JPH0712719A - Spectral analysis device - Google Patents

Spectral analysis device

Info

Publication number
JPH0712719A
JPH0712719A JP15677293A JP15677293A JPH0712719A JP H0712719 A JPH0712719 A JP H0712719A JP 15677293 A JP15677293 A JP 15677293A JP 15677293 A JP15677293 A JP 15677293A JP H0712719 A JPH0712719 A JP H0712719A
Authority
JP
Japan
Prior art keywords
sample
flow path
measurement
supply amount
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15677293A
Other languages
Japanese (ja)
Inventor
Ryoji Suzuki
良治 鈴木
Susumu Morimoto
進 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP15677293A priority Critical patent/JPH0712719A/en
Publication of JPH0712719A publication Critical patent/JPH0712719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a spectral analysis device with a sample container in which sample container structure is simplified, measurement can be made evenly, and local overheating of sample and contamination of the container due to refuge, etc., held by the sample are difficult to occur. CONSTITUTION:A sample container 5 provided with a sample charging part 1 from which granular sample S is charged, a translucent sample flow path 3 which is provided connectedly to the sample charging part 1 to flow the sample S naturally from the upper side to the lower side, a feed amount regulating means 2 which can adjust the amount of sample S fed from the sample charting part 1 to the sample flow path 3, and an exhaust amount regulating means 4 which can adjust the exhaust amount of sample S delivered from the sample flow path 3 is provided. Also a light source part 6 to irradiate light beam bundle for measurement to the sample flow path 3 and a spectro- measurement part 7 located on the opposite side of the light source part 6 through the sample flow path 3 are provided to constitute a spectral analysis device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、サンプル容器に収容さ
れた粒状体のサンプルに対して、測定用の光線束を照射
する光源部と、測定用の光線束のサンプルからの透過光
線束を分光分析する分光測定部とを備えた分光分析装置
に関し、例えば、穀物に含まれる水分や蛋白質や澱粉等
の各種成分含有量を分析する分光分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a light source unit for irradiating a measuring light beam bundle to a granular sample contained in a sample container, and a transmitted light beam bundle from the measuring light beam sample. The present invention relates to a spectroscopic analysis device including a spectroscopic measurement unit for spectroscopic analysis, and for example, relates to a spectroscopic analysis device that analyzes the content of various components such as water, proteins and starch contained in grains.

【0002】[0002]

【従来の技術】従来の分光分析装置は、サンプル容器に
粒状体のサンプルを収容して、そのサンプルが静止状態
となるように、或いは均一密度を実現するために振動状
態となるように前記サンプル容器を保持する保持部を設
けて構成してあり、測定にあたってはサンプル及びこれ
を収容するサンプル容器を前述の測定用光線束の光路に
対してスキャンさせることにより、測定データの平均化
を図っていた。
2. Description of the Related Art A conventional spectroscopic analyzer stores a granular sample in a sample container, and the sample is placed in a stationary state or in a vibrating state to achieve a uniform density. It is configured by providing a holding unit for holding the container, and in performing the measurement, the sample and the sample container containing the sample are scanned with respect to the optical path of the above-mentioned light beam for measurement, thereby averaging the measurement data. It was

