JPH07127562A - Wind power generating device for magnetic levitation type high speed rail way - Google Patents

Wind power generating device for magnetic levitation type high speed rail way

Info

Publication number
JPH07127562A
JPH07127562A JP5297544A JP29754493A JPH07127562A JP H07127562 A JPH07127562 A JP H07127562A JP 5297544 A JP5297544 A JP 5297544A JP 29754493 A JP29754493 A JP 29754493A JP H07127562 A JPH07127562 A JP H07127562A
Authority
JP
Japan
Prior art keywords
turbine
magnetic levitation
vehicle
generator
power generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5297544A
Other languages
Japanese (ja)
Inventor
Yoshifumi Kawakami
佳史 川上
Shingo Okano
真吾 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP5297544A priority Critical patent/JPH07127562A/en
Publication of JPH07127562A publication Critical patent/JPH07127562A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Wind Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To miniaturize a power generating device, reduce the weight thereof, and improve high efficiency by arranging a turbine for driving a power genera tor inside a duct, and dispersingly-arranging the power generating devices which can generate power in both normal and reverse directions while varying the pitch of the turbine, on a plurality of magnetic levitation vehicle. CONSTITUTION:In a ram air turbine power generating device 10, respective stators 14, 16 are arranged coaxially in front and rear directions held a turbine 12 in which pitching change is enabled in a duct 11, and also they are arranged symmetrically in front and rear directions. Namely, Current having a same amount is power-generated regardless of advance direction of a vehicle and flow-in directions A, B of air flow. The pitch change system of a turbine blade and the power generator are respectively mounted in respective stator housings 15, 17 and a turbine disk 13. The ram air turbine power generating devices 10 are dispersingly-arranged on a plurality of magnetic levitation vehicles. It is thus possible to miniaturize each power generating device and reduce the weight thereof, and also improve high efficiency, when demanded power generating amounts are equal to each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ダクト付きラム・エ
アー・タービンを用いた磁気浮上式高速鉄道用風力発電
装置の改良に係り、例えば、タービンを挟み一対のステ
ーターを同軸配置し、タービンのピッチを可変となして
正逆両方向の発電を可能にしたラム・エア・タービン発
電装置を複数の磁気浮上車両の車上等の外面上に分散配
置し、発電効率の向上を図った磁気浮上式高速鉄道用風
力発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a magnetic levitation type high speed railway wind turbine generator using a ram air turbine with a duct. For example, a pair of stators are coaxially arranged with a turbine sandwiched between them. A magnetic levitation system that improves power generation efficiency by arranging ram air turbine generators that can generate electricity in both forward and reverse directions with a variable pitch on the outer surface of multiple magnetic levitation vehicles The present invention relates to a wind turbine generator for high-speed rail.

【0002】[0002]

【従来の技術】将来の大量交通手段として磁気浮上式高
速鉄道(MAGLEVまたはリニアモーターカー)の開
発が進められている。例えば、磁気浮上車両システム
は、地上に浮上用および推進用の地上コイルを配置し、
推進用コイルを次々と励磁して移動磁界を形成して、車
両側の電磁石を移動させるものであり、また、車両側の
電磁石が移動することにより、地上の浮上用コイルに誘
導電流を発生させて、それにより磁気反発させて車両を
浮上させるものである。
2. Description of the Related Art The magnetic levitation high-speed railway (MAGLEV or linear motor car) is being developed as a means of mass transportation in the future. For example, a magnetic levitation vehicle system has ground coils for levitation and propulsion placed on the ground,
The propulsion coils are excited one after another to form a moving magnetic field to move the electromagnet on the vehicle side, and the electromagnet on the vehicle side moves to generate an induced current in the levitation coil on the ground. Then, magnetic repulsion is caused thereby to levitate the vehicle.

【0003】磁気浮上車両における推進以外の車両内で
消費される電力を、効率よく供給でき、車載に際しての
重量、嵩などが磁気浮上推進に悪影響を与えない構成か
らなる磁気浮上車両用発電装置を目的に、磁気浮上車両
が地上走行車両として500km/hr程度の超高速走
行することから、車両の静止大気に対する相対走行によ
って生じる空気流を利用したラム・エアー・タービン式
風力発電装置を充電式蓄電池と組み合わせた発電、蓄電
システムが開発されている。
A magnetic levitation vehicle power generator having a structure capable of efficiently supplying electric power consumed in a vehicle other than propulsion in a magnetic levitation vehicle, and having no adverse effect on magnetic levitation propulsion due to weight and bulk when mounted on a vehicle. For the purpose, a magnetic levitation vehicle travels at a very high speed of about 500 km / hr as a ground vehicle, so a ram air turbine type wind power generator utilizing an air flow generated by the relative traveling of the vehicle to the stationary atmosphere is used as a rechargeable storage battery. Power generation and power storage systems have been developed in combination with.

