JPH07128476A - Reactor safety facilities - Google Patents

Reactor safety facilities

Info

Publication number
JPH07128476A
JPH07128476A JP5271558A JP27155893A JPH07128476A JP H07128476 A JPH07128476 A JP H07128476A JP 5271558 A JP5271558 A JP 5271558A JP 27155893 A JP27155893 A JP 27155893A JP H07128476 A JPH07128476 A JP H07128476A
Authority
JP
Japan
Prior art keywords
core
coolant
catcher
pressure vessel
core catcher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5271558A
Other languages
Japanese (ja)
Inventor
Hiroaki Suzuki
洋明 鈴木
Taichi Takii
太一 滝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5271558A priority Critical patent/JPH07128476A/en
Publication of JPH07128476A publication Critical patent/JPH07128476A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To limit the amount of transitional heat transmission flowing below a pressure vessel from a core to coolant in case of a hypothetical accident by installing a core catcher with sections formed by partition boards below the pressure vessel. CONSTITUTION:A core catcher 20 is installed in a lower dry well 11 placed below a pressure vessel 2, and partition boards 21 divides the core catcher 20 into sections. In case of a loss of coolant accident, therefore, if the unavailability of an emergency core cooling system causes a hypothetical accident, the failure in cooling a core 1, a part of the core 1 flows out from the pressure vessel 2 to the lower dry well 11 and is held dividedly in each section of the core catcher 20. Moreover, the radiant heat from the core 1 heats a valve 40 with a fusible metal plug, when it fuses and opens. Consequently, the coolant in a pressure suppression room 4 is supplied to one of the sections of the core catcher 20 and the amount of transitional heat transmission from the core I to the coolant is limited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は格納容器を有する原子力
発電所の原子炉安全設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear reactor power plant safety facility having a containment vessel.

【0002】[0002]

【従来の技術】従来の装置には、特開平3−152497 号公
報に記載のように、仮想的な事故時に圧力容器の下方に
冷却材を供給するようにしたものがある。
2. Description of the Related Art As a conventional device, as described in Japanese Patent Laid-Open No. 3-152497, there is a device which supplies a coolant below a pressure vessel in a virtual accident.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、仮想
的な事故時に圧力容器の下方に流出する炉心から冷却材
への過渡的な伝熱量を制限する点が考慮されておらず、
炉心が冷却材と接触する際に急激に蒸発して動的な荷重
が発生する可能性があるため、格納容器の耐圧を高めて
おく必要があるという問題点があった。
The above-mentioned prior art does not consider the point of limiting the transient heat transfer amount from the core flowing out below the pressure vessel to the coolant in the hypothetical accident,
There is a problem in that it is necessary to increase the pressure resistance of the containment vessel because the reactor core may abruptly evaporate when it comes into contact with the coolant and a dynamic load may be generated.

【0004】本発明の目的は、仮想的な事故時に圧力容
器の下方に流出する炉心から冷却材への過渡的な伝熱量
を制限し、仮想的な事故時に発生する可能性のある動的
な荷重の規模を制限することにある。
An object of the present invention is to limit the transient heat transfer amount from the core to the coolant flowing out below the pressure vessel during a virtual accident, and to reduce the dynamic heat that may occur during a virtual accident. To limit the scale of the load.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、炉心を内蔵する圧力容器と、前記圧力容
器を配置した格納容器と、前記圧力容器の下方に冷却材
を供給する手段とを有する原子炉安全設備において、前
記圧力容器の下方に仕切板により形成される複数の区画
を有するコア・キャッチャを設置する。
In order to solve the above problems, the present invention provides a pressure vessel containing a core, a containment vessel in which the pressure vessel is arranged, and a means for supplying a coolant below the pressure vessel. In a nuclear reactor safety facility having: a core catcher having a plurality of compartments formed by partition plates is installed below the pressure vessel.

