JPH07134740A - Method for planning production - Google Patents

Method for planning production

Info

Publication number
JPH07134740A
JPH07134740A JP28241693A JP28241693A JPH07134740A JP H07134740 A JPH07134740 A JP H07134740A JP 28241693 A JP28241693 A JP 28241693A JP 28241693 A JP28241693 A JP 28241693A JP H07134740 A JPH07134740 A JP H07134740A
Authority
JP
Japan
Prior art keywords
production
input
information
product
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28241693A
Other languages
Japanese (ja)
Inventor
Hisashi Kojima
久史 小島
Yoshio Tamura
良夫 田村
Kenji Shimodousono
賢志 下堂薗
Akio Tatara
昭雄 多々良
Tadashi Hashimoto
正 橋本
Toshio Murayama
利雄 村山
Sumio Matsuyama
純朗 松山
Masashi Saito
賢史 斎藤
Yukinari Matsuo
幸成 松尾
Yujiro Ebine
勇二郎 海老根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28241693A priority Critical patent/JPH07134740A/en
Publication of JPH07134740A publication Critical patent/JPH07134740A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Control By Computers (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Automatic Assembly (AREA)

Abstract

PURPOSE:To average process load in each process of plural product manufacturing lines including processes divided into plural different parallel processing processes and to minimize the number of setting up operations. CONSTITUTION:Arrangement information and product processing information are allocated (S01), the arrangement information is extracted and classified in each process (S03) and sorted in the order of delivery (S04) and data are segmented by quantity, i.e., (planned number of daysXproduction amount of each process/day), determined by a schedule condition file (S05). The segmented data are sorted in each of processing conditions I to III (S06), production amount per day is segmented from the arrangement information of each process (S07) and grouped in each processing condition to obtain a charging plan (S08).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多品種少量生産方式にお
ける生産計画方法に係り、特に複数の処理方式により異
なる分別処理を行なう化工工程を含む連続工程群によっ
て処理される複数種のプロセスを有する製品を流す製造
ラインであって、かつ、製品の形状、厚み、材質等の化
工条件が変化するため、段取り替えを必要とする多種少
量生産方式による生産計画方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a production planning method in a high-mix low-volume production system, and more particularly, it has a plurality of types of processes processed by a continuous process group including a chemical conversion process for performing different separation processes according to a plurality of processing systems. The present invention relates to a production planning method for a production line in which a product is flown, and the production conditions, such as shape, thickness, and material, are changed, so that a setup change is required and a small-lot production method of various types is used.

【0002】[0002]

【従来の技術】従来、多品種少量生産を前提とする製品
であって、複数の機械を有し、段取り替えを必要とする
製造ラインにおける生産計画としては、特開平3−26
448号公報に「FMS生産ラインの投入順序計画法」
として“生産比率一定”の思想に基づく投入順序計画法
が開示されいる。
2. Description of the Related Art Conventionally, a production plan for a production line which requires a high-mix low-volume production and has a plurality of machines and requires a setup change is disclosed in JP-A-3-26.
No. 448 Publication, "FMS Production Line Input Sequence Planning Method"
As the above, an input sequence planning method based on the idea of "constant production ratio" is disclosed.

【0003】また、特開平4−348854号公報に開
示されている技術の内容は、多品種少量生産ラインにお
いて、異なる製品種のものを流す場合、各工程では、処
理条件の設定または変更、すなわち、設備の調整や材料
の取替えに要する段取りが必要であるが、この技術は、
同一段取りのもとで処理が可能なラックについて、グル
ーピングして、グループ毎に投入を実施する制御システ
ムである。
Further, the content of the technique disclosed in Japanese Patent Laid-Open No. 4-348854 is that when different product types are flowed in a high-mix low-volume production line, processing conditions are set or changed in each process, that is, The setup required for equipment adjustment and material replacement is necessary.
This is a control system that groups racks that can be processed under the same setup and loads them in groups.

