JPH0712566B2 - Method for manufacturing high hardness material joining type tool - Google Patents

Method for manufacturing high hardness material joining type tool

Info

Publication number
JPH0712566B2
JPH0712566B2 JP59238165A JP23816584A JPH0712566B2 JP H0712566 B2 JPH0712566 B2 JP H0712566B2 JP 59238165 A JP59238165 A JP 59238165A JP 23816584 A JP23816584 A JP 23816584A JP H0712566 B2 JPH0712566 B2 JP H0712566B2
Authority
JP
Japan
Prior art keywords
diffusion
tool
joining
punch
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59238165A
Other languages
Japanese (ja)
Other versions
JPS61117003A (en
Inventor
政昭 池辺
勝也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANALLOY INDUSTRY CO., LTD.
Original Assignee
SANALLOY INDUSTRY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANALLOY INDUSTRY CO., LTD. filed Critical SANALLOY INDUSTRY CO., LTD.
Priority to JP59238165A priority Critical patent/JPH0712566B2/en
Publication of JPS61117003A publication Critical patent/JPS61117003A/en
Publication of JPH0712566B2 publication Critical patent/JPH0712566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高硬度材料(周期律表4a,5a,6a族金属の炭化
物,窒化物,炭窒化物,硼化物または硅化物の1種以上
と結合金属(主としてFe,Co,Ni)の1種以上とからなる
超硬合金、または、セラミクス)からなる加工部と高強
度材料(工具鋼、特殊鋼等)からなる支持部とを接合し
て一体化した工具に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a high hardness material (one of carbides, nitrides, carbonitrides, borides or silicides of metals of Groups 4a, 5a and 6a of the Periodic Table). Joins the processed part made of cemented carbide or ceramics consisting of the above and one or more kinds of bond metals (mainly Fe, Co, Ni) and the support part made of high-strength materials (tool steel, special steel, etc.) And integrated tool.

(従来技術) 工具には、強度,耐摩耗性,靭性等の性質がすぐれてい
ることが必要である。工具用の素材としては、高強度材
料(工具鋼、特殊鋼等の工具に適した鋼)や高硬度材料
(超硬合金やセラミクス)が用いられる。前者は、靭性
にすぐれ、後者は、硬度(耐摩耗性)にすぐれている。
靭性と硬度との両特性にすぐれた材料を得ることは、本
質的に困難である。従来の工具は、工具鋼、特殊鋼等の
加工品であるか、もしくは、超硬合金による一体成形品
であり、耐摩耗用,耐衝撃用,切削用その他の用途に応
じて素材が選択されてきた。なお、さらに表面硬化処理
法により鋼の表面に硬化層を形成し、靭性と硬度との両
特性にすぐれた工具が製造される。
(Prior Art) Tools need to have excellent properties such as strength, wear resistance, and toughness. As a material for the tool, a high strength material (steel suitable for tools such as tool steel and special steel) and a high hardness material (cemented carbide and ceramics) are used. The former is excellent in toughness, and the latter is excellent in hardness (wear resistance).
It is essentially difficult to obtain a material excellent in both toughness and hardness. Conventional tools are processed products of tool steel, special steel, etc., or are integrally molded products of cemented carbide, and the materials are selected according to wear resistance, impact resistance, cutting and other uses. Came. Further, a hardened layer is further formed on the surface of the steel by a surface hardening treatment method, and a tool excellent in both characteristics of toughness and hardness is manufactured.

工具の一例として、冷間鍛造,温間鍛造,熱間鍛造用の
プレス金型用ポンチの製造について説明する。工具鋼、
特殊鋼等の素材を切削加工等でポンチ形状に加工し、靭
性及び硬度をもたせるための熱処理(800〜1260℃焼入
と100〜570℃焼戻し)後、仕上研磨加工する。もしく
は、素材を切削加工等で仕上加工し、次に、耐摩耗性の
一層の向上をはかる目的で、工具表面にCVD法で硬化層
を形成する表面硬化処理法を施し、その後、熱処理(80
0〜1260℃焼入と100〜570℃焼戻し)を行なう。CVD処理
による被覆硬化層は高硬度であり、かつ、鉄系材料との
親和性が劣ることにより、その摩擦抵抗が減少する作用
がある。
As an example of the tool, manufacturing of a punch die for cold forging, warm forging, and hot forging will be described. Tool steel,
A material such as special steel is processed into a punch shape by cutting, etc., and heat-treated (800-1260 ℃ quenching and 100-570 ℃ tempering) to give it toughness and hardness, and then finish polishing. Alternatively, the material is finished by cutting or the like, and then, for the purpose of further improving wear resistance, a surface hardening treatment method for forming a hardened layer on the tool surface by a CVD method is performed, and then a heat treatment (80
0 ~ 1260 ℃ quenching and 100 ~ 570 ℃ tempering). The coating hardened layer formed by the CVD treatment has a high hardness and has an effect of reducing its frictional resistance due to its poor affinity with the iron-based material.

(発明の解決すべき問題点) 従来の工具は、工具鋼、特殊鋼等の加工品であるか、も
しくは、超硬合金による一体成型品であるため、使用の
際に、素材の特性による不具合が生じる。たとえば、従
来の素材(工具鋼、特殊鋼等)によるプレス金型用ポン
チの欠点は、鍛造の際にポンチ先端部(加工部)に高い
繰返し圧縮応力,熱衝撃,被鍛造材との摩擦等を受ける
ので、ポンチ先端部において、強度不足,硬度不足,材
料偏析等によるたて割れ,横割れ,剥離,永久変形,折
損,摩耗等の損傷が生じ易いことである。一方、従来法
による表面硬化処理を施したプレス金型用ポンチは、そ
の母材となる工具鋼等が鍛造初期段階にて鍛造時応力に
より塑性変形を生じ、そのため表面硬化層にクラックを
生じ鍛造の進行とともに硬化層に剥離を発生させるため
摩耗や焼付が生じ易い。したがって、被覆硬化層のすぐ
れた耐摩耗性を十分に生かしきれず、所望する工具寿命
が得られず、金型交換等の工程ロスが生じていた。ま
た、工具鋼母材の熱処理時の焼入状態のバラツキによ
り、同一の鍛造条件にてもその工具寿命に大きな差が生
じていた。
(Problems to be solved by the invention) Conventional tools are processed products of tool steel, special steel, etc., or are integrally molded products made of cemented carbide, so there is a problem due to the characteristics of the material during use. Occurs. For example, the disadvantages of punches for press dies made of conventional materials (tool steel, special steel, etc.) are high cyclic compressive stress, thermal shock, friction with the material to be forged, etc. at the punch tip (processed portion) during forging. Therefore, the punch tip portion is apt to suffer damages such as vertical cracks, lateral cracks, peeling, permanent deformation, breakage and abrasion due to insufficient strength, insufficient hardness, material segregation and the like. On the other hand, in the punch for press dies that has been subjected to surface hardening treatment by the conventional method, the tool steel, which is the base material of the punch, undergoes plastic deformation due to stress during forging in the initial stage of forging, which causes cracks in the surface hardened layer and forging. As the peeling occurs in the hardened layer with progress of abrasion, abrasion and seizure are likely to occur. Therefore, the excellent wear resistance of the coating hardened layer cannot be fully utilized, the desired tool life cannot be obtained, and process loss such as die replacement occurs. Further, due to variations in the quenching state during heat treatment of the tool steel base material, there was a large difference in tool life even under the same forging conditions.