【0006】好ましくは、前記コア・キャッチャの複数
の区画を形成する仕切板の下方に区画を連通する流路を
設け、前記流路を前記炉心より低融点の材料で栓をす
る。
[0006] Preferably, a flow path for communicating the compartments is provided below a partition plate forming a plurality of compartments of the core catcher, and the flow passage is plugged with a material having a melting point lower than that of the core.

【0007】また、好ましくは、前記コア・キャッチャ
の複数の区画の下方に前記炉心より低融点の材料を設置
する。
Further, preferably, a material having a melting point lower than that of the core is installed below the plurality of sections of the core catcher.

【0008】[0008]

【作用】本発明では、圧力容器の下方に仕切板により形
成される複数の区画を有するコア・キャッチャを設置す
るので、以下のような作用が得られる。即ち、炉心の一
部が圧力容器の下方に流出するような仮想的な事故時
に、流出した炉心はコア・キャッチャの複数の区画に分
割されて保持される。この状況で冷却材をコア・キャッ
チャの複数の区画の一つに供給すると、冷却材は各区画
を満たしながら拡がるため炉心から冷却材への過渡的な
伝熱量が制限される。さらに、冷却材がコア・キャッチ
ャを満たしている状態で炉心の一部が圧力容器の下方に
流出した場合でも、流出した炉心はコア・キャッチャの
複数の区画に分割されて保持されるため、いわゆる水蒸
気爆発が仮に発生しても、水蒸気爆発に寄与する炉心の
量は各区画に保持される量に制限されているため炉心か
ら冷却材への過渡的な伝熱量が制限される。
In the present invention, since the core catcher having a plurality of partitions formed by the partition plate is installed below the pressure vessel, the following effects can be obtained. That is, at the time of a virtual accident in which a part of the core flows out below the pressure vessel, the core that has flowed out is divided into a plurality of sections of the core catcher and held. When the coolant is supplied to one of the multiple compartments of the core catcher in this situation, the coolant expands while filling each compartment, limiting the transient heat transfer from the core to the coolant. Further, even when a part of the core flows out below the pressure vessel in a state where the coolant fills the core catcher, the outflowing core is divided into a plurality of sections of the core catcher and is retained, so-called Even if a steam explosion occurs, the amount of the core that contributes to the steam explosion is limited to the amount held in each section, so the amount of transient heat transfer from the core to the coolant is limited.

【0009】また、コア・キャッチャの複数の区画を形
成する仕切板の下方に区画を連通する流路を設け、流路
を炉心より低融点の材料で栓をするので、以下のような
作用が得られる。即ち、炉心の一部が圧力容器の下方に
流出するような仮想的な事故時に、流出した炉心はコア
・キャッチャの複数の区画に分割されて保持される。こ
の状況で冷却材をコア・キャッチャの複数の区画の一つ
に供給すると、冷却材は各区画を満たしながら拡がるた
め炉心から冷却材への過渡的な伝熱量が制限される。コ
ア・キャッチャの複数の区画を形成する仕切板の下方の
流路に設置した栓は炉心より低融点の材料であるため溶
融し、コア・キャッチャの複数の区画は連通して炉心が
移動できるようになり、炉心はコア・キャッチャをほぼ
同液位で満たす。これにより、炉心と冷却材との伝熱面
積が増大し、炉心は冷却材により効率的に冷却されるよ
うになる。
Further, since the flow path for communicating the compartments is provided below the partition plate forming the plurality of compartments of the core catcher, and the flow passage is plugged with a material having a melting point lower than that of the core, the following action is obtained. can get. That is, at the time of a virtual accident in which a part of the core flows out below the pressure vessel, the core that has flowed out is divided into a plurality of sections of the core catcher and held. When the coolant is supplied to one of the multiple compartments of the core catcher in this situation, the coolant expands while filling each compartment, limiting the transient heat transfer from the core to the coolant. The plug installed in the flow path below the partition plate that forms multiple compartments of the core catcher is a material that has a lower melting point than the core, so it melts, and the multiple compartments of the core catcher communicate with each other so that the core can move And the core fills the core catcher at approximately the same liquid level. As a result, the heat transfer area between the core and the coolant is increased, and the core is efficiently cooled by the coolant.

