JPH0713613B2 - Method and apparatus for analyzing iron ions - Google Patents

Method and apparatus for analyzing iron ions

Info

Publication number
JPH0713613B2
JPH0713613B2 JP62204386A JP20438687A JPH0713613B2 JP H0713613 B2 JPH0713613 B2 JP H0713613B2 JP 62204386 A JP62204386 A JP 62204386A JP 20438687 A JP20438687 A JP 20438687A JP H0713613 B2 JPH0713613 B2 JP H0713613B2
Authority
JP
Japan
Prior art keywords
ions
concentration
solution
plating
plating bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62204386A
Other languages
Japanese (ja)
Other versions
JPS6447942A (en
Inventor
茂雄 松原
明信 竹添
之博 白滝
崇 小見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP62204386A priority Critical patent/JPH0713613B2/en
Publication of JPS6447942A publication Critical patent/JPS6447942A/en
Publication of JPH0713613B2 publication Critical patent/JPH0713613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Feめっき浴中のFe2+イオンとFe3+イオンの濃
度をめっき温度で連続的に精度よく測定できる鉄イオン
の分析方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is an iron ion analysis method capable of continuously and accurately measuring the concentrations of Fe 2+ ions and Fe 3+ ions in an Fe plating bath at a plating temperature. And its equipment.

(従来技術) 従来一般に、Feめっきは、Fe2+イオンを含有する酸性め
っき浴で行なわれているが、Fe2+イオンは、非常に不安
定で、外部空気や浴中の溶存酸素によりFe3+イオンに酸
化される。特にこの酸化は、電極が不溶性極の場合、陽
極での電極反応による酸化も加わるため、一層促進され
る。このため、従来よりFeめっき浴中のFe3+イオンをFe
2+イオンに還元して、Fe2+イオン濃度を増加させる方法
が種々提案されている。
(Prior Art) Conventionally, Fe plating is generally performed in an acidic plating bath containing Fe 2+ ions, but the Fe 2+ ions are very unstable, and Fe 2+ ions are dissolved by external air or dissolved oxygen in the bath. Oxidized to 3+ ions. Particularly, when the electrode is an insoluble electrode, this oxidation is further promoted because the oxidation due to the electrode reaction at the anode is also added. Therefore, the Fe 3+ ion in the Fe plating bath has been
Was reduced to 2 + ions, a method of increasing the Fe 2+ ion concentration have been proposed.

ところで、Feめっき浴中のFe3+イオンを管理したり、Fe
3+イオンがどの程度Fe2+イオンに還元されたかを把握す
るには、Fe2+イオンとFe3+イオンを分析しなければなら
ないが、この分析は、従来次のような方法で行なわれて
いた。
By the way, control Fe 3+ ions in the Fe plating bath,
To understand how much 3+ ions are reduced to Fe 2+ ions, it is necessary to analyze Fe 2+ and Fe 3+ ions, which is conventionally performed by the following method. Was there.

(1)化学分析法(滴定法) (2)電位滴定法 (3)吸光光度法 (発明が解決しようとする問題点) しかし、(1)および(3)の方法により分析するに
は、めっき液を1万〜10万倍程度に希釈しなければなら
ないため、希釈による誤差が大きく、また、希釈の際、
Feイオンの比率が変動してしまうという欠点があった。
(1) Chemical analysis method (titration method) (2) Potentiometric titration method (3) Absorptiometric method (Problems to be solved by the invention) However, in order to analyze by the methods of (1) and (3), plating Since the liquid must be diluted 10,000 to 100,000 times, the error due to dilution is large, and when diluting,
There was a drawback that the ratio of Fe ions fluctuated.

また、(2)の方法は、数倍程度に希釈すれば分析可能
であるが、1回の分析に2〜3分要するため、数箇所で
平行して分析しても、連続測定することは困難であっ
た。また、分析の際、めっき液に試薬を加えるため、分
析後のめっき液をFeめっき浴に返して再使用することも
困難であった。
In addition, the method of (2) can be analyzed by diluting it several times, but one analysis requires 2-3 minutes, so continuous analysis is not possible even if it is analyzed in parallel at several points. It was difficult. Further, since a reagent is added to the plating solution during the analysis, it is difficult to return the plating solution after the analysis to the Fe plating bath for reuse.

