JPH07130493A - Method and device for cooling microwave discharge tube - Google Patents

Method and device for cooling microwave discharge tube

Info

Publication number
JPH07130493A
JPH07130493A JP5275175A JP27517593A JPH07130493A JP H07130493 A JPH07130493 A JP H07130493A JP 5275175 A JP5275175 A JP 5275175A JP 27517593 A JP27517593 A JP 27517593A JP H07130493 A JPH07130493 A JP H07130493A
Authority
JP
Japan
Prior art keywords
discharge tube
microwave
cavity resonator
coaxial waveguide
inner conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5275175A
Other languages
Japanese (ja)
Inventor
Tetsuya Ikeda
哲哉 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5275175A priority Critical patent/JPH07130493A/en
Publication of JPH07130493A publication Critical patent/JPH07130493A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To establish a method of effectively cooling those parts of a microwave discharge tube which run temperature. CONSTITUTION:Microwaves emitted by a microwave oscillator 6 are introduced into a cavity resonator 1 via coaxial waveguide tubes 3, 4, and electric discharge is generated by the electric field due to microwaves. A refrigerant is introduced into this resonator 1 through the inner conductor 4 of the coaxial waveguide tubes 3, 4 coupled with the resonator 1 so as to cool the tubes 3, 4 serving as a microwave transmission path, the resonator 1, and a discharge tube 13 installed therein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波領域の電磁
波よって放電励起されるマイクロ波放電管の冷却方法及
び装置に関し、例えば、ダイヤモンド薄膜装置等のプラ
ズマ化学蒸着装置、レーザー発振器に適用することがで
きる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for cooling a microwave discharge tube which is excited by an electromagnetic wave in the microwave region, and is applicable to a plasma chemical vapor deposition apparatus such as a diamond thin film apparatus and a laser oscillator. You can

【0002】[0002]

【従来の技術】従来のダイヤモンド薄膜製造装置を図3
を参照して説明する。図3は従来のダイヤモンド薄膜製
造装置の構成を示す正面図である。同図に示すように、
放電管13は導波管7を上下から貫通しスリーブ12に
て固定され、導波管7の一端はマイクロ波発振器6に接
続し、その他端にはプランジャー17が装着されてい
る。
2. Description of the Related Art A conventional diamond thin film manufacturing apparatus is shown in FIG.
Will be described with reference to. FIG. 3 is a front view showing the configuration of a conventional diamond thin film manufacturing apparatus. As shown in the figure,
The discharge tube 13 penetrates the waveguide 7 from above and below and is fixed by a sleeve 12, one end of the waveguide 7 is connected to the microwave oscillator 6, and a plunger 17 is attached to the other end.

【0003】放電管1は、その内部にシリコンウエハー
等の基板9の置かれた試料台8が固定されており、その
上端は図示しない試料ガス供給源に接続し、また、その
下端は図示しない排気管と接続している。従って、マイ
クロ波発振器6から出力されたマイクロ波が導波管7の
中を伝搬して放電管13に導入されると、放電管13に
試料ガスとして流入するメタン及び水素の混合ガスがマ
イクロ波の電界により放電励起され、発生したプラズマ
により、基板9上にダイヤモンド薄膜が形成される。
A sample table 8 on which a substrate 9 such as a silicon wafer is placed is fixed inside the discharge tube 1, the upper end of which is connected to a sample gas supply source (not shown), and the lower end thereof is not shown. It is connected to the exhaust pipe. Therefore, when the microwave output from the microwave oscillator 6 propagates through the waveguide 7 and is introduced into the discharge tube 13, the mixed gas of methane and hydrogen flowing into the discharge tube 13 as the sample gas is microwave. The discharge thin film is formed on the substrate 9 by the plasma generated by the discharge excitation by the electric field.