【0004】[0004]

【発明が解決しようとする課題】特開平3−26448
号公報に開示された方法は、複数の機械を直列的に連ね
た製造ラインを対象とした生産計画方法であり、共有設
備による共通処理を行なう工程と、複数の処理プロセス
それぞれに固有な設備により、異なる分別処理を行なう
工程を含む連続工程群を通過する複数種の処理プロセス
を有する製品を流す製造ラインには不適当である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in the publication is a production planning method for a production line in which a plurality of machines are connected in series, and a process for performing common processing by shared equipment and equipment unique to each of the plurality of processing processes are used. However, it is unsuitable for a production line in which a product having a plurality of types of treatment processes passing through a series of process steps including steps for performing different separation treatments is flowed.

【0005】また、特開平4−348854号公報に開
示された技術は、処理設備についての段取り回数の減少
を目的として工程経路における進捗管理、搬出搬入管理
などを行なう投入制御システムであって、本発明の対
象、例えば、化学メッキと電気メッキなどに分かれて処
理されるメッキ工程のような、複数の異なる分別化工を
並列的に実施する工程を含む連続工程群からなる製造ラ
インにおいて、各工程の負荷を平準化することについて
は考慮されていなかった。
Further, the technique disclosed in Japanese Patent Laid-Open No. 4-348854 is a loading control system for performing progress management, carrying-in / carrying-in management, etc. in a process route for the purpose of reducing the number of setups of processing equipment. The subject of the invention, for example, in a production line consisting of a continuous process group including a process of performing a plurality of different separation chemicals in parallel, such as a plating process which is processed separately by chemical plating and electroplating There was no consideration for leveling the load.

【0006】本発明は、前記のような製造ラインにおけ
る各工程負荷の平準化を図り、併せて、化工設備の段取
り時間を最小にする生産計画方法を提供することを目的
としている。
[0006] It is an object of the present invention to provide a production planning method that equalizes the load of each process in the production line as described above and, at the same time, minimizes the setup time of chemical equipment.

【0007】[0007]

【課題を解決するための手段】本発明は、各プロセスの
共有設備と、各プロセス毎に固有の設備との最大生産量
を求め、これらの最小量から求めた製造ライン最大生産
量と、各プロセス毎に求めた製造ライン1日当りの最大
生産量から平準化された日程計画条件を求め、この平準
化された日程計画条件に基づき手配情報と製品化工情報
とから、段取回数が最小となるように投入計画を作成す
るようにし、また、予め計画日数範囲内の段取り回数と
次の段取り内容を把握することができるようにしたもの
である。すなわち、本発明の目的は、特許請求の範囲に
記載されているように、複数の異なる並列処理に分別さ
れる工程を含む工程群を経て処理される複数のプロセス
を有する複数製品を生産する製造ラインの生産計画方法
において、製品の工程における化工内容を示す製品化工
情報、製品の生産内容を指示する手配情報、製品の生産
展開日程を示す日程計画計画情報を用いて、各プロセス
共通設備の中の最小生産量に手配量の比率を掛けた数
量、若しくは、各プロセス固有設備の最小生産量の、何
れか小さい数量を求めて前記複数のプロセス毎に工程に
投入可能な生産量として日程計画情報を決定する段階
と、各プロセス毎に手配情報を納期順に並べ、前記段階
で求めた1日当りの投入可能量と計画範囲日数から納期
の早いもの順に抽出し、各プロセス毎の投入製品を決定
する段階と、各プロセス毎に抽出した投入製品中で同一
段取り条件毎に集計する段階と、前記段階でのプロセス
毎から1日当りの投入量を抽出し、その同一計画日の中
で同一段取り条件毎に集計し投入順序を決定する段階に
より前記製造ラインへの生産指示を行なうことを特徴と
する生産計画方法によって達成される。
According to the present invention, the maximum production amount of the shared equipment of each process and the equipment unique to each process is obtained, and the maximum production amount of the production line obtained from these minimum amounts is obtained. The leveled schedule planning conditions are calculated from the maximum production amount per day of the production line obtained for each process, and the number of setups is minimized based on the ordering information and the product engineering information based on the leveled schedule planning conditions. As described above, the input plan is created, and the number of setups and the contents of the next setup within the planned number of days can be grasped in advance. That is, the object of the present invention is to manufacture a plurality of products having a plurality of processes which are processed through a process group including a process divided into a plurality of different parallel processes as described in the claims. In the production planning method of the line, using the product engineering information that shows the details of the chemicals in the process of the product, the arrangement information that instructs the production details of the product, and the schedule planning information that shows the production development schedule of the product, Scheduling information as the quantity that can be input to the process for each of the plurality of processes by obtaining the quantity that is the product of the minimum quantity of production multiplied by the ratio of the ordered quantity or the minimum quantity of production of the process-specific equipment, whichever is smaller. Arrangement information for each process in the order of delivery date, and extract from the earliest available input amount and planned range days obtained in the above step in order of earliest delivery date. The step of determining the input products for each process, the step of totaling the same set-up conditions among the input products extracted for each process, and extracting the input amount per day from each process in the above steps, and the same plan The present invention is achieved by a production planning method characterized in that production instructions are given to the production line at the stage of totalizing the same setup conditions in the day and determining the input sequence.