【0004】詳述すると、磁気浮上車両の車体構造内部
に、吸音手段を有しかつ空気の風路内への取り込みと排
気の効率を高めた非一様断面の風路(ダクト)を設け、
前記風路内に発電機を駆動するタービンを配設した構成
であり、さらに、タービンの上流側および/または下流
側に静翼を配設し、静翼のピッチを車両速度または風路
内導入風速に応じて変更可能となしたり、前記タービン
及び少なくとも上流側の静翼をピッチ変更可能となし、
正逆両方向の発電を可能にした構成などからなる。(特
開平3−286189号〜特開平3−286191号)
More specifically, an air passage (duct) having a non-uniform cross section is provided inside the body structure of a magnetically levitated vehicle, which has sound absorbing means and improves the efficiency of taking air into the air passage and exhausting air.
A turbine for driving a generator is arranged in the air passage, and stator vanes are arranged on the upstream side and / or the downstream side of the turbine, and the pitch of the stator blades is introduced into the vehicle speed or the air passage. It can be changed according to the wind speed, or the turbine and at least the upstream vane can be changed in pitch,
It consists of a structure that enables power generation in both forward and reverse directions. (JP-A-3-286189 to JP-A-3-286191)

【0005】[0005]

【発明が解決しようとする課題】磁気浮上式高速鉄道は
運用上の制約のため、折り返し点ではそれまでの先頭車
両がその後は後尾車両になる。従って、先の風力発電装
置のように先頭車両に前後で対称形状でないようなラム
・エア・タービンの設置方法を取ると、後尾車両ではラ
ム・エア・タービンを装着しているダクトを通過し得る
空気流量が十分に確保できないため、後尾車両のラム・
エア・タービンは先頭車両のたかだか20%しか発電す
ることができない。そのため、先頭車両と後尾車両に設
置したラム・エア・タービンを総合すると単位重量当た
り及び単位体積当たりの発電量が低下する。つまり、車
両が要求する発電量に対してラム・エア・タービンの重
量及びサイズが大きくなる問題がある。
Since the magnetic levitation type high-speed railway is restricted in operation, at the turning point, the leading vehicle until then becomes the trailing vehicle. Therefore, if a ram air turbine is installed so that it is not symmetrical to the front and rear of the leading vehicle like the previous wind turbine generator, the trailing vehicle can pass through the duct equipped with the ram air turbine. Because the air flow rate cannot be secured sufficiently,
Air turbines can generate at most 20% of the leading vehicles. Therefore, if the ram air turbines installed on the leading and trailing vehicles are combined, the amount of power generation per unit weight and unit volume will decrease. That is, there is a problem that the weight and size of the ram air turbine are large with respect to the amount of power generation required by the vehicle.

【0006】この発明は、磁気浮上式高速鉄道のラム・
エアー・タービン式風力発電装置を充電式蓄電池と組み
合わせた発電、蓄電システムにおいて、車両が要求する
発電量に対して発電効率の向上を図り、ラム・エア・タ
ービンの軽量化、小型化が可能な構成からなる磁気浮上
式高速鉄道用風力発電装置の提供を目的としている。
The present invention is a ram for a magnetic levitation high-speed railway.
In a power generation and power storage system that combines an air-turbine wind power generator with a rechargeable storage battery, the efficiency of power generation can be improved with respect to the amount of power generation required by the vehicle, and the ram air turbine can be made lighter and smaller. An object of the present invention is to provide a magnetic levitation type high-speed railway wind turbine generator having a configuration.

【0007】[0007]

【課題を解決するための手段】この発明は、吸音手段を
有しかつ空気の風路内への取り込みと排気の効率を高め
た非一様断面のダクト内に発電機を駆動するタービンを
配置し、かつタービンのピッチを可変となして正逆両方
向の発電を可能にした磁気浮上車両用ラム・エア・ター
ビン発電装置を、複数の磁気浮上車両の車上等の外面上
に分散配置したことを特徴とする磁気浮上式高速鉄道用
風力発電装置である。
DISCLOSURE OF THE INVENTION According to the present invention, a turbine for driving a generator is arranged in a duct having a non-uniform cross section, which has sound absorbing means and improves the efficiency of intake of air into the air passage and exhaust of air. In addition, ram air turbine generators for magnetically levitated vehicles that can generate electricity in both forward and reverse directions by making the turbine pitch variable are distributed and arranged on the outer surface of the vehicle such as on the magnetically levitated vehicles. A magnetic levitation high-speed railway wind turbine generator characterized by:

【0008】また、この発明は、上記の構成において、
少なくとも1つのステーターをタービンと同軸配置した
こと、反りを有しないタービン翼を用い、発電機が一方
向回転型であること、タービン翼の断面形状が円弧翼等
の前後に対称形に近い翼型であり、発電機が一方向回転
型であること、任意断面形状のタービン翼を用い、発電
機が両方向回転型であること、を特徴とする磁気浮上式
高速鉄道用風力発電装置を併せて提案する。
Further, according to the present invention, in the above structure,
At least one stator is coaxially arranged with the turbine, a turbine blade that does not have a warp is used, and the generator is a unidirectional rotating type. In addition, we also propose a magnetic levitation type high-speed railway wind turbine generator characterized in that the generator is a one-way rotating type, and the generator is a bi-directional rotating type using a turbine blade with an arbitrary cross-sectional shape. To do.