【0004】[0004]

【発明が解決しようとする課題】上述した従来のダイヤ
モンド薄膜製造装置において、ダイヤモンド薄膜形成速
度は、放電管13中の試料ガス圧力が高いほど増加する
が、それだけ放電管13の温度が上昇するため、長時間
のマイクロ波放電ができなくなる欠点があった。
In the conventional diamond thin film manufacturing apparatus described above, the diamond thin film forming rate increases as the sample gas pressure in the discharge tube 13 increases, but the temperature of the discharge tube 13 increases accordingly. However, there is a drawback that microwave discharge for a long time cannot be performed.

【0005】そこで、放電管13の冷却のため、空胴共
振器にマイクロ波が漏洩しない程度の孔をあけ、この孔
を通して空冷を行っているため、効率が低い欠点があ
り、空胴共振器と導波管結合部のアンテナの冷却は有効
に行えないのが実状である。
Therefore, in order to cool the discharge tube 13, a hole is formed in the cavity resonator to the extent that microwaves do not leak, and air cooling is performed through this hole, so that there is a disadvantage of low efficiency. The reality is that the antenna of the waveguide coupling part cannot be effectively cooled.

【0006】更に、マイクロ波の同軸導波管と空胴共振
器の結合部に取り付けられたアンテナによって空胴共振
器内部にマイクロ波を導入する場合、空胴共振器内部の
電界強度はアンテナ周辺部が強いため、アンテナ近傍の
ガスの強い放電励起のためアンテナ付近の放電管が特に
熱くなる。更に、同軸導波管も放電プラズマ特性(負
荷)の変動のため反射マイクロ波により加熱される問題
があった。本発明は、上記従来技術に鑑みなされたもの
で、放電管、空胴共振器内壁、アンテナ、同軸導波管等
の加熱部を効率的に冷却する方法及び装置を提供するこ
とを目的とする。
Furthermore, when microwaves are introduced into the cavity resonator by an antenna attached to the coupling portion between the microwave coaxial waveguide and the cavity resonator, the electric field strength inside the cavity resonator is the same as that around the antenna. Since the portion is strong, the discharge tube near the antenna becomes particularly hot due to the strong discharge excitation of the gas near the antenna. Further, there is a problem that the coaxial waveguide is also heated by the reflected microwaves due to the variation of discharge plasma characteristics (load). The present invention has been made in view of the above prior art, and an object of the present invention is to provide a method and apparatus for efficiently cooling a heating part such as a discharge tube, an inner wall of a cavity resonator, an antenna, and a coaxial waveguide. .

【0007】[0007]

【課題を解決するための手段】斯かる目的を達成する本
発明の構成はマイクロ波発振器から出力されたマイクロ
波を同軸導波管を使って空胴共振器中に導入し、その電
界によって放電を発生させる装置において、当該同軸導
波管を形成する内導体と外導体において内導体の内部に
空気、窒素ガスあるいは液体窒素などの冷媒を流通さ
せ、空胴共振器内部に導入することによって、放電管、
空胴共振器内壁、アンテナ、同軸導波管を効率的に冷却
できることを特徴とする。
The structure of the present invention which achieves such an object is to introduce the microwave output from a microwave oscillator into a cavity resonator by using a coaxial waveguide, and to discharge by the electric field thereof. In the device for generating, by circulating a refrigerant such as air, nitrogen gas or liquid nitrogen in the inner conductor in the inner conductor and the outer conductor forming the coaxial waveguide, and introducing the refrigerant into the cavity resonator, Discharge tube,
The inner wall of the cavity resonator, the antenna, and the coaxial waveguide can be efficiently cooled.

【0008】[0008]

【作用】同軸導波管の内導体に冷媒を流すことによっ
て、内導体の管壁を冷却し、同軸導波管と空胴共振器と
の結合部のアンテナの冷却ができ、更に、アンテナ部か
ら噴出した冷媒がアンテナ周辺部の放電管に吹き付けら
れることによって、放電管も冷却できる。
By supplying a coolant to the inner conductor of the coaxial waveguide, the tube wall of the inner conductor can be cooled, and the antenna at the coupling portion between the coaxial waveguide and the cavity resonator can be cooled. The discharge tube can be cooled by blowing the refrigerant ejected from the discharge tube around the antenna.