超硬合金材料は、高硬度ではあるが、工具鋼等と比較し
て脆いため、超硬合金材料からなるブレス金型用ポンチ
は、精度のよいプレス機械を用いて引張や曲げ応力が生
じないような応力状態条件でなければ使用できず、使用
条件が非常に制約されていた。
Cemented carbide materials have high hardness, but are more brittle than tool steels, etc. Therefore, the punches for breath molds made of cemented carbide materials do not generate tensile or bending stress using an accurate press machine. It could not be used under such stress condition, and the use condition was very limited.

そこで、高硬度材料である超硬合金等と、硬強度材料で
ある工具鋼等とを組み合わせて両材料の長所を生かすこ
とが考えられる。このため、超硬合金と工具鋼等(母
材)をロウ付けで接着した工具が製造されている。ま
た、超硬合金と母材との間に放電焼結層を介在させ、放
電焼結層と母材との間にそれぞれ拡散接着面を形成した
工具も提案されている(特公昭55−5567号公報)。しか
し、これらの場合、ロウ付け相や放電焼結層が存在する
ので、超硬合金と母材の組み合わせの効果を十分発揮で
きない。
Therefore, it is possible to combine the advantages of both materials by combining cemented carbide, which is a high hardness material, and tool steel, which is a hard strength material. For this reason, tools in which cemented carbide and tool steel or the like (base material) are bonded by brazing are manufactured. A tool has also been proposed in which a spark-sintered layer is interposed between a cemented carbide and a base material, and diffusion-bonded surfaces are respectively formed between the spark-sintered layer and the base material (Japanese Patent Publication No. 55-5567). Issue). However, in these cases, the effect of the combination of the cemented carbide and the base material cannot be sufficiently exerted due to the existence of the brazing phase and the discharge sintering layer.

さらに、両接合母材の間に中間接合層を設け、拡散接合
させた工具が従来から知られている。たとえば、特開昭
59−1104号公報に記載された工具では、超硬合金(母材
2)と高硬度材料または高強度材料(支持部5)との接
合は、中間金属層(鉄族金属またはこれを主成分とする
合金)4を介している。すなわち、接合後の工具の構造
は、母材2、中間金属層4および支持部5の3層からな
る。また、特開昭58−211861号公報に記載された工具で
は、焼結炭化物支持体48と工具柄部42の接合面に220μ
mまでの厚さの接合層50を介在させている。このような
中間接合層の存在目的は、(1)脆弱な金属間化合物の
生成の抑制と、(2)熱膨張係数の差による熱応力の緩
和であり、従って、これらの工具では、拡散接合後にも
中間金属層が存在している。
Furthermore, a tool in which an intermediate joining layer is provided between both joining base materials and diffusion joining is conventionally known. For example,
In the tool described in Japanese Patent No. 59-1104, the cemented carbide (base material 2) and the high-hardness material or the high-strength material (supporting portion 5) are joined by an intermediate metal layer (iron group metal or the main component thereof). Alloy 4). That is, the structure of the tool after joining is composed of three layers of the base material 2, the intermediate metal layer 4, and the supporting portion 5. Further, in the tool described in Japanese Patent Laid-Open No. 58-211861, 220 μm is formed on the joint surface between the cemented carbide support 48 and the tool handle 42.
The bonding layer 50 having a thickness of up to m is interposed. The purpose of the existence of such an intermediate bonding layer is (1) suppression of generation of brittle intermetallic compounds and (2) relaxation of thermal stress due to difference in thermal expansion coefficient. Therefore, in these tools, diffusion bonding is performed. The intermediate metal layer is also present afterwards.

しかし、接合層の塑性変形による熱応力緩和効果を期待
するような軟質な材料を接合層に使用する場合、こうし
て完成された接合型工具は、過大な圧縮負荷応力が作用
するような冷間鍛造用パンチなどとしては使用できない
ことが多い。すなわち、通常、接合層を介在させた接合
体の接合強度は、剪断強度、曲げ強度、引張強度で評価
されることが一般的であり、圧縮強度で評価されること
はほとんどない。これは、構造体の破壊は、引張応力に
より発生するとの考え方によるものであり、圧縮応力で
は引張応力が作用しないためである。しかし、軟質な材
料に圧縮負荷をかけると座屈という現象が生じ、最終的
に破壊に至ることはよく知られている。軟質な接合層を
介在させた接合型工具の場合、特に冷間鍛造用パンチな
どの(たとえば200kg/mm2以上が作用する)高圧縮負荷
応力の場合は、きわめて短時間で接合層にて工具が破断
する。工具の性質は中間金属層により制約されるため、
中間金属層が存在することは、両材料の長所を行かすと
いう点からは最良の方法ではなく、圧縮負荷が重要とな
るパンチ金属用工具などには適していない。
However, when a soft material that is expected to have a thermal stress relaxation effect due to plastic deformation of the joining layer is used for the joining layer, the joining type tool completed in this way is cold forged so that excessive compressive load stress acts. In many cases, it cannot be used as a punch. That is, generally, the bonding strength of a bonded body with a bonding layer interposed is generally evaluated by shear strength, bending strength, and tensile strength, and is rarely evaluated by compressive strength. This is based on the idea that the structural body is destroyed by tensile stress, and the tensile stress does not act on the compressive stress. However, it is well known that when a compressive load is applied to a soft material, a phenomenon called buckling occurs, which eventually leads to fracture. In the case of a joining type tool with a soft joining layer interposed, especially in the case of high compressive load stress such as cold forging punch (for example, 200 kg / mm 2 or more acts), the tool is used in the joining layer in an extremely short time. Breaks. Since the properties of the tool are limited by the intermediate metal layer,
The presence of the intermediate metal layer is not the best method from the viewpoint of exerting the advantages of both materials, and is not suitable for a punch metal tool or the like in which compression load is important.