【0009】[0009]

【作用】この発明は、例えば、図1に示す如く、タービ
ンのピッチを可変となして正逆両方向の発電を可能にし
たラム・エア・タービン発電装置10を、複数の磁気浮
上車両1の車上等に分散配置することにより、要求され
る発電量が同一の場合、これを複数の発電装置に振り分
けることができかつ各々の発電装置が正逆いずれの方向
でも100%の発電能力を発揮するため、小型の発電装
置が使用でき、従来の先頭車両2及び後尾車両3への集
中配置型と比較して、装置全体の大幅な小型軽量化、高
効率化が可能になる。また、タービンの前方または後方
に、あるいはタービンを挟み一対のステーターを同軸配
置することにより、各発電装置の発電能力あるいは正逆
いずれの方向発電能力もより一層高効率化することがで
きる。
1 is a block diagram of a magnetic levitation vehicle 1 according to the present invention. As shown in FIG. By arranging them in a distributed manner, when the required amount of power generation is the same, this can be distributed to multiple power generators, and each power generator exhibits 100% power generation capacity in either forward or reverse directions. Therefore, a small power generator can be used, and as compared with the conventional concentrated arrangement type for the leading vehicle 2 and the trailing vehicle 3, it is possible to significantly reduce the size and weight of the entire device and increase the efficiency. Further, by arranging a pair of stators coaxially in front of or behind the turbine, or sandwiching the turbine, it is possible to further improve the efficiency of the power generation capacity of each power generation device or the forward and reverse direction power generation capacity.

【0010】ラム・エア・タービン発電装置のダクト
は、図示しないが、パイロンを介して磁気浮上車両の車
上に配置することにより、車両に沿って長手方向に発達
した境界層がダクトに与える影響を最小にすることがで
きる。しかし、車両高さに制限がある場合には、磁気浮
上車両の車上に凹部を設けて発電装置を埋め込む形態で
配置することが可能で、凹部をダクト形状等に応じて空
気の取り込み易いように形成することが望ましい。ま
た、ラム・エア・タービン発電装置は、上述の磁気浮上
車両の車上のほか、床下や側面部などの車両の外面上に
設けることができる。さらに、ダクトの開口部に空気の
流入出量の制御手段を設けることにより、車両まわりの
空気圧が大きく変動した際に、タービン・ブレードが過
大回転したり、振動が発生して損傷することがないよう
に保護でき、空気の流入出量の制御手段としては、スラ
イド型や開口率を可変にした構成、バイパスなどの構成
が採用できる。
Although not shown, the duct of the ram air turbine power generator is arranged on the vehicle of the magnetic levitation vehicle via a pylon so that the boundary layer developed in the longitudinal direction along the vehicle affects the duct. Can be minimized. However, if the vehicle height is limited, the magnetic levitation vehicle can be provided with a recess on the vehicle and the power generator can be embedded in the recess so that the air can be easily taken in according to the shape of the duct or the like. It is desirable to form it. Further, the ram air turbine power generator can be provided not only on the vehicle of the magnetic levitation vehicle described above but also on the outer surface of the vehicle such as under the floor or on the side surface. Furthermore, by providing a control means for controlling the inflow / outflow amount of air at the opening of the duct, the turbine blade will not be excessively rotated or vibrated to be damaged when the air pressure around the vehicle is largely changed. As a means for controlling the inflow / outflow amount of air, a slide type, a configuration with a variable aperture ratio, a bypass or the like can be adopted.

【0011】[0011]