このため、Feめっき浴のFeイオンを連続的に精度よく分
析できる方法が望まれていた。
For this reason, a method capable of continuously and accurately analyzing Fe ions in the Fe plating bath has been desired.

(問題点を解決するための手段) 本発明は、全Fe濃度とFe2+イオンおよびFe3+イオンの濃
度とが既知の種々のFe水溶液の電位をカロメル電極と白
金電極とで測定することにより両Feイオン濃度比と電位
との関係を示す検量線を水溶液の温度毎に予め作成して
おき、Feめっき浴中の上記両Feイオン濃度を分析する
際、Feめっき浴のめっき液の一部を取り出して、該めっ
き液中に白金板を浸漬してカロメル電極との間の電位お
よび温度の測定を行い、この電位、温度を前記検量線に
挿入して、Feめっき浴中のFe2+イオンとFe3+イオンの濃
度比を求め、しかる後に全Fe濃度より両Feイオンの濃度
を求める方法により連続的に精度よく測定できるように
した。そして、このFeイオンを連続的に測定する装置と
して、Feめっき浴にめっき液を循環させる循環管を設け
て、該循環管とカロメル電極を浸漬した飽和塩化カリウ
ム水溶液とを塩橋管で接続するとともに、塩橋管のめっ
き液と塩橋との境界部分に冷却装置を、また、循環管中
に白金板電極をそれぞれ配置して、カロメル電極と白金
板電極とをエレクトロメーター接続したものを開発し
た。
(Means for Solving Problems) The present invention is to measure the potentials of various Fe aqueous solutions whose total Fe concentration and Fe 2+ ion and Fe 3+ ion concentration are known, with a calomel electrode and a platinum electrode. A calibration curve showing the relationship between both Fe ion concentration ratios and the potential is prepared in advance for each temperature of the aqueous solution, and when analyzing the above Fe ion concentrations in the Fe plating bath, one of the plating solutions in the Fe plating bath is analyzed. The part is taken out, the platinum plate is immersed in the plating solution to measure the potential and temperature between the calomel electrode and this potential, the temperature is inserted into the calibration curve, and Fe 2 in the Fe plating bath is The concentration ratio of + ions and Fe 3+ ions was obtained, and then the method was used to obtain the concentration of both Fe ions from the total Fe concentration so that continuous and accurate measurement was possible. Then, as a device for continuously measuring this Fe ion, a circulation pipe for circulating a plating solution is provided in the Fe plating bath, and the circulation pipe and a saturated potassium chloride aqueous solution in which the calomel electrode is immersed are connected by a salt bridge pipe. At the same time, a cooling device was placed at the boundary between the plating solution of the salt bridge tube and the salt bridge, and a platinum plate electrode was placed in the circulation tube, and a calomel electrode and a platinum plate electrode were electrometer-connected. did.

以下本発明を詳細に説明する。The present invention will be described in detail below.

Feめっき浴では、次の(1)式に示すような平衡が成立
している。
In the Fe plating bath, equilibrium is established as shown in the following equation (1).

Fe3++e-=Fe2+ (1) この平衡における電位は、次の(2)式のネルンストの
式で与えられる。
Fe 3+ + e = Fe 2+ (1) The potential at this equilibrium is given by the Nernst equation of the following equation (2).

但し、E0は測定電極の種類により決まる定数、Rは気体
定数、Tは絶対温度、Fはファラデー定数、nは電荷の
変化、 はFe2+イオンの活量、 はFe3+イオンの活量である。
Where E 0 is a constant determined by the type of measurement electrode, R is a gas constant, T is an absolute temperature, F is a Faraday constant, n is a change in charge, Is the activity of Fe 2+ ions, Is the activity of Fe 3+ ions.