【0010】また、コア・キャッチャの複数の区画の下
方に炉心より低融点の材料を設置するので、以下のよう
な作用が得られる。即ち、炉心の一部が圧力容器の下方
に流出するような仮想的な事故時に、流出した炉心はコ
ア・キャッチャの複数の区画に分割されて保持される。
この状況で冷却材をコア・キャッチャの複数の区画の一
つに供給すると、冷却材は各区画を満たしながら拡がる
ため炉心から冷却材への過渡的な伝熱量が制限される。
さらに、炉心は低融点の材料と混合して融点が低下し、
流動性が向上してコア・キャッチャの複数の区画間を容
易に移動できるようになり、炉心と冷却材との伝熱面積
が速やかに増大し、炉心は冷却材により効率的に冷却さ
れるようになる。
Further, since the material having a melting point lower than that of the core is installed below the plurality of compartments of the core catcher, the following effects can be obtained. That is, at the time of a virtual accident in which a part of the core flows out below the pressure vessel, the core that has flowed out is divided into a plurality of sections of the core catcher and held.
When the coolant is supplied to one of the multiple compartments of the core catcher in this situation, the coolant expands while filling each compartment, limiting the transient heat transfer from the core to the coolant.
Further, the core is mixed with a low melting point material to lower the melting point,
Improves fluidity and makes it easier to move between multiple compartments of the core catcher, rapidly increases the heat transfer area between the core and the coolant, and ensures that the core is cooled efficiently by the coolant. become.

【0011】[0011]

【実施例】本発明の一実施例を図1により説明する。図
1は沸騰水型原子炉の断面図であり、炉心1は圧力容器
2で囲われ、圧力容器2は格納容器3の内部に包含され
ている。圧力抑制室4はベント管5により格納容器3内
部のドライウェル10と連結されている。圧力容器2の
下方に位置する下部ドライウェル11にはコア・キャッ
チャ20を設置し、コア・キャッチャ20の下方の空間
と圧力抑制室4の水プールとを配管30で連結し、コア
・キャッチャ20の下方の空間とベント管5とを配管3
1とで連結し、配管31とコア・キャッチャ20の上方
の空間との間に可溶金属で栓をした弁40を設置してい
る。本実施例の特徴は、コア・キャッチャ20を仕切板
21により複数の区画に分割している点である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view of a boiling water reactor, in which a core 1 is surrounded by a pressure vessel 2, and the pressure vessel 2 is contained inside a containment vessel 3. The pressure suppression chamber 4 is connected to the dry well 10 inside the storage container 3 by a vent pipe 5. A core catcher 20 is installed in the lower drywell 11 located below the pressure vessel 2, and the space below the core catcher 20 and the water pool of the pressure suppression chamber 4 are connected by a pipe 30 to form a core catcher 20. The space below the pipe and the vent pipe 5 are connected to the pipe 3
A valve 40 plugged with a soluble metal is installed between the pipe 31 and the space above the core catcher 20. The feature of this embodiment is that the core catcher 20 is divided into a plurality of sections by a partition plate 21.

