磁気記録媒体上に回折限界ま
でに絞り込まれる第1の手段を経て、さらに前記光磁気
記録媒体から反射された光束が光電変換素子に導かれる
第2の手段を経たのちに、前記光磁気記録媒体上の記録
情報が移動する方向と直交する位置に一定間隔を保った
帯状の二つの遮蔽板を設けたことを特徴とする光情報検
出装置。
1. An optical information detection device for reading information recorded on a magneto-optical recording medium using magnetic super-resolution, wherein a light flux emitted from a light source is narrowed down to the diffraction limit on the magneto-optical recording medium. After passing through the second means in which the light flux reflected from the magneto-optical recording medium is guided to the photoelectric conversion element, a position perpendicular to the moving direction of the recorded information on the magneto-optical recording medium is obtained. An optical information detecting device, characterized in that two strip-shaped shield plates are provided at regular intervals.
【請求項2】 前記帯状の二つの遮蔽板が光束の直径位
置が対称軸となる位置に設けたことを特徴とする請求項
1記載の光情報検出装置。
2. The optical information detecting device according to claim 1, wherein the two band-shaped shield plates are provided at positions where a diameter position of a light beam is an axis of symmetry.
JP5290578A 1993-11-19 1993-11-19 Optical information detector Pending JPH07141714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5290578A JPH07141714A (en) 1993-11-19 1993-11-19 Optical information detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5290578A JPH07141714A (en) 1993-11-19 1993-11-19 Optical information detector

Publications (1)

Publication Number Publication Date
JPH07141714A true JPH07141714A (en) 1995-06-02

Family

ID=17757839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5290578A Pending JPH07141714A (en) 1993-11-19 1993-11-19 Optical information detector

Country Status (1)

Country Link
JP (1) JPH07141714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741528B1 (en) 1998-03-19 2004-05-25 Fujitsu Limited Magneto-optical head device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741528B1 (en) 1998-03-19 2004-05-25 Fujitsu Limited Magneto-optical head device
WO2004075182A1 (en) * 1998-03-19 2004-09-02 Haruhiko Izumi Magneto-optical head device

Similar Documents

Publication Publication Date Title
US5724334A (en) Optical head device utilizing super-resolution technique
JPH07220302A (en) Optical recording and reproducing device
US5434840A (en) Non-linear reflectance optical information recording layer irradiated by a light beam controlled with an amplitude filter
JPH07141714A (en) Optical information detector
JP2775369B2 (en) Optical head device
JP3554844B2 (en) Magneto-optical head device
JPS62173650A (en) Optical information reproducing device
JPH0212624A (en) Optical head device
JPH05273491A (en) Photodetector
JPS61198436A (en) Detector of position of objective lens
JPH0831002A (en) Optical information detector
JP2641905B2 (en) Optical head device
JPH0963106A (en) Optical recording and reproducing method and device therefor
JPH06180854A (en) Optical head device
JPH07176071A (en) Optical information detection device
JPH07141682A (en) Device for detecting optical information
JPH04344352A (en) Magneto-optical recording and reproducing device
JPH08147750A (en) Optical head device
JP2765402B2 (en) Optical head device
JPH05151593A (en) Optical pickup
JP2616466B2 (en) Optical head device
JPS62270034A (en) Optical reproducing device
JP2616475B2 (en) Optical head device
JPS61248253A (en) Detection of signal for photomagnetic disk
JP2806244B2 (en) Optical head device