イオン活量aと濃度Cとの間には、活量係数をfとする
と、次の関係がある。
When the activity coefficient is f, the following relationship exists between the ionic activity a and the concentration C.

a=C×f (3) 従って、Fe2+イオンの活量、Fe3+イオンの活量は、次の
ように表される。
a = C × f (3) Therefore, the activity of Fe 2+ ions and the activity of Fe 3+ ions are expressed as follows.

この(4)式、(5)式を(2)式に代入して、整理す
ると、次の(6)式が得られる。
By substituting the expressions (4) and (5) into the expression (2) and rearranging, the following expression (6) is obtained.

この式において、Feめっき浴中の濃度比 は、Eが測定可能であるので、イオンの活量比 が測定できれば、求めることができる。しかし、このイ
ンオンの活量比を求める方法は、従来確立されていな
い。
In this formula, the concentration ratio in the Fe plating bath E can be measured, so the ion activity ratio If can be measured, it can be obtained. However, a method for obtaining the activity ratio of this in-on has not been established so far.

そこで、本発明者らは、この方法によらず、全Fe濃度と
Fe2+イオンとFe3+イオンの濃度とが既知の水溶液を種々
調製して、この水溶液を用いて電位とFeイオ濃度との検
量線を作成し、Feめっき浴中のFeイオンを測定できるよ
うにした。
Therefore, the present inventors have found that the total Fe concentration and the
Various aqueous solutions with known concentrations of Fe 2+ ions and Fe 3+ ions are prepared, and using this aqueous solution, a calibration curve between the potential and the Fe ion concentration can be created, and the Fe ions in the Fe plating bath can be measured. I did it.

本発明での全Fe濃度とFe2+イオンとFe3+イオンの濃度と
が既知の水溶液の調製は、まず酸性Fe水溶液を調製し
て、全Fe濃度を求めておき、次にこの水溶液を陰極室と
陽極室とを陰イオン交換膜で仕切った電解室で電解する
ことにより行う。
The total Fe concentration in the present invention and the preparation of an aqueous solution of which the concentrations of Fe 2+ ions and Fe 3+ ions are known, first, an acidic Fe aqueous solution is prepared, the total Fe concentration is obtained, and then this aqueous solution is added. It is carried out by electrolyzing in a electrolytic chamber in which the cathode chamber and the anode chamber are partitioned by an anion exchange membrane.

ここで酸性Fe水溶液は、例えば、市販特級試薬鉄粉を溶
存酸素を除去した蒸留水に室温で静かに所定量溶解して
作製する。この時の溶液中Fe3+イオン濃度は、0.2g/
以下であることが判明したため、これを無視した。
Here, the acidic Fe aqueous solution is prepared by, for example, gently dissolving a predetermined amount of commercially available reagent grade iron powder in distilled water from which dissolved oxygen has been removed at room temperature at a predetermined amount. The Fe 3+ ion concentration in the solution at this time was 0.2 g /
Ignored this because it turned out to be:

水溶液の電解は、第1図に示すように、電解槽1を陰イ
オン交換膜2で陽極室3と陰極室4とに仕切り、陽極室
3には陽極5を、また、陰極室4には陰極6を配置し
て、両室に酸性Fe水溶液を静かに入れ、蓋7をした後、
ガス管8より不活性ガスを注入して、水溶液が空気酸化
されないようにした状態で、Fe3+イオンが所望濃度にな
るまで行えばよい。ここで陽極5、陰極6としては、不
溶性電極、例えば、陽極5にはチタン/白金のクラッド
板を、陰極6にはタンタル板を使用し、電流は、低密度
にする。
As shown in FIG. 1, the electrolysis of the aqueous solution divides the electrolytic cell 1 into an anode chamber 3 and a cathode chamber 4 with an anion exchange membrane 2, and an anode 5 in the anode chamber 3 and a cathode chamber 4 in the cathode chamber 4. After placing the cathode 6 and gently pouring the acidic Fe aqueous solution into both chambers and closing the lid 7,
The inert gas may be injected from the gas pipe 8 to prevent the aqueous solution from being air-oxidized until the Fe 3+ ion reaches a desired concentration. Here, an insoluble electrode is used as the anode 5 and the cathode 6, for example, a titanium / platinum clad plate is used for the anode 5 and a tantalum plate is used for the cathode 6, and the current is made to have a low density.