【0012】このような原子炉において、圧力容器2に
連結された配管、例えば、主蒸気管12、が破断するよ
うな仮想的な冷却材喪失事故時には、圧力容器2へ冷却
材を供給する非常用炉心冷却系が作動して圧力容器2内
部の冷却材液位を炉心1より上方に維持するように設計
されている。この非常用炉心冷却系が作動せず、炉心1
の冷却に失敗するという、極めて確率の低い仮想的な事
故が仮に発生するとしても、以下に述べるように炉心1
を効率的に冷却し、かつ、炉心1から冷却材への過渡的
な伝熱量を制限して動的な荷重の規模を制限することが
できる。即ち、このような仮想的な事故時に炉心1の一
部は圧力容器2から下部ドライウェル11に流出し、流
出した炉心1はコア・キャッチャ20の複数の区画に分
割されて保持される。炉心1からの輻射熱により可溶金
属で栓をした弁40が加熱されて、栓が溶けることによ
り弁40が開放され、圧力抑制室4の冷却材がコア・キ
ャッチャ20の複数の区画の一つに供給される。冷却材
はコア・キャッチャ20の各区画を満たしながら拡がる
ため炉心1から冷却材への過渡的な伝熱量が制限され
る。さらに、冷却材がコア・キャッチャ20を満たして
いる状態で炉心1の一部が圧力容器2の下方に流出する
場合でも、流出した炉心1はコア・キャッチャ20の各
区画に分割されて保持されるため、いわゆる水蒸気爆発
が仮に発生しても、水蒸気爆発に寄与する炉心1の量
は、各区画に保持される量に制限されるため、炉心1か
ら冷却材への過渡的な伝熱量が制限される。なお、コア
・キャッチャ20は炉心1より高融点の材料、例えば酸
化マグネシウムで製作し、さらに中性子吸収材、例え
ば、ボロンを含有させておくことが望ましい。
In such a nuclear reactor, in the event of a virtual coolant loss accident in which the pipe connected to the pressure vessel 2, for example, the main steam pipe 12, is broken, the coolant is supplied to the pressure vessel 2 in an emergency. The core cooling system is designed to operate to maintain the coolant liquid level inside the pressure vessel 2 above the core 1. This emergency core cooling system did not operate, and core 1
Even if a hypothetical accident with a very low probability that cooling of the core fails, as described below, the core 1
Can be efficiently cooled, and the amount of transient heat transfer from the core 1 to the coolant can be limited to limit the scale of the dynamic load. That is, at the time of such a hypothetical accident, a part of the core 1 flows out from the pressure vessel 2 to the lower dry well 11, and the core 1 that has flowed out is divided into a plurality of sections of the core catcher 20 and held. The valve 40 plugged with a soluble metal is heated by the radiant heat from the core 1, the valve 40 is opened by melting the plug, and the coolant of the pressure suppression chamber 4 is one of the plurality of compartments of the core catcher 20. Is supplied to. Since the coolant spreads while filling each section of the core catcher 20, the transient heat transfer amount from the core 1 to the coolant is limited. Further, even when a part of the core 1 flows out below the pressure vessel 2 in a state where the coolant fills the core catcher 20, the core 1 that has flowed out is divided into each section of the core catcher 20 and is retained. Therefore, even if a so-called steam explosion occurs, the amount of the core 1 that contributes to the steam explosion is limited to the amount held in each section, so that the transient heat transfer amount from the core 1 to the coolant is Limited. The core catcher 20 is preferably made of a material having a higher melting point than the core 1, for example, magnesium oxide, and further contains a neutron absorbing material, for example, boron.

【0013】本発明によれば、仮想的な事故時に圧力容
器の下方に流出する炉心から冷却材への過渡的な伝熱量
を制限し、仮想的な事故時に発生する可能性のある動的
な荷重の規模を制限できるため、格納容器の耐圧を低く
できる。
According to the present invention, the transient heat transfer amount from the core to the coolant flowing out below the pressure vessel at the time of a virtual accident is limited, and the dynamic heat that may occur at the time of the virtual accident is limited. Since the scale of the load can be limited, the pressure resistance of the containment vessel can be lowered.

【0014】本発明の他の実施例を図2により説明す
る。図2はコア・キャッチャ20の断面図であり、他の
構成は図1の実施例と同じである。本実施例の特徴は、
コア・キャッチャ20の複数の区画を形成する仕切板2
1の下方に区画を連通する流路50を設け、流路50に
は炉心1より低融点の材料、例えば鉛、で製作された栓
51を設置している点である。
Another embodiment of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view of the core catcher 20, and the other structure is the same as the embodiment of FIG. The feature of this embodiment is that
Partition plate 2 forming a plurality of compartments of the core catcher 20
1 is that a flow path 50 that communicates the compartments is provided below 1, and a plug 51 made of a material having a melting point lower than that of the core 1, for example, lead is installed in the flow path 50.