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の従来技
術では、サンプル容器を前記光路に対してスキャンする
ためのサンプル容器駆動機構、バッチ処理に伴うサンプ
ル容器へのサンプル充填機構、サンプル容器からの排出
機構、さらには均一な充填を達成するための振動機構等
が必要となり、測定部の構造が複雑になるという問題が
あった。さらに、サンプル容器に粒状体のサンプルを収
容して分光測定するため、測定中に光源から照射される
光線束のエネルギーによりサンプルが加熱されるが、こ
のため、サンプルの成分分析値が変化して本来の正確な
成分含有量データが測定できないという欠点があった。
本発明の目的は上述した従来欠点を解消する点にある。
However, in the above-mentioned prior art, the sample container driving mechanism for scanning the sample container with respect to the optical path, the sample filling mechanism for the sample container accompanying batch processing, and the sample container There is a problem in that the structure of the measuring unit becomes complicated because an ejecting mechanism and a vibrating mechanism for achieving uniform filling are required. Furthermore, since the granular sample is housed in the sample container for spectroscopic measurement, the sample is heated by the energy of the light beam emitted from the light source during measurement, but this changes the component analysis value of the sample. However, there is a drawback in that the original accurate component content data cannot be measured.
An object of the present invention is to eliminate the above-mentioned conventional drawbacks.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
本発明による分光分析装置の特徴構成は、粒状体のサン
プルが投入されるサンプル投入部と、サンプル投入部に
連設して設けられ、且つサンプルを上方から下方へ自然
流下させるための透光性のサンプル流路と、サンプル投
入部からサンプル流路へ供給されるサンプルの供給量を
調節自在な供給量調節手段と、サンプル流路から排出さ
れるサンプルの排出量を調節自在な排出量調節手段とを
備えたサンプル容器を設けるとともに、サンプル流路に
対して測定用の光線束を照射する光源部と、サンプル流
路を介して光源部とは反対側に配置した分光測定部とを
設けて構成してあることにある。さらに、自然流下状態
でサンプル流路内に堆積したサンプルの堆積層上端面位
置を検出する検出手段を設け、検出手段の検出結果に基
づいて供給量調節手段により調節される供給量もしくは
排出量調節手段により調節される排出量の少なくとも一
方を制御する制御手段が設けられていることが好まし
い。そして、その作用・効果は以下のとおりである。
In order to achieve this object, the spectral analyzer according to the present invention is characterized in that it is provided with a sample introduction section into which a sample of a granular material is introduced and a sample introduction section connected to the sample introduction section. Further, a transparent sample channel for allowing the sample to naturally flow from the upper side to the lower side, a supply amount adjusting means capable of adjusting the supply amount of the sample supplied from the sample introducing section to the sample channel, and the sample channel A sample container provided with a discharge amount adjusting means capable of adjusting the discharge amount of the discharged sample is provided, and a light source section for irradiating a sample light flux with a light beam for measurement and a light source through the sample flow channel And a spectroscopic measurement unit arranged on the opposite side of the unit. Further, a detection means for detecting the position of the upper end surface of the deposited layer of the sample deposited in the sample flow path in the natural flow state is provided, and the supply amount or the discharge amount is adjusted by the supply amount adjusting means based on the detection result of the detection means. Preferably, there is provided control means for controlling at least one of the emissions adjusted by the means. And the action and effect are as follows.

【0005】[0005]

【作用】サンプル投入部に投入されたサンプルは、供給
量調節手段の調節により設定量が透光性のサンプル流路
内で自然流下することになるが、このとき排出量調節手
段の働きによりサンプル流路内でのサンプルの滞留量及
び流下速度を一定にすることが可能となる。従って、測
定用光線束の光軸を通過するサンプル密度を一定に調節
することが可能となり、サンプルを自動的に均一な密度
で光軸上で入れ替えながら測定をおこなうことができ、
測定の均一化が達成されるとともに、移動状態にあるサ
ンプルを測定するため、データの平均化が達成される。
そして、このようなサンプル流路に光源部からの測定用
光線束を照射しても、各サンプルの受光時間は一定短時
間とすることができるため、加熱されることのない状態
で経時的に異なったサンプル部分を分光測定することが
できる。
The sample introduced into the sample introduction section is allowed to flow down naturally in the sample flow passage having the light transmitting property by the adjustment of the supply amount adjusting unit. At this time, the sample is supplied by the ejecting amount adjusting unit. It is possible to make the amount of sample staying in the channel and the downflow rate constant. Therefore, it becomes possible to adjust the density of the sample passing through the optical axis of the measuring light flux to be constant, and it is possible to perform the measurement while automatically replacing the sample with a uniform density on the optical axis,
A homogenization of the measurement is achieved, and an averaging of the data is achieved for measuring the sample in motion.
Then, even if such a sample flow path is irradiated with a measuring light flux from the light source unit, the light receiving time of each sample can be set to a constant short time, so that the sample is not heated and it is time-lapsed. Different sample parts can be spectroscopically measured.