ところでこの電解により陽極5、陰極6では、次のよう
な反応が起こることが予想される。
By the way, it is expected that the following reactions occur at the anode 5 and the cathode 6 by this electrolysis.

(1)陽極反応 Fe2+=Fe3++e- (7) 2O-=O2↑+2e- (8) 2Cl-=Cl2↑+2e- (9) (2)陰極反応 Fe2++2e-=Fe (10) 2H++2e-=H2↑ (11) しかし、本発明者らの実験によれば、陽極反応は、陽極
電流密度が15A/dm2以下の場合、(8)式、(9)式の
反応は起こらず、(7)式の反応のみが起こることが確
認された。
(1) Anode reaction Fe 2+ = Fe 3+ + e - (7) 2O - = O 2 ↑ + 2e - (8) 2Cl - = Cl 2 ↑ + 2e - (9) (2) cathodic reaction Fe 2+ + 2e - = Fe (10) 2H + + 2e = H 2 ↑ (11) However, according to the experiments by the present inventors, when the anode current density is 15 A / dm 2 or less, the anodic reaction is expressed by the formula (8), (9) It was confirmed that the reaction of the formula (7) did not occur and only the reaction of the formula (7) occurred.

すなわち、第2図は、上記(7)〜(9)式の反応が起
こる電流密度と陽極電位との関係を示したものである
が、Fe2+イオン濃度が高濃度の場合、電流密度が15A/dm
2以下であれば、(8)、(9)式の反応は、起こら
ず、(7)式の反応のみが起こる。なお、陽極にはTi−
Pt板を使用した。
That is, FIG. 2 shows the relationship between the current density at which the reactions of the above equations (7) to (9) occur and the anodic potential. When the Fe 2+ ion concentration is high, the current density is 15A / dm
When it is 2 or less, the reactions of the formulas (8) and (9) do not occur, and only the reaction of the formula (7) occurs. The anode is Ti-
A Pt plate was used.

従って、陽極室3では電気化学理論通りの量だけFe2+
オンがFe3+イオンに酸化される。
Therefore, in the anode chamber 3, Fe 2+ ions are oxidized to Fe 3+ ions in an amount according to the electrochemical theory.

なお、陰極反応は、陰イオン交換膜で仕切られているの
で、Fe2+イオンのFe3+イオンへの酸化には関係しない。
Since the cathode reaction is partitioned by the anion exchange membrane, it is not related to the oxidation of Fe 2+ ions to Fe 3+ ions.

以上のようにして所望時間電解すると、目的のFe3+イオ
ンが生成するので、先に求めておいた全Fe濃度よりFe2+
イオンとFe3+イオンとの濃度比 が計算できる。た、この電解した水溶液の電位を測定す
ると、上記Feイオン濃度比と電位との関係が分かる。従
って、Feイオン濃度比の異なる水溶液を種々調製して、
その各水溶液の温度を変化させた場合の電位を測定して
おけば、Feイオン濃度比−温度−電位の検量線を作成で
きる。
When desired time electrolysis as described above, since the Fe 3+ ions of interest is generated, Fe 2+ than the total Fe concentration which had been obtained previously
Ion and Fe 3+ ion concentration ratio Can be calculated. Further, when the potential of this electrolyzed aqueous solution is measured, the relationship between the Fe ion concentration ratio and the potential can be found. Therefore, by preparing various aqueous solutions with different Fe ion concentration ratios,
By measuring the potential when the temperature of each aqueous solution is changed, a calibration curve of Fe ion concentration ratio-temperature-potential can be created.