【0008】[0008]

【作用】本発明の実施により、プロセス変更または新規
プロセスが追加された場合、日程計画条件を変更するだ
けで、各プロセス工程の平準化が図られ、最適の投入計
画を作成することができ、また、段取り替えに長時間を
要する設備が存在するラインにおいて、予め計画日数範
囲内の段取り回数と次の段取り内容が把握できるから、
段取り替えに対して容易に対応することができる。さら
に、生産の変動に対しても日程計画条件を変更するだけ
で、段取り回数を最小にする計画を容易に作成すること
が可能である。
By implementing the present invention, when a process is changed or a new process is added, each process step can be leveled and an optimum input plan can be created by simply changing the schedule planning condition. Also, in a line where there is equipment that requires a long time for setup change, it is possible to grasp the number of setups and the contents of the next setup within the planned number of days in advance.
It is possible to easily deal with setup changes. Furthermore, it is possible to easily create a plan that minimizes the number of setups by simply changing the schedule planning conditions even for production fluctuations.

【0009】[0009]

【実施例】本発明に係る生産計画方法の実施例を図面に
基づいて説明する。図1は、本発明の一実施例の生産計
画を作成する編集装置のブロック図であって、編集装置
7はプリンタ1、ディスプレイ2、キ−ボ−ド3、主メ
モリ4、中央処理装置5、通信装置6、磁気ディスク装
置8を有している。磁気ディスク装置8には、製品化工
情報ファイル11と手配情報ファイル10と日程計画条
件ファイル9が格納されている。図2は、本発明の生産
計画方法を適用した化工工程の製造ラインの一実施例を
示す図である。この製造ラインを通過する製品は、A、
B、Cの3種類の処理プロセスによって化工処理が行な
われることを示す。例えば、この実施例ラインをプリン
ト基板の製造ラインとすると、この化工処理工程は、
(a)研磨、(b)メッキ、(c)レジスト塗布、
(d)印刷、(e)表面処理、(f)検査の6工程から
なっており、各工程の処理設備は、プロセス共通設備と
して12、13、14、プロセス固有設備(または当該
プロセスの専用設備)として15、16、17、18、
19、20、21がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the production planning method according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of an editing apparatus for creating a production plan according to an embodiment of the present invention. The editing apparatus 7 includes a printer 1, a display 2, a keyboard 3, a main memory 4 and a central processing unit 5. , A communication device 6 and a magnetic disk device 8. The magnetic disk device 8 stores a product conversion information file 11, an arrangement information file 10, and a schedule planning condition file 9. FIG. 2 is a diagram showing an example of a manufacturing line of a chemical engineering process to which the production planning method of the present invention is applied. The products that pass through this manufacturing line are A,
It shows that the chemical conversion treatment is performed by the three kinds of treatment processes B and C. For example, assuming that this embodiment line is a printed circuit board manufacturing line,
(A) polishing, (b) plating, (c) resist application,
It consists of 6 steps: (d) printing, (e) surface treatment, and (f) inspection, and the processing equipment for each step is 12, 13, 14 as process common equipment, or process specific equipment (or dedicated equipment for the process). ) As 15, 16, 17, 18,
There are 19, 20, and 21.