【0006】[0006]

【発明の効果】従って、本発明によれば、つねにサンプ
ルが自然流下する状態で、異なったサンプルを測定でき
るため、データ平均化、均一化のために、従来のように
複雑な装置構成が必要とされることはない。さらに、サ
ンプルの充填度、落下速度が調節されるため、適切な密
度での均一な測定が可能となる。一方、サンプルが加熱
されることがないので本来の正確な成分含有量データが
測定できる。また、サンプル流路内壁に付着したサンプ
ル(例えば籾)のカス(枝梗等)は上流から流下するサ
ンプルと接触して落下するため汚れ付着が低減され、頻
繁にサンプル容器を清掃する必要が無く、従来のバッチ
処理形式のサンプル容器が有していた欠点を解消でき
た。ここで、前述の検出手段及び制御手段を備えておく
と、さらに精度の高い、ばらつきの無い測定をおこなう
ことができる。
As described above, according to the present invention, different samples can be measured in a state where the samples always flow down naturally, so that a complicated apparatus structure as in the conventional case is required for data averaging and homogenization. It is not said that. Furthermore, since the filling degree and the dropping speed of the sample are adjusted, it is possible to perform uniform measurement at an appropriate density. On the other hand, since the sample is not heated, the original accurate component content data can be measured. Further, the residue (branch etc.) of the sample (eg, paddy) adhered to the inner wall of the sample channel comes into contact with the sample flowing down from the upstream and falls, so that the adherence of dirt is reduced and it is not necessary to frequently clean the sample container. , The drawbacks of the conventional batch processing type sample container can be solved. Here, if the above-mentioned detection means and control means are provided, it is possible to perform highly accurate measurement without variations.

【0007】[0007]

【実施例】以下に実施例を説明する。図1に示すよう
に、分光分析装置は、粒状体のサンプルSを投入する漏
斗状のサンプル投入部1と、サンプルSを上方から下方
へ約300m/分の速度で自然流下するほぼ垂直姿勢に
保持された透光性のサンプル流路3と、前記サンプル投
入部1から投入されるサンプルSの前記サンプル流路3
への供給量を調節する供給量調節手段としての供給量調
節装置2と、前記サンプルSのサンプル流路3からの排
出量を調節する排出量調節手段としての排出量調節装置
4とからなるサンプル容器5を設けるとともに、サンプ
ル流路3に対して近赤外の波長を含む測定用の光線束を
照射する光源部6と、サンプル流路3を介して光源部6
とは反対側に配置した近赤外分光測定部7と、光源部6
と分光測定部7の間で出退自在な光減衰機構8とを設け
て構成してある。
EXAMPLES Examples will be described below. As shown in FIG. 1, the spectroscopic analysis apparatus has a funnel-shaped sample loading unit 1 for loading a granular sample S, and a substantially vertical posture in which the sample S naturally flows downward from above at a speed of about 300 m / min. The translucent sample flow path 3 held and the sample flow path 3 of the sample S input from the sample input part 1
A sample comprising a supply amount adjusting device 2 as a supply amount adjusting means for adjusting the supply amount to the sample and an emission amount adjusting device 4 as an emission amount adjusting means for adjusting the discharge amount of the sample S from the sample flow path 3. The container 5 is provided, and the light source unit 6 that irradiates the sample channel 3 with a measurement light beam including a near-infrared wavelength, and the light source unit 6 via the sample channel 3
And a near-infrared spectroscopic measurement unit 7 arranged on the opposite side to the light source unit 6
A light attenuation mechanism 8 which can freely move in and out is provided between the light source and the spectroscopic measurement unit 7.

【0008】前記供給量調節装置2は、前記漏斗状のサ
ンプル投入部1と前記サンプル流路3間に蛇腹状に形成
され、開口面積を調節自在な仕切り部2Aとして構成さ
れている。従って、この開口面積の設定により、サンプ
ル流路3への供給量が調節される。
The supply amount adjusting device 2 is formed in a bellows shape between the funnel-shaped sample introduction section 1 and the sample flow path 3, and is configured as a partition section 2A having an adjustable opening area. Therefore, the supply amount to the sample flow path 3 is adjusted by setting the opening area.