【実施例】図2に示すラム・エア・タービン発電装置1
0は、ダクト11内にピッチ・チェンジ可能なタービン
12を挟み前後にステーター14,16を同軸配置した
前後対称型構成からなり、車両の進行方向に拘わらず同
じ量の電力を発電することが可能である。また、ステー
ター・ハウジング15,17及びタービン・ディスク1
3の内部にはタービン・ブレードのピッチ・チェンジ・
システム及び発電機が装着されており、ここでは発電機
とタービン・ディスクの間には変速歯車(図示せず)が
装着されている。また、ステーター14,16の内部は
発電機のケーブル、ピッチ・チェンジの制御信号の配
線、発電機用オイルクーラーの配管等として利用されて
おり、さらに、ステーター14,16に熱交換器を組み
込みステーター・ブレード表面を放熱面として使用する
こともできる。ダクト11はタービン位置からダクト出
口にかけてディフューザー効果が出るように内径を増加
させる構成からなり、ダクトの出入口部は騒音発生を抑
制するような翼型の前縁形状からなる。
EXAMPLE A ram air turbine power generator 1 shown in FIG.
0 has a front-rear symmetrical structure in which the stators 14 and 16 are coaxially arranged in front of and behind the turbine 11 which can change the pitch in the duct 11, and can generate the same amount of electric power regardless of the traveling direction of the vehicle. Is. In addition, the stator housings 15 and 17 and the turbine disk 1
3 inside the pitch change of the turbine blade
A system and a generator are mounted, where a speed change gear (not shown) is mounted between the generator and the turbine disk. The insides of the stators 14 and 16 are used as generator cables, pitch change control signal wiring, generator oil cooler piping, and the like. Furthermore, a heat exchanger is incorporated in the stators 14 and 16 to form a stator. -The blade surface can also be used as a heat dissipation surface. The duct 11 has a structure in which the inner diameter is increased from the turbine position to the duct outlet so that a diffuser effect is produced, and the inlet / outlet portion of the duct has a blade-shaped front edge shape for suppressing noise generation.

【0012】ラム・エア・タービンに流入する空気流の
方向が矢印Aの場合、14は前置ステーター、16は後
置ステーターとして働き、逆にラム・エア・タービンに
流入する空気流の方向が矢印Bの場合、ステーター1
4,16はその機能が入れかわる。すなわち、タービン
12は空気流から取り出したエネルギーにて発電機を回
転させ、電力を発生させるが、空気流の方向が矢印Aの
方向であるとき、上流側のステーター14は空気流に予
旋回を与え、空気流からタービン12で取り出し得るエ
ネルギーを増大させる機能を有し、後方のステーター1
6はタービン12を通過して速度の旋回成分が増加した
流れから旋回成分を減少させて、タービン12が取り出
すエネルギーを増加させる機能を有しており、逆にラム
・エア・タービンに流入する空気流の方向が矢印Bの場
合、ステーター14,16はその機能が入れかわる。
When the direction of the air flow entering the ram air turbine is arrow A, 14 acts as a front stator and 16 acts as a rear stator, and conversely the direction of the air flow entering the ram air turbine is In the case of arrow B, stator 1
The functions of 4 and 16 are interchanged. That is, the turbine 12 rotates the generator with the energy extracted from the airflow to generate electric power, but when the direction of the airflow is the direction of arrow A, the upstream stator 14 pre-swirls the airflow. The rear stator 1 has the function of increasing the energy that can be extracted and taken out by the turbine 12 from the air flow.
Reference numeral 6 has a function of decreasing the swirl component from the flow of which the swirl component of the velocity has increased to increase the energy taken out by the turbine 12, and conversely the air flowing into the ram air turbine. When the flow direction is arrow B, the functions of the stators 14 and 16 are interchanged.

【0013】以下に、車両の正逆両方向の発電を可能に
するタービンのピッチ制御の例を図面に基づいて詳述す
る。まず、発電機内部のネジ構造などの制限により左右
回転が許容されない発電機を用いる場合について説明す
る。図3にタービン翼型に反りをつけない場合の車両の
進行方向に対応したタービン・ブレードのピッチ設定方
法を示す。図3のaにおいて、タービン121を通過す
る気流の方向が矢印Aの方向のとき、タービン121
回転方向を例えば気流Aの上流から見て右回転方向と選
択すると(左回転と選択した場合はステータ、タービン
のねじれ方向は軸Xに対して対称となる)、タービン・
ブレードに対する合成気流の方向と翼型平均矢高のなす
有効迎え角αが発生してタービン121を回転させよう
とする空気力成分FAが得られる。タービン121を通過
する気流の方向が矢印Bの方向に逆転した場合は、図3
のbに図示のごとく、ピッチを変換するとタービン12
の回転方向は一定に保ったまま、タービン121を回転
させようとする空気力成分FBを得ることができる。
Hereinafter, an example of pitch control of a turbine that enables power generation in both the forward and reverse directions of a vehicle will be described in detail with reference to the drawings. First, a case will be described in which a generator is used that is not allowed to rotate left and right due to restrictions such as the screw structure inside the generator. FIG. 3 shows a method of setting the pitch of the turbine blades corresponding to the traveling direction of the vehicle when the turbine blade shape is not warped. In FIG. 3A, when the direction of the air flow passing through the turbine 12 1 is the direction of arrow A, if the rotation direction of the turbine 12 1 is selected as the right rotation direction when viewed from the upstream of the air flow A (the left rotation is selected. In this case, the twisting direction of the stator and turbine is symmetric with respect to the axis X),
An effective angle of attack α formed by the direction of the synthetic air flow with respect to the blade and the airfoil average arrow height is generated, and an aerodynamic force component F A for rotating the turbine 12 1 is obtained. If the direction of the air flow passing through the turbine 12 1 is reversed in the direction of arrow B,
Turbine 12 when the pitch is converted as shown in b of FIG.
It is possible to obtain the aerodynamic force component F B that tends to rotate the turbine 12 1 while keeping the rotation direction of F constant.