【0015】このようなコア・キャッチャ20を設置し
た原子炉において、炉心の冷却に失敗するという、極め
て確率の低い仮想的な事故が仮に発生するとしても、以
下に述べるように炉心1を効率的に冷却し、かつ、炉心
1から冷却材への過渡的な伝熱量を制限して動的な荷重
の規模を制限することができる。即ち、このような仮想
的な事故時に炉心1の一部は圧力容器2から流出し、コ
ア・キャッチャ20の複数の区画に分割されて保持され
る。冷却材がコア・キャッチャ20の複数の区画の一つ
に供給されると、冷却材はコア・キャッチャ20の各区
画を満たしながら拡がるため炉心1から冷却材への過渡
的な伝熱量が制限される。さらに、冷却材がコア・キャ
ッチャ20を満たしている状態で炉心1の一部が圧力容
器2の下方に流出する場合でも、流出した炉心1はコア
・キャッチャ20の各区画に分割されて保持されるた
め、いわゆる水蒸気爆発が仮に発生しても、水蒸気爆発
に寄与する炉心1の量は、各区画に保持される量に制限
されるため、炉心1から冷却材への過渡的な伝熱量が制
限される。さらに本実施例では、栓51が炉心1より低
融点の材料であるため溶融し、コア・キャッチャ20の
複数の区画は連通して炉心1が移動できるようになり、
炉心1はコア・キャッチャ20をほぼ同液位で満たす。
これにより、炉心1と冷却材との伝熱面積が増大し、炉
心1は冷却材により効率的に冷却されるようになる。
In a nuclear reactor equipped with such a core catcher 20, even if a hypothetical accident with a very low probability of failing to cool the core occurs, the core 1 can be efficiently operated as described below. It is possible to limit the size of the dynamic load by limiting the transient heat transfer amount from the core 1 to the coolant. That is, at the time of such a virtual accident, a part of the core 1 flows out from the pressure vessel 2, and is divided into a plurality of compartments of the core catcher 20 and held therein. When the coolant is supplied to one of the plurality of compartments of the core catcher 20, the coolant spreads while filling each compartment of the core catcher 20, so that the transient heat transfer amount from the core 1 to the coolant is limited. It Further, even when a part of the core 1 flows out below the pressure vessel 2 in a state where the coolant fills the core catcher 20, the core 1 that has flowed out is divided into each section of the core catcher 20 and is retained. Therefore, even if a so-called steam explosion occurs, the amount of the core 1 that contributes to the steam explosion is limited to the amount held in each section, so that the transient heat transfer amount from the core 1 to the coolant is Limited. Further, in this embodiment, the plug 51 is melted because it is a material having a lower melting point than that of the core 1, so that the plurality of compartments of the core catcher 20 are communicated with each other so that the core 1 can move.
The core 1 fills the core catcher 20 at approximately the same liquid level.
As a result, the heat transfer area between the core 1 and the coolant is increased, and the core 1 is efficiently cooled by the coolant.

【0016】本発明によれば、仮想的な事故時に圧力容
器の下方に流出する炉心から冷却材への過渡的な伝熱量
を制限し、仮想的な事故時に発生する可能性のある動的
な荷重の規模を制限できるため、格納容器の耐圧を低く
できる効果があり、さらに炉心を冷却材により効率的に
冷却できる。
According to the present invention, the transient heat transfer amount from the core to the coolant flowing out below the pressure vessel at the time of a virtual accident is limited, and the dynamic heat that may occur at the time of a virtual accident is limited. Since the scale of the load can be limited, the pressure resistance of the containment vessel can be lowered, and the core can be efficiently cooled by the coolant.