【0010】例えばプロセスAは、設備12、15、1
8、13、20、14を通過して化工処理が行なわれ、
(b)メッキ工程では、設備15によるニッケルメッキ
(因みに16は化学メッキ、17は電気メッキ)、
(c)レジスト塗布工程では設備21による印刷(因み
に19は写真)、(e)表面処理工程ではフラックス
(因みに20は防錆)による処理がなされることを意味
するものである。同様にプロセスBは、設備12、1
6、19、13、20、14を通過し、プロセスCは、
設備12、17、19、13、21、14を通過する化
工が行なわれる。
For example, the process A includes facilities 12, 15, 1
After passing through 8, 13, 20, 14, chemical treatment is performed,
(B) In the plating process, nickel plating by equipment 15
(By the way, 16 is chemical plating, 17 is electroplating),
(C) In the resist coating process, printing is performed by the equipment 21 (by the way, 19 is a photograph), and (e) In the surface treatment process, a treatment by flux (by the way, 20 is rust prevention) is performed. Similarly, process B includes equipment 12, 1
6, 19, 13, 20, 14 and process C
Chemical conversion is carried out through the facilities 12, 17, 19, 13, 21, and 14.

【0011】先ずこの製造ラインの最大生産量を決定す
る。この実施例では計画日数を3日としこの計画日数の
範囲内において、各プロセスに投入する物量を均等に押
さえていわゆる平準化を図るものである。、各設備での
化工条件、例えば、厚み、材質などの変更は1回限りと
することにより、段取り変更回数を最小限に押さえるこ
とにしている。
First, the maximum production amount of this manufacturing line is determined. In this embodiment, the planned number of days is set to 3 days, and the amount of material to be fed into each process is suppressed evenly within the range of the planned number of days to achieve so-called leveling. The number of setup changes is to be minimized by changing the chemical engineering conditions in each facility, such as the thickness and the material, only once.

【0012】いま、共通設備12による(a)研磨工程
の段取り回数をn1、段取り替えに要する時間a′と
し、生産能力a個/hとすると、計画日数内の最大生産
量は{(8h/日×3日)−n1×a′}×aで表される。
Assuming that the number of setups in the (a) polishing process by the common facility 12 is n 1 and the time required for setup setup is a ′ and the production capacity is a piece / h, the maximum production amount within the planned number of days is {(8h / Day × 3 days) −n 1 × a ′} × a.

【0013】同様に、プロセス固有設備18、19によ
る(c)レジスト塗布工程のうち、プロセス固有設備1
8の段取り回数をn2、段取り替えに要する時間c1′、
生産能力c1個/hとし、プロセス固有設備19の段取り
回数をn2、段取り替えに要する時間c2′、生産能力c
2個/hとすると、プロセス固有設備18、19による計
画日数内の最大生産量は{(8h/日×3日)−n2×
1′}×c1+{(8h/日×3日)−n2×c2′}×c2
表される。他の各工程についても上記に準ずる計算によ
って、計画日数内の最大生産量求め、求めた最大生産量
のうちの最小値から、各工程の最大生産量を求めること
ができる。
Similarly, among the (c) resist coating steps by the process-specific facilities 18 and 19, the process-specific facility 1
8, the number of setups is n 2 , the time required for setup setup c 1 ′,
The production capacity is c 1 / h, the number of setup times of the process-specific equipment 19 is n 2 , the time required for setup change c 2 ′, the production capacity c
Assuming 2 pieces / h, the maximum production amount by the process-specific equipment 18, 19 within the planned number of days is {(8h / day × 3 days) −n 2 ×
It is represented by c 1 ′} × c 1 + {(8 h / day × 3 days) −n 2 × c 2 ′} × c 2 . With respect to each of the other processes, the maximum production amount within the planned number of days can be obtained by the calculation according to the above, and the maximum production amount of each process can be obtained from the minimum value of the obtained maximum production amounts.