【0014】図4にタービン翼型に反りを付けた場合の
車両の進行方向に対応したタービン・ブレードのピッチ
設定方法を示す。図4のaにおいて、タービン122
通過する気流の方向が矢印Aの方向の時、タービン12
2の回転方向を例えば気流Aの上流から見て右回転方向
と選択して(左回転と選択した場合はステーター、ター
ビンのねじれ方向は軸Xに対して対称となる)、タービ
ン・ブレードのピッチ設定の方法を上述の図3と同じと
する。そのとき得られる空気力成分FAの方向は図3と
同様である。タービン122を通過する気流の方向が矢
印Bの方向に逆転した場合は、図4のbに図示の如くピ
ッチを変換すると、合成気流はタービン・ブレードに対
して後縁から流入することになるが、タービン122
回転方向は一定に保ったまま、タービン122を回転さ
せようとする空気力成分FBを得ることができる。
FIG. 4 shows a method of setting the pitch of the turbine blades corresponding to the traveling direction of the vehicle when the turbine blade type is warped. In FIG. 4A, when the direction of the air flow passing through the turbine 12 2 is in the direction of arrow A, the turbine 12
The rotation direction of 2 is selected as the right rotation direction when viewed from the upstream of the air flow A (when the left rotation is selected, the twisting direction of the stator and the turbine is symmetrical with respect to the axis X), and the pitch of the turbine blades The setting method is the same as that shown in FIG. The direction of the aerodynamic force component F A obtained at that time is the same as in FIG. If the direction of the air flow passing through the turbine 12 2 is reversed in the direction of arrow B, the pitch change as shown in FIG. 4b will result in the combined air flow entering the turbine blades from the trailing edge. However, the aerodynamic force component F B that tends to rotate the turbine 12 2 can be obtained while keeping the rotation direction of the turbine 12 2 constant.

【0015】一方方向にのみ回転する発電機を用いた場
合、上述の図3または図4に示す如くピッチを設定する
と良く、図3の翼型に反りをつけない場合は翼型の最大
揚力係数が小さくなるため、図4に示すピッチ設定より
タービン・サイズが大きくなるが、タービンの回転数が
相対的に高い場合は車両の進行方向変換による気流の方
向転換に伴うピッチ変化角度を小さくできる利点があ
る。図4のピッチ設定では気流の方向が変化するとター
ビン・ブレードに流入する気流が前縁から後縁へと変化
するため、翼型として前後に対称形状に近い翼型を選定
する必要がある。従って、たとえば円弧翼のごとき翼型
を用いる必要がある。すると、図3に示すピッチ設定と
比較して最大揚力係数はより大きく取れるので、タービ
ン・サイズの縮小には貢献するが、抵抗が大きくなる。
しかし、タービンと発電機の間に減速歯車のような回転
数の変換機を設けてタービンの回転数を低下させたシス
テムでは車両の進行方向の変更によるタービン通過気流
の方向変更に伴うピッチ変化角度は図3より小さくしう
る利点がある。
When a generator that rotates only in one direction is used, the pitch may be set as shown in FIG. 3 or FIG. 4 described above. When the airfoil of FIG. 3 is not warped, the maximum lift coefficient of the airfoil is obtained. However, the turbine size is larger than the pitch setting shown in FIG. 4, but when the turbine speed is relatively high, the pitch change angle associated with the direction change of the air flow due to the direction change of the vehicle can be reduced. There is. In the pitch setting of FIG. 4, when the direction of the air flow changes, the air flow that flows into the turbine blade changes from the leading edge to the trailing edge, so it is necessary to select an airfoil that has a symmetrical shape in the front-rear direction. Therefore, it is necessary to use an airfoil such as an arc blade. Then, the maximum lift coefficient can be made larger than that of the pitch setting shown in FIG. 3, which contributes to the reduction of the turbine size, but increases the resistance.
However, in a system in which a rotational speed converter such as a reduction gear is installed between the turbine and the generator to reduce the rotational speed of the turbine, the pitch change angle that accompanies the change in the direction of the air flow through the turbine due to the change in the traveling direction of the vehicle. Has the advantage that it can be smaller than in FIG.