なお、電位の測定は、第3図に示すような装置によれば
よい。すなわち、飽和塩化カリウム水溶液9にカロメル
電極10を、測定水溶液11に白金電極12を浸漬して、両電
極をエレクトロメーター13に接続する。そして、両水溶
液は塩橋管14で接続して、塩橋管14の半分には、塩橋15
(寒天)を詰めておく。
Note that the measurement of the potential may be performed by an apparatus as shown in FIG. That is, the calomel electrode 10 is immersed in the saturated potassium chloride aqueous solution 9 and the platinum electrode 12 is immersed in the measurement aqueous solution 11, and both electrodes are connected to the electrometer 13. Then, the two aqueous solutions are connected by a salt bridge pipe 14, and the half of the salt bridge pipe 14 is connected to the salt bridge pipe 15.
Fill with (agar).

しかし、Feめっきは、めっき浴の温度を高い場合には、
115℃程度まで上昇させる場合があるので、、塩橋15が
溶解してしまう。このため、塩橋管14の測定水溶液11と
の境界部分を冷却装置16で冷却できるようにし、また、
この冷却装置16の測定水溶液側に温度センサー17を配置
して、塩橋部分の温度を測定できるようにしておく。
However, Fe plating, when the temperature of the plating bath is high,
Since it may be raised to about 115 ° C, the salt bridge 15 will be dissolved. Therefore, the boundary portion between the salt bridge tube 14 and the measurement aqueous solution 11 can be cooled by the cooling device 16, and
A temperature sensor 17 is arranged on the measurement solution side of the cooling device 16 so that the temperature of the salt bridge portion can be measured.

以上のようにして検量線を作成したなら、第3図の方向
に基づいて、Feめっき浴のめっき液の一部を取り出し
て、電位と温度を測定し、この電位と温度を前記検量線
に挿入して、Feめっき浴中のFe2+イオンとFe3+イオンの
濃度比を求めれば、全Fe濃度よりFe2+イオンとFe3+イオ
ンの濃度を求めることができる。
Once the calibration curve has been created as described above, a part of the plating solution in the Fe plating bath is taken out based on the direction shown in FIG. 3 and the potential and temperature are measured. By inserting and determining the concentration ratio of Fe 2+ ions and Fe 3+ ions in the Fe plating bath, the concentration of Fe 2+ ions and Fe 3+ ions can be determined from the total Fe concentration.

第4図は、陽極5と陰極6との間を陰イオン交換膜2で
仕切って電気Feめっきを行う電解槽1での測定方法の一
例を示すもので、電解槽1の陽極室3と陰極室4の下部
にめっき液18の循環管19を取り付けて、ポンプ20でめっ
き液18を循環させるようにする。そして、各循環管19の
下側には、飽和塩化カリウム水溶液9に浸漬したカロメ
ル電極10を、循環管19の内部には白金電極12を配置し
て、両電極をエレクトロメーター13に接続する。そし
て、循環管19と飽和塩化カリウム水溶液9とを塩橋管14
で接続して、塩橋管14の途中まで塩橋15を詰め、上端部
分に冷却装置16を配置しておく。
FIG. 4 shows an example of a measuring method in the electrolytic cell 1 in which the anode 5 and the cathode 6 are partitioned by the anion exchange membrane 2 to perform electroplating of Fe. The anode chamber 3 of the electrolytic cell 1 and the cathode are shown. A circulation pipe 19 for the plating solution 18 is attached to the lower part of the chamber 4 so that the pump 20 circulates the plating solution 18. A calomel electrode 10 immersed in the saturated potassium chloride solution 9 is arranged below each circulation pipe 19, and a platinum electrode 12 is arranged inside the circulation pipe 19, and both electrodes are connected to an electrometer 13. Then, the circulation pipe 19 and the saturated potassium chloride aqueous solution 9 are connected to the salt bridge pipe 14
, The salt bridge 15 is filled up to the middle of the salt bridge pipe 14, and the cooling device 16 is arranged at the upper end portion.