【0009】前記排出量調節装置4は、前述の供給量調
節装置2と同様な構成が採用されており、サンプル流路
3から下部側へのサンプルの排出量を調節する。以上に
説明した構成により、サンプル流路3内のサンプルS
は、この流路3内で、所定量が滞留しながら自然流下す
ることとなる。実際の測定状態においては、比較的多く
のサンプルSをサンプル流路3内に供給し、サンプルS
により堆積層30を形成する。そして、サンプル流路3
下端に到達したサンプルは前述の排出量調節装置4を介
して流路下部40側へ送り出されていく。さらに、この
サンプル容器5には、このサンプルSの堆積層上端面3
0L位置を検出する検出手段9と、検出手段9の検出結
果に基づいて供給量調節装置2により調節される供給量
もしくは排出量調節装置4により調節される排出量の少
なくとも一方を制御する制御手段としての制御装置10
とが装備されており、堆積層30の厚みを一定に保つこ
とにより、堆積層30を一定密度状態として、測定をお
こなう構成としている。
The discharge amount adjusting device 4 has the same structure as the supply amount adjusting device 2 and adjusts the discharge amount of the sample from the sample flow path 3 to the lower side. With the configuration described above, the sample S in the sample flow path 3 is
Will naturally flow down while retaining a predetermined amount in the flow path 3. In an actual measurement state, a relatively large amount of the sample S is supplied into the sample flow path 3 and the sample S
To form the deposition layer 30. And the sample channel 3
The sample reaching the lower end is sent out to the lower part 40 of the flow path via the above-mentioned discharge amount adjusting device 4. Further, in the sample container 5, the top surface 3 of the deposited layer of the sample S is
A detection unit 9 for detecting the 0L position, and a control unit for controlling at least one of the supply amount adjusted by the supply amount adjustment device 2 and the discharge amount adjusted by the discharge amount adjustment device 4 based on the detection result of the detection unit 9. Control device 10
Is provided, and the thickness of the deposited layer 30 is kept constant so that the deposited layer 30 is kept in a constant density state and the measurement is performed.

【0010】前記光減衰機構8は、前記測定用の光線束
強度を減衰するスリガラスやNDフィルタのような光学
素子8Aをガイドレール8B上で水平方向に摺動自在に
取り付けて構成してあり、前記光源部5と前記分光測定
部7とを結ぶ光路上に光学素子8Aが位置する作動状態
と、往路上から光学素子8Aを除去する退避状態に位置
切替え自在に構成してある。この光減衰機構8は、後述
するリファレンス測定モード時に使用されて、透光度の
強度基準設定に使用される。
The light attenuating mechanism 8 is constructed by horizontally slidably mounting an optical element 8A such as a frosted glass or an ND filter for attenuating the intensity of the light beam for measurement on a guide rail 8B. The position is switchable between an operating state in which the optical element 8A is located on the optical path connecting the light source section 5 and the spectroscopic measurement section 7 and a retracted state in which the optical element 8A is removed from the outward path. The light attenuating mechanism 8 is used in a reference measurement mode, which will be described later, and is used for setting a light intensity reference level.

【0011】分光分析装置の測定状態について説明する
と、前記供給量調節装置2及び排出量調節装置4夫々の
開度量を制御装置10により、サンプル流路3内に形成
されるサンプルの堆積層30の厚みが一定になるように
制御しながら装置を運転する。従って、前記サンプル流
路3でのサンプルの落下速度を調節して分光測定するこ
とにより、サンプルからの透過光線束を分光測定するサ
ンプル測定モードでのサンプル測定をおこなうことがで
きる。一方、前記サンプル流路3でのサンプルを全て排
出後、前記供給量調節装置2及び排出量調節装置4夫々
を閉塞状態に切替え、前記光減衰機構8を作動状態に切
り代えて(図2に示す位置に光学素子8Aを移動)分光
測定すれば、前記サンプル容器5からサンプルを取り出
した空の状態でそのサンプル容器5を保持して透過光線
束を分光測定するレファレンス測定モードでのレファレ
ンス測定が行える。尚、前記サンプル流路3の内壁の汚
れは、その程度が著しい場合を除き、サンプル測定モー
ドでの分光測定出力をES (λ)、レファレンス測定モ
ードでの分光測定出力をER (λ)とすると、 ES (λ)=S(λ)SG (λ) ER (λ)=R(λ)SG (λ) A=log〔ER (λ)/ES (λ)〕=log〔R
(λ)/S(λ)〕 となり問題とはならない。但し、S(λ)は汚れなき場
合のサンプル測定出力、R(λ)は汚れなき場合のレフ
ァレンス測定出力、SG (λ)はサンプル流路3の測定
出力である。
Explaining the measurement state of the spectroscopic analyzer, the control device 10 controls the opening degree of each of the supply amount adjusting device 2 and the discharge amount adjusting device 4 of the sample deposition layer 30 formed in the sample flow path 3. The device is operated while controlling the thickness to be constant. Therefore, it is possible to perform sample measurement in the sample measurement mode in which the transmitted light flux from the sample is spectroscopically measured by adjusting the falling speed of the sample in the sample channel 3 and performing spectroscopic measurement. On the other hand, after all the sample in the sample channel 3 is discharged, the supply amount adjusting device 2 and the discharge amount adjusting device 4 are switched to the closed state, and the light attenuation mechanism 8 is switched to the operating state (see FIG. 2). If the spectroscopic measurement is performed by moving the optical element 8A to the position shown, the reference measurement in the reference measurement mode in which the sample container 5 is held in an empty state and the transmitted light flux is spectroscopically measured can be performed. You can do it. Unless the degree of contamination of the inner wall of the sample channel 3 is remarkable, the spectroscopic measurement output in the sample measurement mode is E S (λ) and the spectroscopic measurement output in the reference measurement mode is E R (λ). Then, E S (λ) = S (λ) S G (λ) E R (λ) = R (λ) S G (λ) A = log [E R (λ) / E S (λ)] = log [R
(Λ) / S (λ)] is not a problem. Here, S (λ) is the sample measurement output without contamination, R (λ) is the reference measurement output without contamination, and S G (λ) is the measurement output of the sample flow path 3.