【0016】図5に車両の進行方向の変化に伴い、ター
ビンを通過する気流の方向が変化するとタービンの回転
方向も変化する場合のピッチ設定方法を示す。このピッ
チ設定はいずれの方向にも回転しうる発電機との組み合
わせ使用が前提条件となる。図5のaにおいて、反りを
付けたあるいは反りを付けない翼型を用いたタービン1
3を通過する気流の方向が矢印Aの方向のとき、ター
ビン123の回転方向を例えば気流Aの上流から見て右
回転方向と選択すると、タービン・ブレードに対する合
成気流の方向と翼型平均矢高のなす有効迎え角αが発生
してタービン123を回転させようとする空気力成分FA
が得られる。タービン123を通過する気流の方向が矢
印Bの方向に逆転した場合は、図5のbに図示のごと
く、ピッチを変換するとタービン123の回転方向は反
転し、タービン123を回転させようとする空気力成分
Bを得ることができる。図5の場合は、タービン翼型
として反りのない翼型、円弧翼、その他の任意の翼型を
使用することが可能であり、最もタービン翼に対する制
限が少ない。従って、最も効果的に翼型性能を発揮させ
ることが可能である。
FIG. 5 shows a pitch setting method in the case where the rotation direction of the turbine changes when the direction of the air flow passing through the turbine changes with the change of the traveling direction of the vehicle. This pitch setting is a prerequisite for use in combination with a generator that can rotate in either direction. In FIG. 5A, a turbine 1 using an airfoil with or without warpage
When the direction of the air flow passing through 2 3 is the direction of arrow A, if the rotation direction of the turbine 12 3 is selected as the right rotation direction when viewed from the upstream of the air flow A, for example, the direction of the combined air flow with respect to the turbine blade and the airfoil average are selected. The aerodynamic force component F A that tends to rotate the turbine 12 3 by generating the effective attack angle α formed by Yataka
Is obtained. If the direction of air flow through the turbine 12 3 is reversed in the direction of the arrow B, as shown in b of FIG. 5, converting the pitch direction of rotation of the turbine 12 3 is reversed, it tends to rotate the turbine 12 3 The aerodynamic force component F B can be obtained. In the case of FIG. 5, it is possible to use a non-warped airfoil, an arcuate airfoil, or any other airfoil as the turbine airfoil, and the turbine airfoil has the least restriction. Therefore, it is possible to exhibit the airfoil performance most effectively.

【0017】[0017]

【発明の効果】この発明による磁気浮上式高速鉄道用風
力発電装置は、タービンを挟み一対のステーターを同軸
配置した正逆両方向の発電を可能にしたラム・エア・タ
ービン発電装置を、複数の磁気浮上車両の車上等に分散
配置することにより、車両の進行方向にかかわらず、そ
れぞれ100%の発電能力を発揮し、従来の先頭及び後
尾車両への集中配置型と比較して重量は60%、寸法は
約75%程度に軽減できる。又、逆に集中配置型と同様
の重量が許容されるのであれば、発電装置を要求される
発電能力以上に大きくでき、余剰電力を発電できるた
め、車両が低速走行あるいは停止時の発電能力の低下の
際に使用するよう蓄電することができる。さらに、この
発明では発電装置を各車両に載置することができ、先頭
及び後尾車両への集中配置型と比較して配電する電力量
を減少させることができ、発電装置からの配電システム
の軽量化が可能である。
The magnetic levitation type wind turbine generator for a high-speed railway according to the present invention comprises a ram air turbine generator capable of generating electric power in both forward and reverse directions in which a pair of stators are coaxially arranged with a turbine interposed therebetween. Distributing the floating vehicles on the vehicle, etc. enables 100% power generation regardless of the traveling direction of the vehicle, and the weight is 60% compared to the conventional concentrated type for front and rear vehicles. The size can be reduced to about 75%. On the contrary, if the same weight as the centralized type is allowed, the power generation device can be made larger than the required power generation capacity and surplus power can be generated. It can be charged for use in the event of a drop. Further, according to the present invention, the power generation device can be mounted on each vehicle, and the amount of electric power to be distributed can be reduced as compared with the centralized arrangement type for the front and rear vehicles, and the weight of the power distribution system from the power generation device can be reduced. Is possible.

【0018】上述のごとく重量、寸法及び各車両への配
電システムの面ですぐれた特性を有する分散型ラム・エ
ア・タービンにおいて、いずれの方向にも回転しうる発
電機と組み合わせて使用すると、車両の進行方向の変化
に伴い前述の図5に示すようにピッチを設定すると、タ
ービン・ブレードを最も効率よく作動させることがで
き、必要な電力発生量を得るために最もコンパクトなシ
ステムを構築することができる。なお、図3から図5に
示すこの発明のピッチ制御方法は、従来の集中配置型に
も適用できることは言うまでもないことである。
In a distributed ram air turbine having excellent characteristics in terms of weight, size and distribution system to each vehicle as described above, when used in combination with a generator that can rotate in any direction, the vehicle If the pitch is set as shown in Fig. 5 according to the change in the traveling direction of the turbine, the turbine blades can be operated most efficiently, and the most compact system can be constructed to obtain the required power generation amount. You can Needless to say, the pitch control method of the present invention shown in FIGS. 3 to 5 can be applied to the conventional centralized arrangement type.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による風力発電装置を備えた磁気浮上
式高速鉄道列車を示す斜視説明図である。
FIG. 1 is a perspective explanatory view showing a magnetic levitation type high-speed railway train equipped with a wind turbine generator according to the present invention.