【0014】上記とは別に化工工程に続く次の工程、例
えば、組立工程における、仕掛り数量と使用予定数量か
ら日程計画条件を決定する方法を次に述べる。図7は一
実施例の各プロセス毎の日程計画条件を示す図表であ
る。図7に示すように、先ず各製品の生産予定を(次工
程の仕掛り数量)−(使用予定数量)=生産予定数量によ
り求める。すなわちプロセスAによる処理を行なう製品
AR541については、次工程の仕掛り数量150、使
用予定量600であるから、生産予定数量は600−1
50=450となる。同様に、プロセスAによる処理を
行なう製品AR642の生産予定量は450となり、プ
ロセスAの生産予定量の合計は900と算定され、設備
の生産能力1200以内であるから、900は生産可能
な数量である。このようにして各プロセスA、B、C毎
に生産予定数量を算出し、これと各プロセスに対応する
設備生産能力と比較して生産量を求め、日程計画条件、
すなわち各プロセスに投入すべき数量を決定する。
Apart from the above, a method for determining the schedule planning condition from the in-process quantity and the planned usage quantity in the next step following the chemical engineering step, for example, the assembly step will be described below. FIG. 7 is a chart showing schedule planning conditions for each process in one embodiment. As shown in FIG. 7, first, the production schedule of each product is obtained by (work-in-process quantity of next process)-(scheduled usage quantity) = scheduled production quantity. That is, for the product AR541 processed by the process A, since the in-process quantity of the next process is 150 and the planned usage quantity is 600, the planned production quantity is 600-1.
50 = 450. Similarly, the planned production amount of the product AR642 to be processed by the process A is 450, the total planned production amount of the process A is calculated to be 900, and the production capacity of the equipment is 1200 or less, so 900 is a producible quantity. is there. In this way, the planned production quantity is calculated for each of the processes A, B, and C, and the production quantity is calculated by comparing this with the production capacity of the equipment corresponding to each process.
That is, the quantity to be added to each process is determined.

【0015】次にプロセス毎の1日当たりの生産量を決
定する。例えば、プロセスAの生産量を決める場合、共
有設備12、13、14のなかの最小値を最大生産量と
し、これに、その共有設備に係る各プロセスAの使用比
率、すなわち手配量の比率を乗じて得られた数量と、プ
ロセスAの固有設備能力のうちの最小値とを比較して小
さい方の値から生産量が決定される。プロセスB、Cに
ついても同様の手順により計算し、図3に示す各プロセ
ス毎の1日当たりの生産量が決定される。
Next, the daily production amount for each process is determined. For example, when determining the production amount of the process A, the minimum value of the shared facilities 12, 13, 14 is set as the maximum production amount, and the usage ratio of each process A related to the shared facility, that is, the ratio of the arranged amount is set. The quantity obtained by multiplication is compared with the minimum value of the intrinsic facility capacity of the process A, and the production quantity is determined from the smaller value. The processes B and C are also calculated by the same procedure, and the daily production amount for each process shown in FIG. 3 is determined.