なお、本願発明は、後で説明するように、拡散素材を用
いて拡散接合により加工部素材と支持部素材を直接に接
合するものであるが、特開昭52−50907号公報に記載さ
れた切削工具の製造法でも、15〜30%Coの超硬合金(先
端部5)と中炭素合金鋼(ボデー部7)とを拡散接合す
る。しかし、この方法は、本願発明と異なり、拡散素材
を用いずに、両者を直接に接合面を介して拡散接合す
る。この方法では、中間層なしに加工部素材と支持部素
材が接合され、拡散接合は、先端部5(加工部)の素材
(超硬合金)の1成分であるコバルトなどによるもので
ある。しかし、超硬合金(加工部)と合金工具鋼または
高速度工具鋼(支持部)とを直接に拡散接合すると、コ
バルトなどの拡散により接合面に脆弱な金属間化合物が
生成され、接合強度が著しく低下するとい課題がある。
As will be described later, the invention of the present application directly joins the processed material and the support material by diffusion bonding using a diffusion material, which is described in JP-A-52-50907. Also in the manufacturing method of the cutting tool, the cemented carbide of 15 to 30% Co (tip portion 5) and the medium carbon alloy steel (body portion 7) are diffusion-bonded. However, this method, unlike the present invention, does not use a diffusing material and directly diffusively bonds the two through the bonding surface. In this method, the processed portion material and the support portion material are joined without an intermediate layer, and the diffusion joining is performed by using cobalt, which is one component of the material (cemented carbide) of the tip portion 5 (worked portion). However, when cemented carbide (worked part) and alloy tool steel or high-speed tool steel (support part) are diffusion-bonded directly, a weak intermetallic compound is generated on the joint surface due to the diffusion of cobalt etc. There is a problem that it will drop significantly.

本発明の目的は、強度、対摩耗性、靭性のいずれにも優
れた工具の製造方法を提供することである。
An object of the present invention is to provide a method for manufacturing a tool excellent in strength, wear resistance and toughness.

(問題点を解決するための手段) 本発明に係る高強度材料接合型工具の製造方法において
は、加工部素材の接合すべき面とこれに対向する支持部
素材の接合すべき面との間に、拡散後に単相で存在しな
い量の拡散素材を介在させて固定し、次に、加圧下でこ
の拡散素材を上記の両面を通して拡散させ、加工部素材
とを直接に接合面を介して一体に拡散接合させ、次に、
加工部素材の表面に表面硬化層を形成する。これによ
り、高強度材料からなる加工部と高強度材料からなる支
持部とが接合されて一体化されたパンチ金型用工具など
の工具が製造される。ここに、上記の拡散素材の量は、
拡散接合時の温度、圧力を考慮して、拡散後に単相で存
在しない量に決定されるが、さらに、表面硬化層形成時
の温度、雰囲気ガスおよび雰囲気圧力も考慮して決定す
る。好ましくは、上記の表面硬化層を形成した工具に高
温静水圧加圧下で拡散処理を施す。
(Means for Solving the Problems) In the method for manufacturing a high-strength material-bonding tool according to the present invention, between the surface to be bonded of the processed material and the surface of the supporting material opposite to this to be bonded. After the diffusion, it is fixed by interposing a diffusion material in an amount that does not exist in a single phase after diffusion, and then this diffusion material is diffused under pressure through both sides of the above, and the processed portion material is directly integrated through the joint surface. Diffusion bonded to
A surface-hardened layer is formed on the surface of the processed material. As a result, a tool such as a punch die tool in which the processed portion made of the high-strength material and the support portion made of the high-strength material are joined and integrated is manufactured. Here, the amount of the diffusion material is
The amount is determined so as not to exist in a single phase after diffusion in consideration of the temperature and pressure at the time of diffusion bonding, and the temperature, the atmospheric gas and the atmospheric pressure at the time of forming the surface hardened layer are also taken into consideration. Preferably, the tool on which the surface-hardened layer is formed is subjected to diffusion treatment under high temperature hydrostatic pressure.

(作用) 加工部素材と支持部素材とを拡散素材を介して加圧下で
接合するので、両者は、拡散接合により一体に接合され
る。これにより、強度と靭性に優れた工具が容易に製造
される。ここで、拡散素材の使用により、両接合母材
(加工部と支持部)の相互拡散を抑制し、最終的に接合
層(中間層)を消失せしめて、接合面近傍領域に傾斜組
成を形成し、強固な接合体を得ることができる。これに
より、高硬度材料(超硬合金など)と高強度材料(工具
鋼など)を組み合わせ両材料の長所を生かして、圧縮負
荷に対して高性能の強度と靭性に優れた工具を作成でき
る。さらに加工部に表面硬化層を形成する。これにより
工具の対摩耗性は大きく向上する。さらに、高温静水圧
加圧下で工具を処理するので、表面硬化層と加工部母材
との密着強度が向上する。これにより耐摩耗性がさらに
向上する。
(Operation) Since the processed portion material and the support portion material are joined under pressure via the diffusion material, the two are integrally joined by diffusion joining. Thereby, a tool excellent in strength and toughness is easily manufactured. Here, the use of a diffusion material suppresses mutual diffusion of both joining base materials (processed portion and supporting portion), and finally eliminates the joining layer (intermediate layer), forming a graded composition in the area near the joining surface. And a strong joined body can be obtained. This makes it possible to combine a high hardness material (such as cemented carbide) and a high strength material (such as tool steel) and take advantage of both materials to create a tool with high strength and high toughness against a compressive load. Further, a surface hardened layer is formed on the processed portion. This greatly improves the wear resistance of the tool. Further, since the tool is processed under high temperature hydrostatic pressure, the adhesion strength between the surface hardened layer and the base material of the processed part is improved. This further improves wear resistance.