【図2】この発明による風力発電装置を示す一部破断斜
視説明図である。
FIG. 2 is a partially cutaway perspective view showing a wind turbine generator according to the present invention.

【図3】この発明によるタービンのピッチ制御の例を示
す説明図であり、aにステーター、タービン、ステータ
ーを示し、気流の方向が矢印Aでタービンが右回りの場
合を示し、bは同様にステーター、タービン、ステータ
ーを示し、気流の方向が逆に矢印Bでタービンが右回り
の場合を示す。
FIG. 3 is an explanatory diagram showing an example of pitch control of a turbine according to the present invention, in which a shows a stator, a turbine, and a stator, a case where the direction of the air flow is an arrow A and the turbine is clockwise, and b shows the same. The stator, the turbine, and the stator are shown, and the direction of the air flow is opposite, and an arrow B shows the case where the turbine is clockwise.

【図4】この発明によるタービンのピッチ制御の他の例
を示す説明図であり、aにステーター、タービン、ステ
ーターを示し、気流の方向が矢印Aでタービンが右回り
の場合を示し、bは同様にステーター、タービン、ステ
ーターを示し、気流の方向が逆に矢印Bでタービンが右
回りの場合を示す。
FIG. 4 is an explanatory view showing another example of pitch control of the turbine according to the present invention, in which a shows a stator, a turbine, and a stator, a case where the direction of the air flow is arrow A and the turbine is clockwise, and b shows Similarly, a stator, a turbine, and a stator are shown, and the direction of the air flow is opposite, and an arrow B shows the case where the turbine is clockwise.

【図5】この発明によるタービンのピッチ制御の他の例
を示す説明図であり、aにステーター、タービン、ステ
ーターを示し、気流の方向が矢印Aでタービンが右回り
の場合を示し、bは同様にステーター、タービン、ステ
ーターを示し、気流の方向が逆に矢印Bでタービンが左
回りの場合を示す。
FIG. 5 is an explanatory view showing another example of pitch control of the turbine according to the present invention, in which a shows a stator, a turbine, and a stator, a case where the direction of the air flow is arrow A and the turbine is clockwise, and b shows Similarly, a stator, a turbine, and a stator are shown, and the direction of the air flow is opposite, and an arrow B shows the case where the turbine is counterclockwise.

【符号の説明】[Explanation of symbols]

1 磁気浮上車両 2 先頭車両 3 後尾車両 5 パイロン 10 ラム・エア・タービン発電装置 11 ダクト 12,121,122,123 タービン 13 タービン・ディスク 14,16 ステーター 15,17 ステーター・ハウジング1 Magnetically levitated vehicle 2 Leading vehicle 3 Rear vehicle 5 Pylon 10 Ram air turbine generator 11 Ducts 12, 12 1 , 12 2 , 12 3 Turbine 13 Turbine disk 14, 16 Stator 15, 17 Stator housing

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 吸音手段を有しかつ空気の風路内への取
り込みと排気の効率を高めた非一様断面のダクト内に発
電機を駆動するタービンを配置し、かつタービンのピッ
チを可変となして正逆両方向の発電を可能にした磁気浮
上車両用ラム・エア・タービン発電装置を、複数の磁気
浮上車両の外面上に分散配置したことを特徴とする磁気
浮上式高速鉄道用風力発電装置。
1. A turbine for driving a generator is arranged in a duct having a non-uniform cross section, which has a sound absorbing means and improves the efficiency of intake of air into the air passage and exhaust, and the pitch of the turbine is variable. The magnetic levitation high-speed railway wind power generation is characterized in that the ram air turbine generators for magnetic levitation vehicles that enable power generation in both the forward and reverse directions are distributed over the outer surface of multiple magnetic levitation vehicles. apparatus.
【請求項2】 少なくとも1つのステーターをタービン
と同軸配置したことを特徴とする請求項1に記載の磁気
浮上式高速鉄道用風力発電装置。
2. The magnetic levitation type high-speed railway wind turbine generator according to claim 1, wherein at least one stator is arranged coaxially with the turbine.
【請求項3】 反りを有しないタービン翼あるいはター
ビン翼の断面形状が円弧翼等の前後に対称形に近いター
ビン翼を用い、発電機が一方向回転型であることを特徴
とする請求項1または請求項2に記載の磁気浮上式高速
鉄道用風力発電装置。
3. A turbine blade having no warpage or a turbine blade whose cross-sectional shape is substantially symmetrical in front and back such as an arc blade, and the generator is a one-way rotating type. Alternatively, the magnetic levitation type high speed railway wind turbine generator according to claim 2.
【請求項4】 任意断面形状のタービン翼を用い、発電
機が両方向回転型であることを特徴とする請求項1また
は請求項2に記載の磁気浮上式高速鉄道用風力発電装
置。
4. The magnetic levitation type high-speed railway wind turbine generator according to claim 1, wherein the generator is of a bidirectional rotation type, using a turbine blade having an arbitrary cross-sectional shape.
JP5297544A 1993-11-02 1993-11-02 Wind power generating device for magnetic levitation type high speed rail way Pending JPH07127562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5297544A JPH07127562A (en) 1993-11-02 1993-11-02 Wind power generating device for magnetic levitation type high speed rail way