(実施例) 全Fe濃度が228.3g/の塩酸Fe水溶液を調製して、第1
図に示す方法でアルゴンガス雰囲気下にて液温20℃、電
流密度2A/dm2の条件で電解して、 Fe2+イオンとFe3+イオンの濃度比が異なるFe水溶液を調
製した。
(Example) First, an aqueous Fe solution containing 228.3 g / Fe was prepared.
According to the method shown in the figure, electrolysis was performed under an argon gas atmosphere at a liquid temperature of 20 ° C. and a current density of 2 A / dm 2 to prepare Fe aqueous solutions having different concentration ratios of Fe 2+ ions and Fe 3+ ions.

次にこの各水溶液の温度を種々変えて、第3図に示す方
法で電位を測定した。第5図にFeイオン濃度比−液温−
電位の検量線を示す。
Next, the temperature of each aqueous solution was variously changed and the potential was measured by the method shown in FIG. Fig. 5 shows the Fe ion concentration ratio-liquid temperature-
The calibration curve of electric potential is shown.

その後、この検量線を使用して、第5図に示す方法でFe
めっき液のFeイオンを分析したところ、電位滴定法で分
析した値と一致していた。
After that, using this calibration curve, Fe was processed by the method shown in FIG.
When Fe ions in the plating solution were analyzed, they were in agreement with the values analyzed by the potentiometric titration method.

(発明の効果) 以上のように、本発明によれば、Feめっき浴のFeイオン
を連続的に精度よく分析できる。
(Effects of the Invention) As described above, according to the present invention, Fe ions in the Fe plating bath can be continuously and accurately analyzed.

【図面の簡単な説明】[Brief description of drawings]