【0012】以下に別実施例を説明する。前記供給量調
節装置2及び排出量調節装置4、前記光減衰機構8の構
成は先の実施例に限定するものではなく、任意に構成し
てよい。サンプルの落下速度は、約300m/分として
いるが、これに限定するものではなく、サンプル流路の
断面積等を考慮して任意に設定できる。上記の実施例に
おいては、検出手段を設けてサンプルの堆積層上端面位
置を検出したが、予め供給量調節装置、排出量調節装置
の開度量とサンプル流路内におけるサンプルの充填状態
との関係を確認しておき、夫々の装置の開度を予め設定
しておいても良い。
Another embodiment will be described below. The configurations of the supply amount adjusting device 2, the discharge amount adjusting device 4, and the light attenuating mechanism 8 are not limited to those in the above embodiment, and may be arbitrarily configured. The sample dropping speed is set to about 300 m / min, but the present invention is not limited to this and can be arbitrarily set in consideration of the cross-sectional area of the sample flow path and the like. In the above embodiment, the position of the upper end surface of the deposited layer of the sample was detected by providing the detecting means. It is also possible to confirm the above and set the opening degree of each device in advance.

【0013】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】サンプル測定モードの分光分析装置の斜視図FIG. 1 is a perspective view of a spectroscopic analyzer in sample measurement mode.

【図2】レファレンス測定モードの分光分析装置の斜視
FIG. 2 is a perspective view of a spectroscopic analyzer in reference measurement mode.

【符号の説明】[Explanation of symbols]

1 サンプル投入部 2 供給量調節手段 3 サンプル流路 4 排出量調節手段 5 サンプル容器 6 光源部 7 分光測定部 9 検出手段 10 制御手段 30L 堆積層上端面 S サンプル DESCRIPTION OF SYMBOLS 1 sample introduction part 2 supply amount adjusting means 3 sample flow path 4 discharge amount adjusting means 5 sample container 6 light source part 7 spectroscopic measurement part 9 detecting means 10 control means 30L deposited layer upper end surface S sample