【0017】本発明のさらに他の実施例を図3により説
明する。図3はコア・キャッチャ20の断面図であり、
他の構成は図1の実施例と同じである。本実施例の特徴
は、コア・キャッチャ20の複数の区画を形成する仕切
板21の下方に区画を連通する流路50を設け、流路5
0には炉心1より低融点の材料、例えば鉛、で製作され
た栓51を設置するとともに、各区画の下方に炉心1よ
り低融点の材料52、例えば、ガラスを設置している点
である。
Still another embodiment of the present invention will be described with reference to FIG. FIG. 3 is a sectional view of the core catcher 20,
The other structure is the same as that of the embodiment of FIG. The feature of this embodiment is that a flow path 50 that connects the compartments is provided below the partition plate 21 that forms the plurality of compartments of the core catcher 20.
0 is provided with a plug 51 made of a material having a melting point lower than that of the core 1, for example, lead, and a material 52 having a melting point lower than that of the core 1 such as glass is installed below each section. .

【0018】このようなコア・キャッチャ20を設置し
た原子炉において、炉心の冷却に失敗するという、極め
て確率の低い仮想的な事故が仮に発生するとしても、以
下に述べるように炉心1を効率的に冷却し、かつ、炉心
1から冷却材への過渡的な伝熱量を制限して動的な荷重
の規模を制限することができる。即ち、このような仮想
的な事故時に炉心1の一部は圧力容器2から流出し、コ
ア・キャッチャ20の複数の区画に分割されて保持され
る。冷却材がコア・キャッチャ20の複数の区画の一つ
に供給されると、冷却材はコア・キャッチャ20の各区
画を満たしながら拡がるため炉心1から冷却材への過渡
的な伝熱量が制限される。さらに、冷却材がコア・キャ
ッチャ20を満たしている状態で炉心1の一部が圧力容
器2の下方に流出する場合でも、流出した炉心1はコア
・キャッチャ20の各区画に分割されて保持されるた
め、いわゆる水蒸気爆発が仮に発生しても、水蒸気爆発
に寄与する炉心1の量は、各区画に保持される量に制限
されるため、炉心1から冷却材への過渡的な伝熱量が制
限される。さらに本実施例では、各区画に保持される炉
心1は低融点の材料52と混合して融点が低下し、流動
性が向上してコア・キャッチャ20の複数の区画間を容
易に移動できるようになり、炉心1はコア・キャッチャ
20をほぼ同液位で満たす。これにより、炉心1と冷却
材との伝熱面積が速やかに増大し、炉心1は冷却材によ
り効率的に冷却されるようになる。
In a nuclear reactor equipped with such a core catcher 20, even if a hypothetical accident with a very low probability of failing to cool the core occurs, the core 1 can be efficiently treated as described below. It is possible to limit the size of the dynamic load by limiting the transient heat transfer amount from the core 1 to the coolant. That is, at the time of such a virtual accident, a part of the core 1 flows out from the pressure vessel 2, and is divided into a plurality of compartments of the core catcher 20 and held therein. When the coolant is supplied to one of the plurality of compartments of the core catcher 20, the coolant spreads while filling each compartment of the core catcher 20, so that the transient heat transfer amount from the core 1 to the coolant is limited. It Further, even when a part of the core 1 flows out below the pressure vessel 2 in a state where the coolant fills the core catcher 20, the core 1 that has flowed out is divided into each section of the core catcher 20 and is retained. Therefore, even if a so-called steam explosion occurs, the amount of the core 1 that contributes to the steam explosion is limited to the amount held in each section, so that the transient heat transfer amount from the core 1 to the coolant is Limited. Further, in the present embodiment, the core 1 held in each section is mixed with the low melting point material 52 to lower the melting point, the fluidity is improved, and the core catcher 20 can be easily moved between the plurality of sections. Then, the core 1 fills the core catcher 20 at almost the same liquid level. As a result, the heat transfer area between the core 1 and the coolant is rapidly increased, and the core 1 is efficiently cooled by the coolant.