第1図は、Fe2+イオン水溶液中のFe2+イオンの一部をFe
3+イオンに酸化する方法の装置を示すものである。第2
図は、陽極において、Fe2+イオンの酸化およびO2、Cl2
ガスの発生する電流密度と電位との関係を示すグラフ
で、グラフ1および2は、それぞれFe2+イオンが高濃度
および低濃度である場合にFe2+→Fe3++e-となる場合
を、グラフ3は、2Cl-→Cl2+2e-となる場合を、グラフ
4は、2O2-→O2+4e-となる場合を、さらに、グラフ5
は、Fe3+の生成とCl2、O2の発生とが平行して起こる場
合を示している、第3図は、Fe2+イオンとFe3+イオンと
を含有する水溶液の電位を測定する方法の装置を示すも
のである。第4図は、Feめっき浴のFe2+イオンとFe3+
オンとを連続的に測定する方法の装置を示すものであ
る。第5図は、実施例で作成したFeイオン濃度比と電位
との関係を示す検量線である。 1……電解槽、2……陰イオン交換膜、3……陽極室、
4……陰極室、5……陽極、6……陰極、7……蓋、8
……ガス管、9……飽和塩化カリウム水溶液、10……カ
ロメル電極、11……測定水溶液、12……白金電極、13…
…エレクトロメーター、14……塩橋管、15……塩橋、16
……冷却装置、17……温度センサー、18……めっき液、
19……循環管、20……ポンプ、
Figure 1 is a part of the Fe 2+ ions in Fe 2+ ion solution Fe
1 shows an apparatus for a method of oxidizing to 3+ ions. Second
The figure shows the oxidation of Fe 2+ ions and O 2 , Cl 2 at the anode.
Graphs showing the relationship between the current density generated by gas and the electric potential. Graphs 1 and 2 show the case where Fe 2+ → Fe 3+ + e when the Fe 2+ ion concentration is high and low, respectively. , Graph 3 shows the case of 2Cl → Cl 2 + 2e , graph 4 shows the case of 2O 2 − → O 2 + 4e −, and further graph 5
Shows the case where the generation of Fe 3+ and the generation of Cl 2 and O 2 occur in parallel. In FIG. 3, the potential of an aqueous solution containing Fe 2+ and Fe 3+ ions is measured. 2 shows an apparatus of the method. FIG. 4 shows an apparatus of a method for continuously measuring Fe 2+ ions and Fe 3+ ions in the Fe plating bath. FIG. 5 is a calibration curve showing the relationship between the Fe ion concentration ratio and the potential created in the examples. 1 ... Electrolyzer, 2 ... Anion exchange membrane, 3 ... Anode chamber,
4 ... Cathode chamber, 5 ... Anode, 6 ... Cathode, 7 ... Lid, 8
...... Gas tube, 9 ・ ・ ・ Saturated potassium chloride solution, 10 ・ ・ ・ Camel electrode, 11 ・ ・ ・ Measurement solution, 12 ・ ・ ・ Platinum electrode, 13 ・ ・ ・
… Electrometer, 14 …… Shiohashi tube, 15 …… Shiohashi, 16
…… Cooling device, 17 …… Temperature sensor, 18 …… Plating solution,
19 …… circulation pipe, 20 …… pump,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】全Fe濃度とFe2+イオンおよびFe3+イオンの
濃度とが既知の種々のFe水溶液の電位をカロメル電極と
白金板電極とで測定することにより両Feイオン濃度比と
電位との関係を示す検量線を水溶液の温度毎に予め作成
しておき、Feめっき浴中の上記両Feイオン濃度を分析す
る際、Feめっき浴のめっき液の一部を取り出して、該め
っき液中に白金板を浸漬してカロメル電極との間の電位
および温度の測定を行い、この電位、温度を前記検量線
に挿入して、Feめっき浴中のFe2+イオンとFe3+イオンの
濃度比を求め、しかる後に全Fe濃度より両Feイオンの濃
度を求めることを特徴とする鉄イオンの分析方法。
1. The total Fe concentration and the concentrations of Fe 2+ ions and Fe 3+ ions of various known aqueous Fe solutions are measured by a calomel electrode and a platinum plate electrode, and the ratio of both Fe ion concentrations and the potential are measured. A calibration curve showing the relationship with is prepared in advance for each temperature of the aqueous solution, and when analyzing both Fe ion concentrations in the Fe plating bath, a part of the plating solution in the Fe plating bath is taken out and the plating solution is removed. The platinum plate is dipped in to measure the potential and temperature between the calomel electrode and this potential, temperature is inserted into the calibration curve, the Fe 2 + ions and Fe 3 + ions in the Fe plating bath An iron ion analysis method, characterized in that the concentration ratio is obtained, and then the concentrations of both Fe ions are obtained from the total Fe concentration.
【請求項2】陰極室と陽極室とを陰イオン交換膜で仕切
った電解室に全Fe濃度が既知の酸性Fe水溶液を入れて、
両極間に陽極室におけるFe2+イオンが通電量分だけFe3+
イオンに酸化されるような低密度電流を流し、Fe2+イオ
ンとFe3+イオンの濃度比が既知のFe水溶液を作製するこ
とを特徴とする特許請求の範囲第1項に記載の鉄イオン
の分析方法。
2. An acidic Fe aqueous solution having a known total Fe concentration is placed in an electrolytic chamber in which a cathode chamber and an anode chamber are partitioned by an anion exchange membrane,
Between the two electrodes, Fe 2+ ions in the anode chamber are equal to the amount of electricity flowing in Fe 3+.
The iron ion according to claim 1, characterized in that a low-density current that oxidizes into ions is passed to prepare an aqueous Fe solution having a known concentration ratio of Fe 2+ ions and Fe 3+ ions. Analysis method.
【請求項3】Feめっき浴にめっき液を循環させる循環管
を設けて、該循環管とカロメル電極を浸漬した飽和塩化
カリウム水溶液とを塩橋管で接続するとともに、塩橋管
のめっき液と塩橋との境界部分に冷却装置を、また、循
環管中に白金板電極をそれぞれ配置して、カロメル電極
と白金板電極とをエレクトロメーター接続したことを特
徴とする鉄イオンの分析装置。
3. A circulation pipe for circulating a plating solution is provided in the Fe plating bath, the circulation pipe and a saturated potassium chloride aqueous solution in which the calomel electrode is immersed are connected by a salt bridge pipe, and a plating solution for the salt bridge pipe is used. An iron ion analyzer characterized in that a cooling device is arranged at the boundary with the salt bridge, and a platinum plate electrode is arranged in the circulation tube, and the calomel electrode and the platinum plate electrode are connected by an electrometer.
JP62204386A 1987-08-18 1987-08-18 Method and apparatus for analyzing iron ions Expired - Lifetime JPH0713613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62204386A JPH0713613B2 (en) 1987-08-18 1987-08-18 Method and apparatus for analyzing iron ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62204386A JPH0713613B2 (en) 1987-08-18 1987-08-18 Method and apparatus for analyzing iron ions