【0016】図4は図1の編集装置7による一実施例の
生産計画作成の処理手順を示すフロ−チャ−トである。
日程計画条件の決定に基づく一実施例の生産計画作成の
処理手順を図4を用いて説明する。 S01:手配情報と製品化工情報を引き当てる。 S02:引き当ての結果を判定する。ここで化工情報が
ないか、若しくは不十分なときは、エラ−としてその手
配情報を除外し、図6に示すような手配情報ファイルを
作成し、生産内容の指示を行なう。 S03:手配情報をプロセス毎に抽出し分別する。 S04:図5(a)に示すように、納期順にプロセス毎
にソ−トし、納期の切迫したものから優先して投入でき
るようにする。 S05:日程計画条件ファイルにより決定された量、す
なわち、(計画日数×各プロセス生産量/日)により例
えば3日間の物量の切りだしを行なう。 S06:図5(b)に示すように、上記切りだした内容
を、厚み、材質などの化工条件I、II、III毎に並び替え
てグル−ピングする。 S07:このプロセスごとの手配情報から1日分の生産
量を切りだし1日目、2日目……と積みあげる。 S08:図5(c)に示すように、前記化工条件毎にグ
ル−ピングして投入計画とし、次に前工程の作業日に1
日ずつ付加して作業指示日とし、手配情報ファイルに各
工程の作業日を書き込み小日程計画とする。
FIG. 4 is a flow chart showing a processing procedure for producing a production plan according to an embodiment by the editing apparatus 7 of FIG.
A processing procedure for producing a production plan based on the determination of the schedule planning condition will be described with reference to FIG. S01: Allocate arrangement information and product engineering information. S02: Determine the result of allocation. If there is no or insufficient chemical engineering information, the ordering information is excluded as an error, a ordering information file as shown in FIG. 6 is created, and the production content is instructed. S03: The arrangement information is extracted and separated for each process. S04: As shown in FIG. 5A, the processes are sorted for each process in order of the delivery date, and the items with the imminent delivery date can be preferentially input. S05: The quantity determined by the schedule planning condition file, that is, (planned number of days × process production quantity / day), is cut out for 3 days, for example. S06: As shown in FIG. 5 (b), the cut-out contents are rearranged and grouped according to the processing conditions I, II, and III such as thickness and material. S07: The production amount for one day is cut out from the arrangement information for each process and accumulated on the first day, the second day, and so on. S08: As shown in FIG. 5 (c), a grouping is made for each of the above-mentioned modification conditions to make an input plan, and then 1 is set on the work day of the previous process.
Each day is added as a work instruction date, and the work date of each process is written in the arrangement information file to make a small schedule.

【0017】上記実施例によれば、各プロセスの工程負
荷を平準化し、かつ、計画期間の設備段取り回数を1回
とすることにより、計画日数をn日とした場合、従来に
比べて段取り時間を1/nに短縮することができ、これ
により生産能力が向上し工程長さを短縮することができ
た。
According to the above-described embodiment, when the process load of each process is leveled and the number of equipment setups during the planning period is set to 1, when the planned number of days is n days, the setup time is longer than that in the conventional case. Can be shortened to 1 / n, which improves the production capacity and shortens the process length.

【0018】[0018]

【発明の効果】本発明の実施により、複数の異なる並列
処理に分別される工程を含む工程群を経て処理される複
数のプロセスを有する複数製品を生産する製造ラインに
おける各工程負荷の平準化が図ることができ、生産能力
の向上と工程長さの短縮に顕著な効果を奏すると共に、
段取り時間を最小にする生産計画方法を提供することが
できる。
By implementing the present invention, it is possible to equalize each process load in a manufacturing line that produces a plurality of products having a plurality of processes processed through a process group including a process divided into a plurality of different parallel processes. It is possible to improve the production capacity and shorten the process length.
A production planning method that minimizes setup time can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の生産計画を作成する編集装
置のブロック図である。
FIG. 1 is a block diagram of an editing apparatus that creates a production plan according to an embodiment of the present invention.

【図2】本発明の一実施例の生産計画対象ラインを示す
図である。
FIG. 2 is a diagram showing a production planning target line according to an embodiment of the present invention.

【図3】本発明の一実施例の各プロセス毎の1日当たり
の生産量を示す図表である。
FIG. 3 is a chart showing the daily production of each process according to one embodiment of the present invention.

【図4】本発明の一実施例の生産計画作成の処理手順を
示すフロ−チャ−トである。
FIG. 4 is a flow chart showing a processing procedure for producing a production plan according to an embodiment of the present invention.

【図5】図4に示したステップの内容を示す図である。FIG. 5 is a diagram showing the contents of steps shown in FIG.

【図6】本発明の一実施例の手配情報ファイルを示す図
表である。
FIG. 6 is a chart showing an arrangement information file according to an embodiment of the present invention.

【図7】本発明の一実施例の各プロセス毎の日程計画条
件を示す図表である。
FIG. 7 is a table showing schedule planning conditions for each process according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…プリンタ 2…ディ
スプレイ 3…キ−ボ−ド 4…主メ
モリ 5…中央処理装置 6…通信
装置 7…編集装置 8…磁気
ディスク装置 9…日程計画条件ファイル 10…手
配情報ファイル 11…製品化工情報ファイル 12、13、14…共通設備 15、16、17、18、19、20、21…固有設備 S01〜S08…生産計画作成ステップ
1 ... Printer 2 ... Display 3 ... Keyboard 4 ... Main memory 5 ... Central processing unit 6 ... Communication device 7 ... Editing device 8 ... Magnetic disk device 9 ... Schedule planning condition file 10 ... Arrangement information file 11 ... Product engineering Information file 12, 13, 14 ... Common equipment 15, 16, 17, 18, 19, 20, 21 ... Unique equipment S01 to S08 ... Production plan creation step

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多々良 昭雄 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所情報通信事業部内 (72)発明者 橋本 正 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所情報通信事業部内 (72)発明者 村山 利雄 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所情報通信事業部内 (72)発明者 松山 純朗 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所情報通信事業部内 (72)発明者 斎藤 賢史 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所情報通信事業部内 (72)発明者 松尾 幸成 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所情報通信事業部内 (72)発明者 海老根 勇二郎 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所情報通信事業部内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Akio Tatara 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa Hitachi, Ltd. Information & Communication Division (72) Inventor Masa Hashimoto 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa Hitachi Ltd., Information & Communication Division (72) Inventor Toshio Murayama 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa Prefecture, Ltd. Information & Communications Division, Hitachi, Ltd. (72) Inoue Matsuyama Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa 216 Incorporated company Hitachi Ltd., Information and Communication Division (72) Inventor Kenji Saito Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture 216 Incorporated Company Hitachi Ltd., Information-and-Communication Division (72) Inventor Kosei Matsuo Totsuka-ku, Yokohama-shi, Kanagawa 216 Totsuka-cho, Ltd. Information & Communication Division, Hitachi, Ltd. (72) Inventor Isamu Ebine Ichiro, Kanagawa Prefecture, Totsuka-ku, Yokohama-shi Totsuka-cho, 216 address Co., Ltd., Hitachi Information and Communications business unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の異なる並列処理に分別される工程
を含む工程群を経て処理される複数のプロセスを有する
複数製品を生産する製造ラインの生産計画方法におい
て、製品の工程における化工内容を示す製品化工情報、
製品の生産内容を指示する手配情報、製品の生産展開日
程を示す日程計画計画情報を用いて、(1)各プロセス
共通設備の中の最小生産量に手配量の比率を掛けた数
量、若しくは、各プロセス固有設備の最小生産量の、何
れか小さい数量を求めて前記複数のプロセス毎に工程に
投入可能な生産量として日程計画情報を決定する段階、
(2)各プロセス毎に手配情報を納期順に並べ、前記段
階で求めた1日当りの投入可能量と計画範囲日数から納
期の早いもの順に抽出し、各プロセス毎の投入製品を決
定する段階、(3)各プロセス毎に抽出した投入製品中
で同一段取り条件毎に集計する段階、(4)前記段階で
のプロセス毎から1日当りの投入量を抽出し、その同一
計画日の中で同一段取り条件毎に集計し投入順序を決定
する段階、により前記製造ラインへの生産指示を行なう
ことを特徴とする生産計画方法。
1. In a production planning method of a manufacturing line for producing a plurality of products having a plurality of processes to be processed through a process group including a process grouped into a plurality of different parallel processes, the contents of chemical modification in the process of the products are shown. Product engineering information,
(1) A quantity obtained by multiplying the minimum production amount in each process common equipment by the ratio of the arrangement amount, using the arrangement information that indicates the production content of the product and the schedule planning information that indicates the production development schedule of the product, or Of the minimum production amount of each process-specific equipment, determining a smaller quantity, and determining the scheduling information as the production amount that can be input to the process for each of the plurality of processes,
(2) Arranging the arrangement information for each process in order of delivery date, extracting from the available input amount per day and planned range days obtained in the above step in order of earliest delivery date, and determining the input product for each process, ( 3) A step of totaling the same setup conditions in the input products extracted for each process, (4) Extracting the input amount per day from each process in the above steps, and the same setup conditions within the same planned date A production planning method, wherein a production instruction is given to the manufacturing line by a step of totalizing each and determining an input order.
JP28241693A 1993-11-11 1993-11-11 Method for planning production Pending JPH07134740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28241693A JPH07134740A (en) 1993-11-11 1993-11-11 Method for planning production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28241693A JPH07134740A (en) 1993-11-11 1993-11-11 Method for planning production