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5297544A JPH07127562A (en) 1993-11-02 1993-11-02 Wind power generating device for magnetic levitation type high speed rail way

Publications (1)

Publication Number Publication Date
JPH07127562A true JPH07127562A (en) 1995-05-16

Family

ID=17847916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5297544A Pending JPH07127562A (en) 1993-11-02 1993-11-02 Wind power generating device for magnetic levitation type high speed rail way

Country Status (1)

Country Link
JP (1) JPH07127562A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020069331A (en) * 2001-02-24 2002-08-30 조준목 A railway train of use the force of the wind
JP2002332952A (en) * 2001-05-07 2002-11-22 Takayanagi Kenkyusho:Kk Wind power generator
JP2011246043A (en) * 2010-05-28 2011-12-08 Osaka Sharyo Kogyo Kk Gondola for cableway
CN108583590A (en) * 2017-12-01 2018-09-28 徐州中誉鑫鸿工业技术咨询有限公司 One type vacuum rail road transportation system and its control method
CN114257054A (en) * 2021-12-23 2022-03-29 樟树市菜瓜科技有限公司 Energy-saving and environment-friendly efficient generator with electric power storage function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344601A (en) * 1992-06-04 1993-12-24 Central Japan Railway Co Linear motor car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344601A (en) * 1992-06-04 1993-12-24 Central Japan Railway Co Linear motor car

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020069331A (en) * 2001-02-24 2002-08-30 조준목 A railway train of use the force of the wind
JP2002332952A (en) * 2001-05-07 2002-11-22 Takayanagi Kenkyusho:Kk Wind power generator
JP2011246043A (en) * 2010-05-28 2011-12-08 Osaka Sharyo Kogyo Kk Gondola for cableway
CN108583590A (en) * 2017-12-01 2018-09-28 徐州中誉鑫鸿工业技术咨询有限公司 One type vacuum rail road transportation system and its control method
CN114257054A (en) * 2021-12-23 2022-03-29 樟树市菜瓜科技有限公司 Energy-saving and environment-friendly efficient generator with electric power storage function
CN114257054B (en) * 2021-12-23 2023-09-26 陆河县鸿泰水电开发有限公司 Energy-saving and environment-friendly efficient generator with power storage function

Similar Documents

Publication Publication Date Title
US9863403B2 (en) Wind turbine systems and air channels in vehicles for enhancing energy generation, cooling, and aerodynamics
CN108290611B (en) Vehicle drag reduction and power generation system
JP5202349B2 (en) Vehicle with wind power generation mechanism
US20030075396A1 (en) Locomotive brake resistor cooling apparatus
US20120085587A1 (en) Wind Power for Electric Cars
CA2695910A1 (en) Recharging system for electrically powered vehicle, and vehicle incorporating same
US20200055403A1 (en) High Efficiency Aerodynamic Vehcular Power System
JP5208012B2 (en) Electric car
US5669308A (en) Linear turbine propulsion system
US20230030205A1 (en) Power-Generating Systems
US10500963B2 (en) Vehicle drag reduction and electricity generation system
JPH07127562A (en) Wind power generating device for magnetic levitation type high speed rail way
JP2599566B2 (en) Engine intake drive alternator device and method of converting intake air to electric current
US7763988B1 (en) Air turbine with recycled air or gear mechanism to increase internal velocity for engine power
JP2938735B2 (en) Maglev type wind power generator for high-speed railway
JP5207957B2 (en) Vehicle with wind power generation mechanism
GB2182616A (en) Energy conservation means
CN111065539B (en) Vehicle drag reduction and power generation system
US20110277467A1 (en) Hybrid air turbine engine with heat recapture system for moving vehicle
KR101017399B1 (en) Hybrid propelled vehicle
JP2761960B2 (en) Wind turbine generator for magnetic levitation vehicles
JPH05344601A (en) Linear motor car
JPH0754761A (en) Wind power generating device for magnetic levitation vehicle
JPH0799705A (en) Wind force engine for high-speed moving body
Herbst et al. Status of the advanced locomotive propulsion system (ALPS) project