Publications (2)

Publication Number Publication Date
JPS6447942A JPS6447942A (en) 1989-02-22
JPH0713613B2 true JPH0713613B2 (en) 1995-02-15

Family

ID=16489675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62204386A Expired - Lifetime JPH0713613B2 (en) 1987-08-18 1987-08-18 Method and apparatus for analyzing iron ions

Country Status (1)

Country Link
JP (1) JPH0713613B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2658663C (en) * 2006-05-08 2016-01-12 Ohio University Electrochemical technique to measure concentration of multivalent cations simultaneously

Also Published As

Publication number Publication date
JPS6447942A (en) 1989-02-22

Similar Documents

Publication Publication Date Title
Samec et al. Charge transfer between two immiscible electrolyte solutions: Part II. The investigation of Cs+ ion transfer across the nitrobenzene/water interface by cyclic voltammetry with IR drop compensation
Ciavatta et al. On the equilibrium Cu2++ Cu (s)⇄ 2Cu+
JP5686602B2 (en) Titration apparatus and method
Wagner et al. “On the Interpretation of Corrosion Processes through the Superposition of Electrochemical Partial Processes and on the Potential of Mixed Electrodes,” with a Perspective by F. Mansfeld
Chaudhary et al. Electrochemistry—Concepts and methodologies
Sun et al. A new method to determine AgCl (1% mol)/Ag electrode potential versus the standard chloride electrode potential in a LiCl-KCl eutectic
US20190376923A1 (en) Method for cleaning, conditioning, calibration and/or adjustment of an amperometric sensor
JPH0713613B2 (en) Method and apparatus for analyzing iron ions
KR20070005732A (en) One-point recalibration method for reducing error in concentration measurements for an electrolytic solution
Asakai et al. Evaluation of certified reference materials for oxidation–reduction titration by precise coulometric titration and volumetric analysis
Caton et al. Controlled Potential Coulometry of Metals in Fused Lithium Chloride-Potassium Chloride Eutectic.
Kal’nyi et al. Sodium sulfite: A promising reagent in the electrochemical oxidation of metallic silver
Lundquist et al. Determination of phosphate by cathodic stripping chronopotentiometry at a copper electrode
US20240125730A1 (en) Non-reagent chloride analysis in acid copper plating baths
US20030168352A1 (en) Measurement of trivalent iron cation concentrations
JPH06249832A (en) Measurement of chlorous acid ion
RU2178886C2 (en) Method and apparatus for detecting concentration of active chlorine in electrolyte solution
Reilley Coulometric titrations: A laboratory experiment
Kemula et al. Microcoulometric determination of trace amounts of mercury and oxygen in aqueous solutions using the hanging mercury drop electrode (HMDE)
JP2002322598A (en) Method for controlling concentration of plating bath and device therefor
Eckfeldt et al. Continuous coulometric analysis of chlorine bleach solutions
Van Norman A Chronopotentiometric Study of the Silver‐Silver Chloride and Silver‐Silver Bromide Systems
JP2000193640A (en) Measuring method for metal adsorbing material
JP3813606B2 (en) Combined electrode of electrolysis electrode and redox potential measurement electrode
Vajgand et al. Potentiometric determination of pKA of organic bases in acetone by the application of coulometry