ここに、上記の拡散素材の量は、拡散接合時の温度、圧
力を考慮して拡散後に単相で存在しない量に決定される
が、さらに、表面硬化層形成時の温度、雰囲気ガスおよ
び雰囲気圧力をも考慮する。これは、CVDで表面被覆を
行う際に拡散接合層に対する雰囲気ガスの影響を無視で
きない場合がありうるためである。これにより、最終製
品にいたるまでの熱処理履歴の結果として、工具中に拡
散素材(接合中間層)を残さないことになる。
Here, the amount of the diffusion material is determined in consideration of the temperature and pressure at the time of diffusion bonding so as not to exist in a single phase after diffusion. Consider pressure as well. This is because the influence of the atmospheric gas on the diffusion bonding layer may not be negligible when performing surface coating by CVD. As a result, the diffusion material (bonding intermediate layer) is not left in the tool as a result of the history of heat treatment up to the final product.

本願発明は、拡散素材を用いた接合を採用する。この拡
散素材の使用による効果として、拡散素材が両母材に拡
散を開始する当初は、両母材が直接接触していないため
に、脆弱な金属間化合物は生成しない。さらに拡散が進
むと、両母材の接合面近傍の組成は、拡散素材成分を含
有してゆくことにより変化していき、最終的には、拡散
素材が接合面で消失した段階で、脆弱な金属間化合物が
生成しない組成となるか、または、生成したとしても分
散して生成し、破壊の原因とはならない。また、両母材
への拡散により、接合面近傍の両母材組成が変化し、硬
度低下を生じるため、熱応力緩和の方向へ作用する。た
とえば、超硬合金(加工部)と工具鋼(支持部)との両
接合母材に拡散素材としてニッケル基合金を使用する
と、超硬合金側ではニッケル成分の拡散により結合層が
増大し、相応する硬度低下をもたらす。また、工具鋼側
ではニッケル成分の増大によりオーステナイト相が安定
化するために熱処理を実施しても、相応の焼き入れ硬度
しか入らず、これにより、接合面近傍にて熱応力緩和効
果が得られる。さらに、上述のごとく、十分な拡散浸透
により、十分な接合強度を有する強固な接合体が得られ
る。
The present invention employs bonding using a diffusion material. As a result of the use of the diffusion material, a brittle intermetallic compound does not form at the beginning of the diffusion material diffusion into both base materials because the base materials are not in direct contact with each other. As the diffusion progresses further, the composition in the vicinity of the joint surface of both base materials changes due to the inclusion of the diffusion material component, and finally, when the diffusion material disappears at the joint surface, it becomes fragile. The composition does not form an intermetallic compound, or even if it forms, it forms in a dispersed state and does not cause destruction. Further, the diffusion into both base materials changes the composition of both base materials in the vicinity of the joint surface and causes a decrease in hardness, which acts in the direction of thermal stress relaxation. For example, if a nickel-based alloy is used as a diffusion material for both the joining base material of cemented carbide (working part) and tool steel (supporting part), the bonding layer increases on the cemented carbide side due to the diffusion of the nickel component, and Causes a decrease in hardness. Further, on the tool steel side, even if a heat treatment is carried out to stabilize the austenite phase due to an increase in the nickel content, only a corresponding quenching hardness is entered, and as a result, a thermal stress relaxation effect can be obtained near the joint surface. . Furthermore, as described above, a strong bonded body having a sufficient bonding strength can be obtained by sufficient diffusion and penetration.

なお、本願発明は、上述の特開昭52−50907号公報に記
載された切削工具の製造法と、加工部素材と支持部素材
とを接合面を介して一体に拡散接合させた工具を製造す
る点で共通するが、本願発明の方法では、拡散後に接合
面に存在しない適当な量の拡散素材を使用する。これに
より、両接合母材(加工部と支持部)の相互拡散を抑制
し、中間化合物の生成を抑制する。また、従来の接合中
間層を設けた工具と比べると、拡散接合の後に中間金属
層が存在していないため、中間金属層により工具の性質
が制約されず、圧縮荷重に優れたプレス金型用ポンチな
どが製造できる。
The invention of the present application is a method for manufacturing a cutting tool described in JP-A-52-50907 mentioned above and a tool for integrally diffusion-bonding a processing part material and a supporting part material via a bonding surface. However, in the method of the present invention, an appropriate amount of diffusion material that does not exist on the joint surface after diffusion is used. As a result, mutual diffusion of both joining base materials (processed portion and supporting portion) is suppressed, and generation of intermediate compounds is suppressed. In addition, compared with the conventional tool with a joining intermediate layer, since the intermediate metal layer does not exist after diffusion joining, the properties of the tool are not restricted by the intermediate metal layer, and for press dies with excellent compression load. Punches can be manufactured.

(実施例) 以下、添付の図面を用いて本発明の実施例を説明する。(Examples) Examples of the present invention will be described below with reference to the accompanying drawings.

第1図(a)〜(d)には、プレス金型用ポンチの断面
を示す。製造に際し、そのポンチ形状,金型,鍛造品形
状,鍛造材料,計算応力等から接合位置と接合面形状と
を設計し、高い耐摩耗性,耐熱性,圧縮強さが要求され
るポンチ先端成形部1には高硬度材料(超硬合金,セラ
ミックス)を、強靭性が要求されるポンチシャンク部2
には高強度材料(工具鋼等)を適用する。両接合部材1,
2は、仕上加工代を含めた寸法にて用意し、接合面3の
粗度は100μm以下とする。ここで、(a),(c),
(d)は打抜き用ポンチである。なお、(c),(d)
の打抜き用ポンチにおいては、接合面を広くするため、
接合面3が凹状または円錐状になっている。一方、
(b)は絞り加工用ポンチであり、ポンチ先端部1の長
さを、他のポンチの長さに比べて長くして、被加工材と
接触する周囲部分の耐摩耗性の向上を図っている。
1 (a) to (d) show cross sections of punches for press dies. At the time of manufacturing, the joining position and joining surface shape are designed based on the punch shape, die, forged product shape, forging material, calculated stress, etc., and punch tip molding that requires high wear resistance, heat resistance, and compression strength. The part 1 is made of a high hardness material (hard metal, ceramics) and the punch shank part 2 is required to have toughness.
A high-strength material (tool steel, etc.) is used for. Both joining members 1,
2 is prepared with dimensions including the finishing allowance, and the roughness of the joint surface 3 is 100 μm or less. Where (a), (c),
(D) is a punch for punching. Note that (c) and (d)
In the punch for punching, in order to widen the joint surface,
The joint surface 3 is concave or conical. on the other hand,
(B) is a punch for drawing, in which the length of the punch tip 1 is made longer than that of other punches to improve the wear resistance of the peripheral portion in contact with the workpiece. There is.