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒状体のサンプル(S)が投入されるサ
ンプル投入部(1)と、前記サンプル投入部(1)に連
設して設けられ、且つ前記サンプル(S)を上方から下
方へ自然流下させるための透光性のサンプル流路(3)
と、前記サンプル投入部(1)から前記サンプル流路
(3)へ供給される前記サンプル(S)の供給量を調節
自在な供給量調節手段(2)と、前記サンプル流路
(3)から排出される前記サンプル(S)の排出量を調
節自在な排出量調節手段(4)とを備えたサンプル容器
(5)を設けるとともに、 前記サンプル流路(3)に対して測定用の光線束を照射
する光源部(6)と、前記サンプル流路(3)を介して
前記光源部(6)とは反対側に配置した分光測定部
(7)とを設けて構成してある分光分析装置。
1. A sample loading section (1) into which a granular sample (S) is loaded, and a sample loading section (1) which is provided continuously with the sample loading section (1) and which moves the sample (S) downward from above. Light-transmitting sample channel (3) for natural flow
A supply amount adjusting means (2) capable of adjusting the supply amount of the sample (S) supplied from the sample introduction part (1) to the sample flow path (3), and the sample flow path (3) A sample container (5) having a discharge amount adjusting means (4) capable of adjusting the discharge amount of the sample (S) to be discharged is provided, and a light beam for measurement is supplied to the sample channel (3). And a spectroscopic measurement unit (7) arranged on the opposite side of the light source unit (6) through the sample flow channel (3). .
【請求項2】 自然流下状態で前記サンプル流路(3)
内に堆積した前記サンプル(S)の堆積層上端面(30
L)位置を検出する検出手段(9)を設け、前記検出手
段(9)の検出結果に基づいて前記供給量調節手段
(2)により調節される供給量もしくは前記排出量調節
手段(4)により調節される排出量の少なくとも一方を
制御する制御手段(10)が設けられている請求項1記
載の分光分析装置。
2. The sample flow path (3) in a natural flow state.
The upper surface (30) of the deposited layer of the sample (S) deposited inside
L) A detection unit (9) for detecting the position is provided, and the supply amount or the discharge amount adjustment unit (4) adjusted by the supply amount adjustment unit (2) based on the detection result of the detection unit (9). The spectroscopic analyzer according to claim 1, further comprising a control means (10) for controlling at least one of the adjusted emission amounts.
JP15677293A 1993-06-28 1993-06-28 Spectral analysis device Pending JPH0712719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15677293A JPH0712719A (en) 1993-06-28 1993-06-28 Spectral analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15677293A JPH0712719A (en) 1993-06-28 1993-06-28 Spectral analysis device

Publications (1)

Publication Number Publication Date
JPH0712719A true JPH0712719A (en) 1995-01-17

Family

ID=15634982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15677293A Pending JPH0712719A (en) 1993-06-28 1993-06-28 Spectral analysis device

Country Status (1)

Country Link
JP (1) JPH0712719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015720A (en) * 2016-08-30 2017-01-19 静岡製機株式会社 Quality measuring apparatus for grain
JP2017037078A (en) * 2016-08-30 2017-02-16 静岡製機株式会社 Apparatus for measuring quality of grain

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015720A (en) * 2016-08-30 2017-01-19 静岡製機株式会社 Quality measuring apparatus for grain
JP2017037078A (en) * 2016-08-30 2017-02-16 静岡製機株式会社 Apparatus for measuring quality of grain
WO2018043402A1 (en) * 2016-08-30 2018-03-08 静岡製機株式会社 Device for measuring the quality of grains
WO2018043403A1 (en) * 2016-08-30 2018-03-08 静岡製機株式会社 Device for measuring the quality of grains

Similar Documents

Publication Publication Date Title
RU2092817C1 (en) Method of determination of composition of loose products and device for its realization
US7330262B2 (en) Methods and apparatus for determining the content materials of a liquid employing a piston movable within a measuring chamber
JP4824017B2 (en) Apparatus and method for inspecting material flow by light scattering inside the material
JP4853518B2 (en) Spectrophotometer
US9599557B2 (en) Dust line with optical sensor, and method for measuring the composition of dust
US4479055A (en) Infrared analyzer, especially for foodstuffs such as flour
JPS6411908B2 (en)
US5423216A (en) Apparatus for automatically determining bulk specific gravity of powdery product
EP1197742A1 (en) Side multiple-lamp on-line inside quality inspecting device
JP2001225029A (en) Transfer device for online inspecting internal quality
US5074158A (en) Powder granule sample inspection apparatus
US4439039A (en) Photometer
JPH0712719A (en) Spectral analysis device
US7518716B2 (en) Granular product inspection device
JP6181780B2 (en) Combine
US5227856A (en) Sample holding and positioning mechanism and method for optical analysis
JP4713731B2 (en) Equipment for measuring the internal quality of fruits and vegetables
JPH05240781A (en) Spectral analyzer
JPH0979978A (en) Nondestructive component measuring apparatus for vegetable and fruit
JP2002267571A (en) Inspection device for optical characteristic
JPH1151854A (en) Spectroscopic analyzer
JP2761140B2 (en) Spectrometer
JP6312721B2 (en) Combine
JPH08254580A (en) Humidity measuring device and method with near-infrared spectroscopic analysis
JPH06300699A (en) Spectrochemical analyzer