【0019】本発明によれば、仮想的な事故時に圧力容
器の下方に流出する炉心から冷却材への過渡的な伝熱量
を制限し、仮想的な事故時に発生する可能性のある動的
な荷重の規模を制限できるため、格納容器の耐圧を低く
できる効果があり、さらに炉心を冷却材により速やか
に、かつ効率的に冷却できる。
According to the present invention, the transient heat transfer amount from the core to the coolant flowing under the pressure vessel at the time of a virtual accident is limited, and the dynamic heat that may occur at the time of the virtual accident is limited. Since the load scale can be limited, the pressure resistance of the containment vessel can be lowered, and the core can be cooled quickly and efficiently by the coolant.

【0020】[0020]

【発明の効果】本発明によれば、仮想的な事故時に圧力
容器の下方に流出する炉心から冷却材への過渡的な伝熱
量を制限し、仮想的な事故時に発生する可能性のある動
的な荷重の規模を制限できるため、格納容器の耐圧を低
くできる。
According to the present invention, the transient heat transfer amount from the core to the coolant, which flows out below the pressure vessel in a virtual accident, is limited, and the motion that may occur in a virtual accident is limited. Since the scale of the effective load can be limited, the pressure resistance of the containment vessel can be lowered.

【0021】また、炉心を冷却材により効率的に冷却で
きる。
Further, the core can be efficiently cooled by the coolant.

【0022】さらに炉心を冷却材により速やかに、かつ
効率的に冷却できる。
Further, the core can be cooled quickly and efficiently by the coolant.

【図面の簡単な説明】[Brief description of drawings]

【図1】沸騰水型原子炉の断面図。FIG. 1 is a cross-sectional view of a boiling water reactor.

【図2】本発明の一実施例のコア・キャッチャの断面
図。
FIG. 2 is a sectional view of a core catcher according to an embodiment of the present invention.

【図3】本発明の他の実施例のコア・キャッチャの断面
図。
FIG. 3 is a sectional view of a core catcher according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…炉心、2…圧力容器、3…格納容器、4…圧力抑制
室、11…下部ドライウェル、20…コア・キャッチ
ャ、21…仕切板、40…弁。
1 ... Reactor core, 2 ... Pressure vessel, 3 ... Containment vessel, 4 ... Pressure suppression chamber, 11 ... Lower dry well, 20 ... Core catcher, 21 ... Partition plate, 40 ... Valve.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炉心を内蔵する圧力容器と、前記圧力容器
を配置した格納容器と、前記圧力容器の下方に冷却材を
供給する手段とを有する原子炉安全設備において、前記
圧力容器の下方に仕切板により形成される複数の区画を
有するコア・キャッチャを設置したことを特徴とする原
子炉安全設備。
1. A reactor safety facility comprising a pressure vessel containing a core, a containment vessel in which the pressure vessel is arranged, and a means for supplying a coolant below the pressure vessel. A nuclear reactor safety facility having a core catcher having a plurality of partitions formed by partition plates.
【請求項2】請求項1において、前記コア・キャッチャ
の複数の区画を形成する前記仕切板の下方に区画を連通
する流路を設け、前記流路を前記炉心より低融点の材料
で栓をした原子炉安全設備。
2. A flow passage for communicating the compartments is provided below the partition plate forming a plurality of compartments of the core catcher, and the flow passage is capped with a material having a melting point lower than that of the core. Reactor safety equipment.
【請求項3】請求項2において、前記コア・キャッチャ
の複数の区画の下方に前記炉心より低融点の材料を設置
した原子炉安全設備。
3. The nuclear reactor safety equipment according to claim 2, wherein a material having a melting point lower than that of the core is installed below a plurality of compartments of the core catcher.
JP5271558A 1993-10-29 1993-10-29 Reactor safety facilities Pending JPH07128476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5271558A JPH07128476A (en) 1993-10-29 1993-10-29 Reactor safety facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5271558A JPH07128476A (en) 1993-10-29 1993-10-29 Reactor safety facilities

Publications (1)

Publication Number Publication Date
JPH07128476A true JPH07128476A (en) 1995-05-19