接合の際は、接合面3は、酸洗脱脂等により表面酸化物
その他の不純物を洗浄除去し、次に、両部材1,2を組合
せ、以下に説明する接合方法のいずれかを実施する。最
後に、最終形状品の成形加工を行なう。
At the time of joining, the joining surface 3 is cleaned and removed of surface oxides and other impurities by pickling and degreasing, and then both members 1 and 2 are combined to carry out one of the joining methods described below. Finally, the final shape product is molded.

次に、第2図〜第5図を参照して、接合方法を説明す
る。
Next, the joining method will be described with reference to FIGS.

真空ろう付法(第2図参照) (a)先端部(高硬度材料)1とシャンク部(工具用
鋼)2との間の接合部にCu系、もしくはNi系その他のろ
う材11を任意厚さにて装入し、(b)所定温度にて数分
〜数十分間真空ろう付し、(c)高温静水圧加圧(HI
P)拡散接合(800〜1200℃、200〜1000気圧)もしくは
真空ホットプレス拡散接合(800〜1200℃、200〜1000気
圧)を行なう。ただし、ろう材11の厚さは、ろう材11が
両接合母材1,2中に完全に拡散浸透し、接合後に両接合
部材1,2間に単相では存在しえない厚さを選択する。ま
た、ろう材11は、拡散接合過程において両接合部材1,2
の脆い中間化合物を形成するものであってはならない。
Vacuum brazing method (see Fig. 2) (a) Any Cu-based or Ni-based brazing material 11 can be used at the joint between the tip (high hardness material) 1 and shank (tool steel) 2. Charge in thickness, (b) vacuum braze at specified temperature for several minutes to tens of minutes, (c) high temperature hydrostatic pressure (HI
P) Diffusion bonding (800-1200 ° C, 200-1000 atm) or vacuum hot press diffusion bonding (800-1200 ° C, 200-1000 atm). However, the thickness of the brazing filler metal 11 is selected so that the brazing filler metal 11 completely diffuses and penetrates into both the joining base materials 1 and 2 and cannot exist in a single phase between the joining members 1 and 2 after joining. To do. In addition, the brazing filler metal 11 is used for both the joining members 1, 2 in the diffusion joining process.
It should not form a brittle intermediate compound.

電子ビーム溶接法(第3図参照) (a)先端部(高硬度材料)1とシャンク部(高強度材
料)2との間の接合部に任意厚さのNi等のインサートメ
タル12を装入し、または先端部1とシャンク部2との両
接合面を直接に接触させ、(b)接合部の周縁部13を電
子ビーム溶接して、接合面を真空密封し、(c)次に、
両部材1,2をHIP拡散接合(1000〜1300℃、200〜1000気
圧)もしくは真空ホットプレス拡散接合(1000〜1300
℃、200〜1000気圧)で接合する。但し、インサートメ
タル12は、接合過程において、両接合部材1,2と脆い中
間化合物を形成するものであってはならない。
Electron beam welding method (see Fig. 3) (a) Insert the insert metal 12 of arbitrary thickness such as Ni into the joint between the tip (high hardness material) 1 and the shank (high strength material) 2. Or directly contact both joint surfaces of the tip portion 1 and the shank portion 2, (b) electron-beam welding the peripheral portion 13 of the joint portion, and vacuum-sealing the joint surface, (c) Next,
Both members 1 and 2 are HIP diffusion bonded (1000 to 1300 ° C, 200 to 1000 atm) or vacuum hot press diffusion bonded (1000 to 1300).
Bonding at ℃, 200-1000 atmospheres). However, the insert metal 12 should not form a brittle intermediate compound with both the joining members 1 and 2 in the joining process.

カプセル方式HIP拡散接合法(第4図参照) (a)先端部(高硬度材料)1とシャンク部(高強度材
料)2との間の接合部に任意厚さのNi等のインサートメ
タル12を装入し、または先端部1とシャンク部2との両
接合面を直接に接触させ、(b)これをアルミナ粉末等
の圧媒粒子14とともに軟鋼製カプセル15中に真空密封
し、(c)HIP拡散接合(1000〜1300℃、200〜1000気
圧)を行なう。(カプセル方式HIPについては、特開昭5
5−153699号公報参照)。
Capsule method HIP diffusion bonding method (see Fig. 4) (a) Insert metal 12 such as Ni of arbitrary thickness at the joint between tip (high hardness material) 1 and shank (high strength material) 2 It is charged, or both joint surfaces of the tip portion 1 and the shank portion 2 are brought into direct contact with each other, (b) this is vacuum-sealed in a mild steel capsule 15 together with pressure medium particles 14 such as alumina powder, (c) HIP diffusion bonding (1000-1300 ℃, 200-1000 atmospheres) is performed. (For capsule method HIP, see
5-153699 gazette).

真空ホットプレス法(第5図参照) (a)先端部(高硬度材料)1とシャンク部(高強度材
料)2との間の接合部に任意厚さのNi等のインサートメ
タル12を装入し、または先端部1とシャンク部2との両
接合面を直接に接触させ、(b)これに、真空ホットプ
レス拡散接合(1000〜1300℃、200〜1000気圧)を行な
う。
Vacuum hot press method (see Fig. 5) (a) Insert an insert metal 12 of arbitrary thickness such as Ni into the joint between the tip (high hardness material) 1 and the shank (high strength material) 2. Or both contact surfaces of the tip portion 1 and the shank portion 2 are brought into direct contact with each other, and (b) vacuum hot press diffusion bonding (1000 to 1300 ° C., 200 to 1000 atm) is performed on the bonding surface.