【0009】[0009]

【実施例】以下、本発明について、図面に示す実施例を
参照して詳細に説明する。 〔実施例1〕本発明の一実施例を図1に示す。本実施例
は、本発明をダイヤモンド薄膜製造について適用したも
のである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. [Embodiment 1] FIG. 1 shows an embodiment of the present invention. In this example, the present invention is applied to the production of a diamond thin film.

【0010】同図に示すように、円筒型空胴共振器1
(内径90mm、長さ100mm)の上面及び下面にスリー
ブ12が貫通して夫々設けられ、これらスリーブ12に
密着して放電管13が円筒型空胴共振器1の内部に挿入
・設置されている。放電管13の内部には、ダイヤモン
ド薄膜を付着させるための基板(シリコンウェハー)9
とそれの試料台8が備えられている。
As shown in the figure, a cylindrical cavity resonator 1
Sleeves 12 penetrate through the upper and lower surfaces of (inner diameter 90 mm, length 100 mm), and discharge tubes 13 are inserted and installed inside the cylindrical cavity resonator 1 in close contact with the sleeves 12. . Inside the discharge tube 13, a substrate (silicon wafer) 9 for depositing a diamond thin film
And a sample table 8 therefor.

【0011】放電管13は、その上端が試料ガス供給源
10に接続し、その下端が排気管11に接続しており、
試料ガスとして水素と5%のメタンの混合ガスが10To
rr、流量1000ml/min の条件で流入する。円筒型空
胴共振器1には、外導体4及び内導体3よりなる同軸導
波管が接続され、この同軸導波管は同軸導波管変換器2
及び矩型導波管7を介してマイクロ波発振器6に接続し
ている。
The discharge tube 13 has its upper end connected to the sample gas supply source 10 and its lower end connected to the exhaust pipe 11,
Mixed gas of hydrogen and 5% methane is 10To as sample gas
rr and flow rate of 1000 ml / min. A coaxial waveguide including an outer conductor 4 and an inner conductor 3 is connected to the cylindrical cavity resonator 1. The coaxial waveguide is a coaxial waveguide converter 2
And the microwave oscillator 6 through the rectangular waveguide 7.

【0012】従って、マイクロ波発振器6で発生した周
波数2.45GHz のマイクロ波は、矩型導波管7、同軸
導波管変換器2を経て、同軸導波管の内導体4と外導体
3の間を伝搬して、円筒型空胴共振器1に導入される。
更に、内導体4は円筒型空胴共振器1に対してループア
ンテナとして結合しているため、円筒型空胴共振器1内
部にマイクロ波電界が形成される。
Therefore, the microwave having a frequency of 2.45 GHz generated by the microwave oscillator 6 passes through the rectangular waveguide 7 and the coaxial waveguide converter 2 and then the inner conductor 4 and the outer conductor 3 of the coaxial waveguide. And is introduced into the cylindrical cavity resonator 1.
Furthermore, since the inner conductor 4 is coupled to the cylindrical cavity resonator 1 as a loop antenna, a microwave electric field is formed inside the cylindrical cavity resonator 1.

【0013】更に、同軸導波管の内導体4と外導体3の
間にはテフロン板5が介装され、内導体4は、その一端
が同軸導波管変換器2を貫通して冷媒循環ポンプ14に
接続している。従って、冷媒循環ポンプ14から冷媒と
して吐出されるフロンが内導体4を通じて円筒型空胴共
振器1内に導入されることになる。このように同軸導波
管の内導体4にフロンを流すことによって、内導体4の
管壁の冷却ができると共に、同軸導波管と円筒型空胴共
振器1との結合部のアンテナの冷却ができ、更に、内導
体4から噴出したフロンはアンテナ周辺部の放電管13
に吹き付けられることによって、放電管13も冷却でき
る。
Further, a Teflon plate 5 is interposed between the inner conductor 4 and the outer conductor 3 of the coaxial waveguide, and one end of the inner conductor 4 penetrates the coaxial waveguide converter 2 to circulate the refrigerant. It is connected to the pump 14. Therefore, CFCs discharged as a refrigerant from the refrigerant circulation pump 14 are introduced into the cylindrical cavity resonator 1 through the inner conductor 4. By flowing Freon in the inner conductor 4 of the coaxial waveguide in this way, the tube wall of the inner conductor 4 can be cooled and the antenna at the coupling portion between the coaxial waveguide and the cylindrical cavity resonator 1 can be cooled. In addition, the CFCs ejected from the inner conductor 4 are discharged from the discharge tube 13 near the antenna.
The discharge tube 13 can also be cooled by being blown onto.

【0014】また、円筒型空胴共振器1から冷媒循環ポ
ンプ14へ接続する配管が設けられ、放電管13等を冷
却したフロンが冷媒循環ポンプ14へ循環するようにな
っている。上記構成を有する本実施例のマイクロ波放電
管の冷却装置により、1時間の放電を行なった後、製造
した薄膜の測定結果を表1に従来技術と比較して示す。
A pipe connecting the cylindrical cavity resonator 1 to the refrigerant circulation pump 14 is provided so that the CFCs that have cooled the discharge tube 13 and the like circulate to the refrigerant circulation pump 14. Table 1 shows the measurement results of the thin film produced after discharging for 1 hour by the cooling device for the microwave discharge tube of the present embodiment having the above-mentioned configuration, in comparison with the prior art.

【0015】[0015]

【表1】 [Table 1]

【0016】この表からわかるように、本発明では従来
技術と比較して、マイクロ波パワーを増加させることが
でき、従来よりも大きな空間にプラズマを生成できる。
これによりダイヤモンド合成に必要なメタンの反応を十
分制御できるため、表1に示すように成膜速度が向上し
た。
As can be seen from this table, in the present invention, the microwave power can be increased as compared with the prior art, and plasma can be generated in a larger space than in the prior art.
As a result, the reaction of methane necessary for diamond synthesis can be sufficiently controlled, and thus the film formation rate was improved as shown in Table 1.

【0017】〔実施例2〕本発明の他の実施例を図2に
示す。本実施例は、冷媒としてフロンに代えて窒素ガス
を使用するものである。即ち、内導体4は、その一端が
同軸導波管変換器2を貫通してガスコンプレッサ15に
接続し、その他端は円筒型空胴共振器1内で放電管13
に向かい合う位置にガス噴出ノズル16として形成され
ている。従って、ガスコンプレッサ15から冷媒として
吐出される窒素ガスは内導体4を通じて、円筒型空胴共
振器1内に導入され、ガス噴出ノズル16から噴出した
窒素ガスにより基板付近の放電管13を局所的に冷却で
き、放電プラズマへのマイクロ波エネルギーの注入量を
増加させることができる。
[Second Embodiment] FIG. 2 shows another embodiment of the present invention. In this embodiment, nitrogen gas is used as the refrigerant instead of CFC. That is, one end of the inner conductor 4 penetrates the coaxial waveguide converter 2 and is connected to the gas compressor 15, and the other end thereof is connected to the discharge tube 13 in the cylindrical cavity resonator 1.
Is formed as a gas ejection nozzle 16 at a position facing each other. Therefore, the nitrogen gas discharged from the gas compressor 15 as a refrigerant is introduced into the cylindrical cavity resonator 1 through the inner conductor 4, and the nitrogen gas ejected from the gas ejection nozzle 16 locally discharges the discharge tube 13 near the substrate. Therefore, the amount of microwave energy injected into the discharge plasma can be increased.

【0018】本実施例のダイヤモンド合成の実験結果を
表1に示す。この表に示されるように実施例1と同様
に、従来技術と比較して十分効果があることがわかる。
本実施例はダイヤモンドの合成に限られたものではな
く、また、冷媒を噴出するノズル形状や噴出をパルス状
にする等により放電条件を多様化できるために、製造す
る薄膜の膜質を変えることができる。
Table 1 shows the experimental results of diamond synthesis of this example. As shown in this table, it can be seen that the same effect as in Example 1 is obtained as compared with the conventional technique.
This example is not limited to the synthesis of diamond, and since the discharge conditions can be diversified by changing the nozzle shape for ejecting the coolant or making the ejection pulse, it is possible to change the film quality of the thin film to be produced. it can.

【0019】[0019]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明の冷却作用によれば、マイクロ波放電
装置において、冷媒により放電管等を冷却するので、種
々の圧力条件で放電を長時間安定に維持することがで
き、更に空胴共振器へのマイクロ波の導入アンテナ、及
び導波管についても温度が一定となるため動作性能を安
定させることができる。
As described above in detail with reference to the embodiments, according to the cooling function of the present invention, the discharge tube and the like are cooled by the refrigerant in the microwave discharge device, so that it is possible to operate under various pressure conditions. The discharge can be maintained stably for a long time, and since the temperature of the antenna for introducing the microwave into the cavity resonator and the waveguide are constant, the operation performance can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わるダイヤモンド薄膜製
造装置の正面図である。
FIG. 1 is a front view of a diamond thin film manufacturing apparatus according to an embodiment of the present invention.

【図2】本発明の他の実施例に係わるダイヤモンド薄膜
製造装置の正面図である。
FIG. 2 is a front view of a diamond thin film manufacturing apparatus according to another embodiment of the present invention.

【図3】従来の製造装置を示す正面図である。FIG. 3 is a front view showing a conventional manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 円筒型空胴共振器 2 同軸導波管変換器 3 外導体 4 内導体 5 テフロン板 6 マイクロ波発振器 7 矩型導波管 8 試料台 9 基板 10 試料ガス供給源 11 排気管 12 スリーブ 13 放電管 14 冷媒循環ポンプ 15 ガスコンプレッサ 16 ガス噴射ノズル 17 プランジャー 1 cylindrical cavity resonator 2 coaxial waveguide converter 3 outer conductor 4 inner conductor 5 Teflon plate 6 microwave oscillator 7 rectangular waveguide 8 sample stage 9 substrate 10 sample gas supply source 11 exhaust pipe 12 sleeve 13 discharge Pipe 14 Refrigerant circulation pump 15 Gas compressor 16 Gas injection nozzle 17 Plunger

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波発振器から出力されたマイク
ロ波を同軸導波管を通じて空胴共振器中に導入し、マイ
クロ波の電界によって放電を発生させる装置において、
前記空胴共振器に結合した前記同軸導波管の内導体中を
通じて冷媒を前記空胴共振器内へ導き、マイクロ波伝送
路となる前記同軸導波管、前記空胴共振器及び空胴共振
器内部に設置した放電管を冷却することを特徴とするマ
イクロ波放電管の冷却方法。
1. A device for introducing a microwave output from a microwave oscillator into a cavity resonator through a coaxial waveguide to generate a discharge by an electric field of the microwave,
The coaxial waveguide, the cavity resonator, and the cavity resonance, which guide the refrigerant into the cavity resonator through the inner conductor of the coaxial waveguide coupled to the cavity resonator and serve as a microwave transmission path. A method of cooling a microwave discharge tube, characterized in that the discharge tube installed inside the vessel is cooled.
【請求項2】 前記空胴共振器へのマイクロ波導入用ア
ンテナに同軸導波管の内導体を結合し、冷媒の噴出口と
したことを特徴とする請求項1記載のマイクロ波放電管
の冷却装置。
2. The microwave discharge tube according to claim 1, wherein an inner conductor of a coaxial waveguide is coupled to the antenna for introducing microwaves to the cavity resonator to form a refrigerant outlet port. Cooling system.
【請求項3】 前記アンテナに結合した同軸導波管の内
導体からの冷媒の噴出口を、前記空胴共振器内に設置し
た前記放電管に集中するようにノズル構造とすることを
特徴とする請求項2記載のマイクロ波放電管の冷却装
置。
3. A nozzle structure is formed so that the discharge port of the refrigerant from the inner conductor of the coaxial waveguide coupled to the antenna is concentrated on the discharge tube installed in the cavity resonator. The cooling device for a microwave discharge tube according to claim 2.
JP5275175A 1993-11-04 1993-11-04 Method and device for cooling microwave discharge tube Withdrawn JPH07130493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5275175A JPH07130493A (en) 1993-11-04 1993-11-04 Method and device for cooling microwave discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5275175A JPH07130493A (en) 1993-11-04 1993-11-04 Method and device for cooling microwave discharge tube