Family

ID=17501754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5271558A Pending JPH07128476A (en) 1993-10-29 1993-10-29 Reactor safety facilities

Country Status (1)

Country Link
JP (1) JPH07128476A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304979A (en) * 1998-03-31 1999-11-05 Siempelkamp Guss & Anlagentechnik Holding Gmbh & Co Trap storage place for core melt
JP2013137186A (en) * 2011-12-02 2013-07-11 Mitsubishi Heavy Ind Ltd Method for manufacturing heat pipe and gas-liquid phase filling heat pipe
JP2014527631A (en) * 2011-08-12 2014-10-16 アイエヌシーティー・カンパニー・リミテッド Equipment for processing molten reactor fuel rods
US9025721B2 (en) 2010-03-29 2015-05-05 Kabushiki Kaisha Toshiba Holding device
JP2016048249A (en) * 2013-05-01 2016-04-07 竹田 眞司 Highly safe atomic power generation
JP2016080434A (en) * 2014-10-14 2016-05-16 株式会社東芝 Corium retaining device and nuclear facility
JP2017194359A (en) * 2016-04-21 2017-10-26 日立Geニュークリア・エナジー株式会社 Core catcher for nuclear reactor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304979A (en) * 1998-03-31 1999-11-05 Siempelkamp Guss & Anlagentechnik Holding Gmbh & Co Trap storage place for core melt
US9025721B2 (en) 2010-03-29 2015-05-05 Kabushiki Kaisha Toshiba Holding device
JP2014527631A (en) * 2011-08-12 2014-10-16 アイエヌシーティー・カンパニー・リミテッド Equipment for processing molten reactor fuel rods
JP2013137186A (en) * 2011-12-02 2013-07-11 Mitsubishi Heavy Ind Ltd Method for manufacturing heat pipe and gas-liquid phase filling heat pipe
JP2016048249A (en) * 2013-05-01 2016-04-07 竹田 眞司 Highly safe atomic power generation
JP2016080434A (en) * 2014-10-14 2016-05-16 株式会社東芝 Corium retaining device and nuclear facility
JP2017194359A (en) * 2016-04-21 2017-10-26 日立Geニュークリア・エナジー株式会社 Core catcher for nuclear reactor

Similar Documents

Publication Publication Date Title
EP0353867B1 (en) Full pressure passive emergency core cooling and residual heat removal system for water cooled nuclear reactors
US4473528A (en) Passive containment system
US3607630A (en) Molten core stopping device
RU2078384C1 (en) Safety-ensured nuclear plant
JPH06109885A (en) Nuclear reactor having device for recovering reactor core after accidental melt-down of nuclear reactor
JPH02268295A (en) Heat removing system for containment vessel
JPH04125495A (en) Nuclear reactor facility
JPH08511102A (en) Device for collecting and cooling core melt and method thereof
JP3150451B2 (en) Reactor equipment
CA1312969C (en) Water cooled nuclear reactors
GB1484093A (en) Liquid cooled nuclear reactor
JPH07128476A (en) Reactor safety facilities
CN108028081A (en) Nuclear reactor passive protective device
KR100549862B1 (en) Cooling Device of Molten Core Penetrating a Reactor Vessel and The Process
US3130128A (en) Safety device for neutronic reactor
WO2015089662A1 (en) Nuclear reactor safety system
KR100265320B1 (en) Core catcher for nuclear reactors
JPH05188174A (en) Reserved apparatus for injecting cooling water passively and safely for nuclear reactor plant
KR20210079954A (en) Passive heat removal system for micro liquid metal cooled reactor through shielding water tank
FI3945531T3 (en) Reactor and safety method for reactor in the event of core meltdown
CN214279617U (en) Safety system of nuclear power station
FI3945530T3 (en) Reactor and safety method for reactor in the event of core meltdown
US20030035505A1 (en) Beam pipe with safety function for accelerator-driven nuclear systems
JP2004233259A (en) Device and method for protecting reactor pressure vessel
RU2025798C1 (en) Nuclear reactor with natural circulation of heat carrier