さらに、必要ならば、耐摩耗性を向上させるために
上記の接合方法を実施した後、硬化層が被覆される。す
なわち、プレス金型用ポンチ表面にCVD処理(800〜1200
℃)により硬化層が析出被覆される。この硬化層として
は、遷移金族の各種炭化物,窒化物,炭窒化物,硼化物
もしくは硅化物と、Al,Y,Zr等の酸化物との一方または
双方の単層,複層または複々層を被覆する。
Furthermore, if necessary, the hardened layer is coated after carrying out the above-mentioned joining method in order to improve wear resistance. That is, the CVD process (800-1200
C.) to deposit and coat the hardened layer. The hardened layer may be a single layer, multiple layers or multiple layers of one or both of various carbides, nitrides, carbonitrides, borides or sulfides of the transition metal group and oxides such as Al, Y and Zr. Coat layers.

さらに、表面硬化層の安定化及び硬化層のポンチ母
材への拡散による十分な密着強度を得るために、上記の
プレス金型用ポンチにHIP拡散処理(800〜1200℃、200
〜1000気圧)が実施される。
Further, in order to stabilize the surface hardened layer and obtain sufficient adhesion strength by diffusing the hardened layer into the punch base material, the punch for the press die is subjected to HIP diffusion treatment (800 to 1200 ° C, 200
~ 1000 atmospheres).

なお、超硬合金同志あるいは超硬合金と他の金属類と
を、必要ならばメタルシールを介して、HIPにより結合
させる方法は、特開昭48−75443号公報に開示されてい
るが、上記の方法においては、電子ビーム溶接工程を
介している点で異っている。
Incidentally, a method of joining cemented carbides or cemented carbides and other metals by HIP, if necessary via a metal seal, is disclosed in JP-A-48-75443. The method is different in that it is through an electron beam welding process.

以下に実施例を記述する。各実施例とも、ポンチ形状,
接合位置,接合面形状,接合部材および鍛造条件は、全
て同一条件である。第6図(a),(b)は、それぞ
れ、本実施例のプレス金型用ポンチの正面図と側面図で
ある。先端部1は、超硬合金G3〜G4からなり、シャンク
部2は、ハイスSKH55からなる。
Examples will be described below. In each embodiment, the punch shape,
The joining position, joining surface shape, joining member and forging conditions are all the same. 6 (a) and 6 (b) are a front view and a side view, respectively, of the punch for a press die of this embodiment. The tip portion 1 is made of cemented carbide G3 to G4, and the shank portion 2 is made of HSS SKH55.

下記の(A)〜(D)は、ポンチの先端部1とシャンク
部2との拡散接合方法及び接合条件を示す。
The following (A) to (D) show a diffusion bonding method and bonding conditions between the tip portion 1 of the punch and the shank portion 2.

(A) Niベースろう材使用→真空ろう付(1000〜1200
℃、10-1Torr以下)→HIP拡散接合(1100℃以下、200〜
500気圧)→仕上加工 (B) アンサートメタル(Ni材厚さ0.05〜0.1mm)使
用→電子ビーム溶接→HIP拡散接合(1100〜1300℃、200
〜1000気圧)→仕上加工 (C) カプセル方式HIP拡散接合(1100〜1300℃、200
〜1000気圧)→仕上加工 (D) 真空ホットプレス拡散接合(1100〜1300℃、20
0〜1000気圧)→仕上加工 また、下記の例1〜例3は、ポンチ処理条件を示す。
(A) Ni-based brazing material used → vacuum brazing (1000 to 1200
℃, 10 -1 Torr or less) → HIP diffusion bonding (1100 ℃ or less, 200 ~
500 atm) → Finishing (B) Using unsert metal (Ni material thickness 0.05 to 0.1 mm) → Electron beam welding → HIP diffusion bonding (1100 to 1300 ℃, 200)
~ 1000 bar) → Finishing (C) Capsule method HIP diffusion bonding (1100 ~ 1300 ℃, 200)
~ 1000 bar) → Finishing process (D) Vacuum hot press diffusion bonding (1100 to 1300 ℃, 20
(0 to 1000 atm) → Finishing Further, Examples 1 to 3 below show punch processing conditions.

(例1) ポンチを熱処理後、研磨仕上する。(Example 1) The punch is heat-treated and then polished.

(例2) ポンチをCVD処理(800〜1200℃)により、Ti
C被覆層を数μm析出させ、その後熱処理する。
(Example 2) Ti the punch by CVD process (800-1200 ℃)
A C coating layer is deposited to a thickness of several μm and then heat treated.

(例3) ポンチをCVD処理(800〜1200℃)により、Ti
C被覆層を数μm析出させ、HIP拡散処理(1000℃以下、
500気圧以下)を行ない、その後熱処理する。
(Example 3) Ti the punch by CVD treatment (800-1200 ℃)
C coating layer is deposited by several μm and HIP diffusion treatment (1000 ℃ or less,
(500 atm or less), and then heat treatment.

上記のように接合の処理を施したプレス金型用ポンチを
用いて冷間鍛造を行なった。被鍛造材は、S25C焼鈍材で
ある。表は、こうして作製したポンチ1個当りの製作個
数を示す。比較のため、従来法によるポンチを、ハイス
を素材として加工し、TiCの表面硬化層を形成して作製
し、同様に冷間鍛造に用いた。表の数値より明らかなよ
うに本実施例のポンチの工具寿命は、数十倍〜百倍に増
加した。また、表面硬化処理を施した例2は、表面硬化
処理を施さない例1に比べて、工具寿命は2倍近くにの
び、そして、さらにHIP拡散処理を施した例3の工具寿
命は、例2よりもさらに長くなっている。
Cold forging was performed using the punch for press dies that had been subjected to the joining process as described above. The forged material is an S25C annealed material. The table shows the number of pieces manufactured per punch thus prepared. For comparison, a punch according to the conventional method was manufactured by processing HSS as a raw material to form a surface hardened layer of TiC, and was similarly used for cold forging. As is apparent from the numerical values in the table, the tool life of the punch of this example was increased several tens to 100 times. In addition, the tool life of Example 2 which has been subjected to the surface hardening treatment is nearly twice as long as that of Example 1 which is not subjected to the surface hardening treatment, and the tool life of Example 3 which has been further subjected to the HIP diffusion treatment is It is even longer than 2.