Publications (1)

Publication Number Publication Date
JPH07130493A true JPH07130493A (en) 1995-05-19

Family

ID=17551719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5275175A Withdrawn JPH07130493A (en) 1993-11-04 1993-11-04 Method and device for cooling microwave discharge tube

Country Status (1)

Country Link
JP (1) JPH07130493A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071656A (en) * 2006-09-15 2008-03-27 Nagaoka Univ Of Technology Solution plasma reaction apparatus, and manufacturing method for nanomaterial using the solution plasma reaction apparatus
JP2009016146A (en) * 2007-07-04 2009-01-22 Nagano Japan Radio Co Plasma treatment device and plasma treatment method
JP2010129327A (en) * 2008-11-27 2010-06-10 Tokai Rubber Ind Ltd Microwave plasma processing device
JP5239021B2 (en) * 2006-03-07 2013-07-17 国立大学法人 琉球大学 Plasma generator and plasma generation method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239021B2 (en) * 2006-03-07 2013-07-17 国立大学法人 琉球大学 Plasma generator and plasma generation method using the same
JP2008071656A (en) * 2006-09-15 2008-03-27 Nagaoka Univ Of Technology Solution plasma reaction apparatus, and manufacturing method for nanomaterial using the solution plasma reaction apparatus
JP2009016146A (en) * 2007-07-04 2009-01-22 Nagano Japan Radio Co Plasma treatment device and plasma treatment method
JP2010129327A (en) * 2008-11-27 2010-06-10 Tokai Rubber Ind Ltd Microwave plasma processing device

Similar Documents

Publication Publication Date Title
US5361016A (en) High density plasma formation using whistler mode excitation in a reduced cross-sectional area formation tube
US6059922A (en) Plasma processing apparatus and a plasma processing method
KR100794806B1 (en) Plasma processing apparatus and method, and slot antenna
JP2002532838A (en) Equipment for generating low-temperature free plasma beam
TW200806094A (en) Plasma treating apparatus
KR950010714A (en) Plasma generating method and apparatus and plasma processing method and apparatus using same
US5643365A (en) Method and device for plasma vapor chemical deposition of homogeneous films on large flat surfaces
US5647944A (en) Microwave plasma treatment apparatus
Gantenbein et al. Experimental results and numerical simulations of a high power 140 GHz gyrotron
JPH0918073A (en) Microwave exciting gas laser oscillation device
JPH07130493A (en) Method and device for cooling microwave discharge tube
JPH07135094A (en) Material supply method and device for microwave induction plasma
CN115442951A (en) Double-frequency microwave low-pressure plasma source based on waveguide slot feed multi-die cavity
JPH06140186A (en) Manufacture of plasma
JPH1012594A (en) Plasma treatment device with slot antenna
KR100500360B1 (en) High efficient-atmospheric microwave plasma system
JPS6139730B2 (en)
JP2021064508A (en) Plasma processing apparatus
JPS59103341A (en) Plasma processing apparatus
JPH01176700A (en) Thermal plasma generator
KR100389810B1 (en) Diamond film depositing apparatus using microwave and plasma
JPH07130492A (en) Method and device for generating plasma
Yoshida Holey-plate plasma source using a partial-coaxial microwave cavity
JP2697464B2 (en) Microwave plasma processing equipment
JP3981240B2 (en) Apparatus and method for generating microwave plasma

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130