Publications (1)

Publication Number Publication Date
JPH07134740A true JPH07134740A (en) 1995-05-23

Family

ID=17652132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28241693A Pending JPH07134740A (en) 1993-11-11 1993-11-11 Method for planning production

Country Status (1)

Country Link
JP (1) JPH07134740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214261A (en) * 2012-04-04 2013-10-17 Mitsubishi Heavy Ind Ltd Work commencement date schedule production system and production program
WO2021131941A1 (en) * 2019-12-26 2021-07-01 ソニーグループ株式会社 Information processing device, information processing system, and information processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214261A (en) * 2012-04-04 2013-10-17 Mitsubishi Heavy Ind Ltd Work commencement date schedule production system and production program
WO2021131941A1 (en) * 2019-12-26 2021-07-01 ソニーグループ株式会社 Information processing device, information processing system, and information processing method

Similar Documents

Publication Publication Date Title
US5745972A (en) Method of producing parts/substrate assemblies
Buzacott The structure of manufacturing systems: insights on the impact of variability
EP0843513B1 (en) Facility operating method
JPH07134740A (en) Method for planning production
Powell et al. The application of lean production control methods within a process-type industry: the case of hydro automotive structures
Salunkhe et al. Value Stream Mapping to Reduce Lead Time and Improve Throughput Time in a Manufacturing Organization: A Review
Shanker et al. Loading problem and resource considerations in FMS: a review
US6901342B2 (en) Test wafer usage forecast modeling method
Doerr et al. Design, coordination and control of hybrid factories: Research issues from an exploratory field study
Aanen et al. Planning and scheduling in an FMS
Karmarkar Controlling WIP and Leadtimes in Job Shops
JPH05257947A (en) Line production supporting system for plural sort products
Raj Kumar et al. A heuristic for sequencing PCBs with due‐dates
Seidmann Performance management issues in flexible manufacturing systems: an analytic perspective
Riezebos Lean planning and control: principles and practice
Duda et al. Application of a lean cellular design decomposition to automotive component manufacturing system design
JP2000322119A (en) Substitutive lot determination system
Skóra et al. Scheduling Algorithm with Simultaneous Determination of the Batch Sizes on the Example of 3D Printing System
CN105530320B (en) The distributed approach and distributed system of corium automation machining center
Doulgeri et al. Effect of workstation loading on the objective of the systems’s entry policy in FMS
JPH11245142A (en) Method and device for making production plan
Stecke Production planning and scheduling in flexible manufacturing systems
JPH1031697A (en) Product production method and production management system
Meester et al. Shop floor scheduling in discrete parts manufacturing
Sundaram et al. A scheduling strategy in the manufacture of printed circuit boards (PCBs) using surface mount technology (SMT)