以上の実施例のチップは、先端部1に超硬合金を用いた
が、その代りにCBN焼結体等のセラミクスを用いて支持
部との接合処理をするようにしてもよい。(鋼とセラミ
クスとのHIPによる拡散接合が可能であることは、すで
に知られている。)この場合も、同様に工具寿命が著し
くのびた。
In the chips of the above examples, the cemented carbide is used for the tip portion 1, but instead of this, it is also possible to use a ceramic such as a CBN sintered body for the joining process with the support portion. (It is already known that diffusion bonding of steel and ceramics by HIP is possible.) In this case as well, the tool life was remarkably extended.

なお、以上の接合方法は、プレス金型のみならず、打抜
パンチ絞り,曲げ成形パンチ等の冷間塑性加工パンチ等
の工具全般について適用される。
The above joining method is applied not only to press dies but also to all tools such as punching punch drawing, cold forming punches such as bending forming punches.

(発明の効果) 本発明により、下記の理由で従来型ポンチと比較して工
具寿命は数十倍程度に大巾に増大する。高硬度材料組織
は工具鋼等と比較して微小クラックの発生伝播を抑制す
る傾向を有し、かつ、靭性がHIP処理により向上してい
るため、耐割れ性も向上する。さらに加工部(ポンチ先
端部等)の高硬度材料の塑性変形量が小さいことによ
り、先端部応力分布の変化が抑制され、そのため、支持
部(ポンチシャンク部等)に発生する曲げ応力等も低減
する。この長寿命化のため、金型交換等の工程ロスも大
巾に減少するため、生産性が大巾に向上する。
(Effect of the Invention) According to the present invention, the tool life is greatly increased by several tens of times as compared with the conventional punch for the following reasons. The high hardness material structure has a tendency to suppress the generation and propagation of microcracks as compared with tool steel and the toughness is improved by the HIP treatment, so that the crack resistance is also improved. Furthermore, since the plastic deformation of the high hardness material in the machined part (punch tip, etc.) is small, the change in the stress distribution at the tip is suppressed, and therefore the bending stress, etc. generated in the support part (punch shank, etc.) is also reduced. To do. Due to this longer life, the process loss such as die replacement is greatly reduced, and the productivity is greatly improved.

また、同様の理由で鍛造品精度よ飛躍的に向上する。な
ぜなら、超硬合金は高硬度材料であり、組織上の特性か
ら耐摩耗性,圧縮強度が高く、熱衝撃に対しても安定で
あり、工具鋼等と比較して鍛造時の繰返し応力による摩
耗や塑性変形量が小さいためである。
Also, for the same reason, the precision of the forged product is dramatically improved. Because cemented carbide is a high hardness material, it has high wear resistance and compressive strength due to its structural characteristics, is stable against thermal shock, and wears due to repeated stress during forging compared to tool steel. This is because the amount of plastic deformation is small.

さらに、このことにより、従来鍛造後に切削加工を必要
としていた製品に対して、後加工工程を省略できる。
Furthermore, this makes it possible to omit the post-processing step for products that conventionally required cutting after forging.

本発明により、用途と使用条件によって接合部位と接合
方法を変えることにより、最も効果的な工具を得ること
ができる。
According to the present invention, the most effective tool can be obtained by changing the joining site and joining method depending on the application and use conditions.

さらに、従来法では塑性加工不可能な形状品をも加工で
きる工具が製造できる。
Further, it is possible to manufacture a tool capable of processing a shaped product which cannot be plastically processed by the conventional method.

高硬度材料母材に表面硬化処理を施した工具は、母材の
塑性変形が小さいこと及び母材が熱処理に対して非常に
安定していることによる相乗的な効果によって、従来法
に比較してその耐摩耗性を飛躍的に向上することができ
る。
The tool of which surface treatment is applied to the base material of high hardness material has a small plastic deformation of the base material and the synergistic effect of the base material being very stable against heat treatment, resulting in the The wear resistance can be dramatically improved.

表面硬化処理後のHIP拡散処理は、被覆硬化層の母材へ
の拡散を促進することにより母材との密着強度を向上さ
せる。このため、硬化層の剥離可能性は減少し、耐摩耗
性はさらに向上し、工具寿命が最低30倍〜100倍程度に
まで高められる。
The HIP diffusion treatment after the surface hardening treatment improves the adhesion strength with the base material by promoting the diffusion of the hardened coating layer into the base material. Therefore, the peelability of the hardened layer is reduced, the wear resistance is further improved, and the tool life is increased to at least 30 to 100 times.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b),(c),(d)はそれぞれ本発
明に係るプレス金型用ポンチの接合位置と接合面形状の
1例を示す断面図である。 第2図(a),(b),(c)は真空ろう付後に接合す
る方法の説明図である。 第3図(a),(b),(c)は、電子ビーム溶接後に
接合する方法の説明図である。 第4図(a),(b)は、カプセル方式HIP拡散接合法
の説明図である。 第5図(a),(b)は、真空ホットプレス拡散接合法
の説明図である。 第6図(a),(b)は、夫々プレス金型用ポンチの実
施例の正面図と側面図である。 1……加工部、2……支持部、3……接合面、 11……ろう材、12……インサートメタル、 13……電子ビーム溶接部、14……圧媒粒子、 15……カプセル、21……支持部、 22……加工面、23,23,………角部。
FIGS. 1 (a), (b), (c), and (d) are cross-sectional views showing an example of a joining position and a joining surface shape of a punch for a press die according to the present invention. 2 (a), (b), and (c) are explanatory views of a method of joining after vacuum brazing. 3 (a), (b), and (c) are explanatory views of a method of joining after electron beam welding. 4 (a) and 4 (b) are explanatory views of the capsule method HIP diffusion bonding method. 5 (a) and 5 (b) are explanatory views of the vacuum hot press diffusion bonding method. 6 (a) and 6 (b) are a front view and a side view, respectively, of an embodiment of a punch for a press die. 1 ... Machining part, 2 ... Supporting part, 3 ... Bonding surface, 11 ... Brazing material, 12 ... Insert metal, 13 ... Electron beam welding part, 14 ... Pressure medium particle, 15 ... Capsule, 21 …… Supporting part, 22 …… Processing surface, 23,23, …… Corner part.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−211861(JP,A) 特開 昭52−50907(JP,A) 特開 昭59−1104(JP,A) 特開 昭54−73389(JP,A) 特開 昭56−3152(JP,A) 特公 昭55−5567(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A 58-211861 (JP, A) JP-A 52-50907 (JP, A) JP-A 59-1104 (JP, A) JP-A 54- 73389 (JP, A) JP 56-3152 (JP, A) JP 55-5567 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高硬度材料からなる加工部と高強度材料か
らなる支持部とが接合されて一体化された高強度材料接
合型工具の製造方法において、 加工部素材の接合すべき面とこれに対向する支持部素材
の接合すべき面との間に、拡散後に単相で存在し得ない
量の拡散素材を介在させて固定し、 次に、加圧下でこの拡散素材を上記の両面を通して拡散
させ、加工部素材と支持部素材とを直接に接合面を介し
て一体に拡散接合させ、 次に、加工部素材の表面に表面硬化層を形成し、 ここに、加工部素材と支持部素材の間に介在させる上記
の拡散素材の量は、拡散後に単相で存在しないように、
拡散接合時の温度、圧力および表面硬化層形成時の温
度、雰囲気ガスおよび雰囲気圧力を考慮して決定される
ことを特徴とする製造方法。
1. A method for manufacturing a high-strength material-bonded tool in which a processed portion made of a high-hardness material and a support portion made of a high-strength material are joined and integrated with each other. The supporting material facing each other and the surface to be joined are fixed by interposing a diffusion material in an amount that cannot exist in a single phase after diffusion, and then the diffusion material is passed under pressure through both surfaces described above. Diffusion, the processing part material and the supporting part material are directly and integrally diffusion-bonded through the joint surface, and then a surface hardened layer is formed on the surface of the processing part material. The amount of the above diffusion material to be interposed between the materials is such that it does not exist in a single phase after diffusion,
A manufacturing method characterized by being determined in consideration of temperature and pressure at the time of diffusion bonding, temperature at the time of forming a surface hardened layer, atmospheric gas and atmospheric pressure.
【請求項2】さらに、上記の表面硬化層を形成した工具
に高温静水圧加圧下で拡散処理を施すことを特徴とする
特許請求の範囲第1項に記載された製造方法。
2. The manufacturing method according to claim 1, further comprising subjecting the tool having the surface-hardened layer formed thereon to a diffusion treatment under high temperature hydrostatic pressure.
JP59238165A 1984-11-12 1984-11-12 Method for manufacturing high hardness material joining type tool Expired - Fee Related JPH0712566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59238165A JPH0712566B2 (en) 1984-11-12 1984-11-12 Method for manufacturing high hardness material joining type tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59238165A JPH0712566B2 (en) 1984-11-12 1984-11-12 Method for manufacturing high hardness material joining type tool

Publications (2)

Publication Number Publication Date
JPS61117003A JPS61117003A (en) 1986-06-04
JPH0712566B2 true JPH0712566B2 (en) 1995-02-15

Family

ID=17026149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59238165A Expired - Fee Related JPH0712566B2 (en) 1984-11-12 1984-11-12 Method for manufacturing high hardness material joining type tool

Country Status (1)

Country Link
JP (1) JPH0712566B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125602A (en) * 1986-11-12 1988-05-28 Sumitomo Electric Ind Ltd Hard alloy for tool
AT401900B (en) * 1995-05-02 1996-12-27 Plansee Ag METHOD FOR PRODUCING A THERMALLY HIGH-STRENGTH COMPONENT
KR102210170B1 (en) 2013-03-15 2021-01-29 산드빅 인터렉츄얼 프로퍼티 에이비 Method of joining sintered parts of different sizes and shapes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250907A (en) * 1975-10-23 1977-04-23 Masahide Funai Tool attached with super hard alloy and process for producing the tool
JPS5473389A (en) * 1977-11-22 1979-06-12 Sumitomo Electric Ind Ltd Complex cutting tool
JPS555567A (en) * 1978-06-29 1980-01-16 Nissan Motor Co Ltd Timer for vehicle
JPS563152A (en) * 1979-06-13 1981-01-13 Mitsubishi Metal Corp Soldering and cutting tool with surface-covered hard alloy metal tip
JPS591104A (en) * 1982-06-24 1984-01-06 Sumitomo Electric Ind Ltd Composite sintered tool and manufacturing method thereof

Also Published As

Publication number Publication date
JPS61117003A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
US6756009B2 (en) Method of producing hardmetal-bonded metal component
US4340650A (en) Multi-layer composite brazing alloy
JP4346780B2 (en) Heat-resistant and wear-resistant composite structural member and manufacturing method thereof
JP3549424B2 (en) Hard sintered body tool and manufacturing method thereof
JPS63125602A (en) Hard alloy for tool
JPH0712566B2 (en) Method for manufacturing high hardness material joining type tool
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
JPH06182409A (en) Combined sleeve roll and its production
US4386959A (en) Method for compound sintering
JP4159654B2 (en) Manufacturing method of wear-resistant liner
JP2508862B2 (en) Hot seamless pipe manufacturing plug
JPS61206540A (en) Joining type tool
JPH06198517A (en) Chip removable cutting tool
JP2760926B2 (en) High-strength cemented carbide composite material combining low carbon steel and method for producing the same
Trent Cutting-tool materials
JPH11221680A (en) Joining material for sintered hard alloy and steel and its production
JPS62127139A (en) High hardness material junction type tool
JP2855687B2 (en) Cemented carbide for wear-resistant tools
JPS6213280A (en) High hard material joining type tool
JPH11197852A (en) Member for joining cemented carbide to steel, and its manufacture
JP2926992B2 (en) Ceramic sliding parts
KR20100054067A (en) Method of manufacturing axisymmetric parts with surface layers
JPH02182341A (en) Upsetting punch
JPH105824A (en) Composite roll made of sintered hard alloy
JPS62234634A (en) Cemented type hot-press working die

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees