JPH07123613A - Superconducting magnetic device - Google Patents

Superconducting magnetic device

Info

Publication number
JPH07123613A
JPH07123613A JP5264565A JP26456593A JPH07123613A JP H07123613 A JPH07123613 A JP H07123613A JP 5264565 A JP5264565 A JP 5264565A JP 26456593 A JP26456593 A JP 26456593A JP H07123613 A JPH07123613 A JP H07123613A
Authority
JP
Japan
Prior art keywords
temperature superconductor
bulk
levitation magnet
superconducting magnetic
magnetic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5264565A
Other languages
Japanese (ja)
Other versions
JP3095316B2 (en
Inventor
Shoji Tanaka
昭二 田中
Hiroshi Morimoto
博 森本
Yasuhiro Yasaka
保弘 八坂
Hirokazu Suzuki
宏和 鈴木
Masahiko Endo
雅彦 遠藤
Takeya Suzuki
建哉 鈴木
Masahito Murakami
雅人 村上
Hiroshi Takaichi
浩 高市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Shikoku Electric Power Co Inc
Hitachi Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Tokyo Electric Power Co Inc
Shikoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Tokyo Electric Power Co Inc, Shikoku Electric Power Co Inc, Hitachi Ltd filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority to JP05264565A priority Critical patent/JP3095316B2/en
Publication of JPH07123613A publication Critical patent/JPH07123613A/en
Application granted granted Critical
Publication of JP3095316B2 publication Critical patent/JP3095316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To offer a superconducting magnetic device that provides a larger magnetic levitation force between a high temperature superconductor and levitating magnet, increased rotation energy stored in a flywheel generator, smaller rotor vibrations, and stable and uniform rotation. CONSTITUTION:A superconducting magnetic device is provided with a high- temperature superconductor 1, magnetic bearings comprising a levitating magnet opposed to the high temperature superconductor, flywheel 7, power supply 11 to supply or take out electric power, and pressure reducing device 17 installed on a generator coolant tank equipped with a coolant tank 3 to store coolant for high temperature superconductor. The device increases, stabilizes, and uniforms the levitation force of the magnetic bearings, increases rotation energy stored in a flywheel generator, and reduces rotor vibration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導磁気装置に関し、
特に高温超電導体を用いた磁気軸受を備えたフライホイ
ール発電機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnetic device,
In particular, it relates to a flywheel generator equipped with a magnetic bearing using a high-temperature superconductor.

【0002】[0002]

【従来の技術】エネルギー貯蔵の方式として、電気エネ
ルギーを慣性モーメントの大きな物体の回転エネルギー
に変換して電力の出し入れを行う方式をとるものがフラ
イホイール発電機である。従来のフライホイール発電機
は通常の突極形発電機にフライホイールを取付け、通常
の軸受を用いて運転する。
2. Description of the Related Art A flywheel generator uses an energy storage system that converts electric energy into rotational energy of an object having a large moment of inertia and outputs and outputs electric power. In the conventional flywheel generator, a flywheel is attached to an ordinary salient pole type generator and is operated by using an ordinary bearing.

【0003】近年、磁気軸受を用いたフライホイール発
電機が設計され機械損を小さくとることができる構造が
提案された。さらに、磁気軸受部に高温超電導体を用い
る発電機が提案されたが、高温超電導体を冷却するため
の冷媒は高温超電導体部に流入するのみの構造であっ
た。この構造の例として、特開平4−178127 号公報を挙
げることができる。
In recent years, a flywheel generator using magnetic bearings has been designed, and a structure capable of reducing mechanical loss has been proposed. Further, a generator using a high-temperature superconductor for the magnetic bearing portion has been proposed, but the refrigerant for cooling the high-temperature superconductor has a structure that only flows into the high-temperature superconductor portion. As an example of this structure, there is JP-A-4-178127.

【0004】[0004]

【発明が解決しようとする課題】フライホイール発電機
の回転エネルギーは回転子の重量に比例し、回転速度の
2乗に比例する。このため、磁気軸受は大きな浮上力を
もち、大きな回転速度に耐えうる方が大きな回転エネル
ギーを貯蔵できる。
The rotational energy of the flywheel generator is proportional to the weight of the rotor and to the square of the rotational speed. Therefore, the magnetic bearing has a large levitation force and can store a large amount of rotational energy if it can withstand a large rotational speed.

【0005】一方、高温超電導体の磁場排斥力、すなわ
ち磁気軸受の反発力は温度が上昇すると急激に減衰し、
温度が低い状態では大きくなる。このため、高温超電導
体は常に十分な冷却状態に保つ方が有利である。高温超
電導体の温度が、温度上昇に対し反発力が減衰する割合
の大きい領域に有るとき、回転子と共に浮上用マグネッ
トが回転することにより高温超電導付近で磁場の揺動が
生じ、高温超電導体表面に渦電流が流れたり、周囲構造
物に渦電流が流れ、冷媒が蒸発して、高温超電導体の温
度がわずかに上昇しても、回転子は浮上ギャップを保て
ず、落下してしまう。
On the other hand, the magnetic field repulsive force of the high temperature superconductor, that is, the repulsive force of the magnetic bearing, is rapidly attenuated when the temperature rises,
It increases when the temperature is low. Therefore, it is advantageous to always keep the high temperature superconductor in a sufficiently cooled state. When the temperature of the high-temperature superconductor is in a region where the repulsive force attenuates with respect to the temperature rise, the levitation magnet rotates together with the rotor, causing the magnetic field to oscillate near the high-temperature superconducting surface. If the eddy current flows through the rotor, or the eddy current flows through the surrounding structure, and the refrigerant evaporates and the temperature of the high-temperature superconductor rises slightly, the rotor does not maintain the levitation gap and falls.

【0006】また、冷媒が流入口近くの高温超電導体を
冷却し、蒸発して流出する場合、高温超電導体の冷却状
態に不均一を生じ、浮上力が場所により異なることによ
り、回転子は振動を生じることになる。
Further, when the refrigerant cools the high-temperature superconductor near the inflow port and evaporates and flows out, the cooling state of the high-temperature superconductor becomes uneven, and the levitation force varies depending on the location, so that the rotor vibrates. Will occur.

【0007】さらに、回転電機は機械的に安定に運転す
ることが必要である。本発明が対象とする磁気軸受を用
いた発電機は回転子を上下させる必要がある上、空間に
浮上した状態で回転するため、回転子を適切な位置に設
置しなければならない。
Further, the rotating electric machine needs to be mechanically stable. The generator using the magnetic bearing, which is the object of the present invention, requires the rotor to be moved up and down and rotates in a state of being levitated in the space. Therefore, the rotor must be installed at an appropriate position.

【0008】本発明の目的は、磁気浮上力が大きくな
り、フライホイール発電機が貯蔵する回転エネルギーを
大きく出来きると共に、回転子の振動が小さくなり、回
転が安定し且つ均一にすることができる高温超電導磁気
装置を提供することにある。
The object of the present invention is to increase the magnetic levitation force, to increase the rotational energy stored in the flywheel generator, and to reduce the vibration of the rotor so that the rotation is stable and uniform. It is to provide a high temperature superconducting magnetic device.

【0009】[0009]

【課題を解決するための手段】本発明の高温超電導磁気
装置例えばフライホイール発電機は、電力系統と接続し
ている固定子及びフライホイールと、フライホイールを
設置した浮上用マグネットに対向配置された高温超電導
体と、該高温超電導体に蒸気圧を1気圧以下にした冷媒
を供給して高温超電導体を過冷却にする手段を設けたこ
とにある。
A high temperature superconducting magnetic device of the present invention, for example, a flywheel generator, is arranged to face a stator and a flywheel connected to a power system, and a levitation magnet on which the flywheel is installed. There is provided a high temperature superconductor and a means for supercooling the high temperature superconductor by supplying the high temperature superconductor with a refrigerant having a vapor pressure of 1 atm or less.

【0010】[0010]

【作用】この結果、高温超電導体と浮上用マグネットと
の間の磁気浮上力が大きくなり、フライホイール発電機
が貯蔵する回転エネルギーを大きく出来きると共に、回
転子の振動が小さくなり、回転が安定し且つ均一にする
ことができる。
As a result, the magnetic levitation force between the high-temperature superconductor and the levitation magnet is increased, the rotational energy stored in the flywheel generator can be increased, and the vibration of the rotor is reduced to stabilize the rotation. And uniform.

【0011】[0011]

【実施例】図1及び図2に本発明のフライホイール発電
機の実施例を示す。
1 and 2 show an embodiment of the flywheel generator of the present invention.

【0012】1は高温超電導体で形状は塊状である。こ
の高温超電導体は第2種超電導体で、超電導状態では磁
力線を排除するような電流が流れ、磁場に対し反発力を
生ずる性質をもつ。一方、ピン止め点を内在し、強い磁
場の下では若干の磁力線がしみこみ、それを固定する性
質がある。1は以下バルクと記す。
Reference numeral 1 is a high-temperature superconductor, which is massive. This high-temperature superconductor is a type 2 superconductor, and has a property of generating a repulsive force against a magnetic field by flowing a current that eliminates magnetic lines of force in a superconducting state. On the other hand, there is a property that the pinning point is inherent, and some magnetic field lines penetrate under a strong magnetic field and fix it. 1 is hereinafter referred to as bulk.

【0013】2はバルク収納箱で、バルク1を収納して
いる密封容器であるが、冷媒流入口と蒸発した冷媒の排
出口をもつ。
Reference numeral 2 denotes a bulk storage box, which is a sealed container that stores the bulk 1, but has a refrigerant inflow port and an evaporated refrigerant discharge port.

【0014】3は冷媒用タンクでパイプによりバルク収
納箱2と接続されている。
A refrigerant tank 3 is connected to the bulk storage box 2 by a pipe.

【0015】4は冷媒で冷媒用タンク3からバルク収納
箱2に入り、バルク1を冷却する。バルク1は冷媒4に
より冷却され超電導状態になる。冷媒4としては例えば
液体窒素,液体ヘリウムなどが用いられる。
Refrigerant 4 enters the bulk storage box 2 from the refrigerant tank 3 and cools the bulk 1. The bulk 1 is cooled by the refrigerant 4 and becomes in a superconducting state. Liquid nitrogen, liquid helium, or the like is used as the coolant 4.

【0016】5は回転子でシャフト,フライホイール
7,磁極8,浮上用マグネット6から成り、バルク1の
反発力により空間に浮上し、回転する。
A rotor 5 is composed of a shaft, a flywheel 7, magnetic poles 8 and a levitation magnet 6, which is levitated in space by the repulsive force of the bulk 1 and rotates.

【0017】6は浮上用マグネットで、バルク1と対向
する位置にある。バルク1が超電導状態となった後はバ
ルク1との間で反発力を生じ、回転子5を浮上させる。
A levitation magnet 6 is located at a position facing the bulk 1. After the bulk 1 is in the superconducting state, a repulsive force is generated between the bulk 1 and the bulk 1 to levitate the rotor 5.

【0018】7はフライホイールで回転エネルギーの形
でエネルギーを貯える。図1の場合、ロータリムを兼ね
る。フライホイール7は図1のようにリング状とするこ
ともあるが、円盤状とすることもある。8は磁極でフラ
イホイール7に固定される。9は固定子コイルである。
10は固定子鉄心である。11は電源で、電動時は系統
12から電力を受け適切な周波数に変換し、固定子コイ
ル9に電流を流す。発電時は発電機からの電力を系統1
2の周波数に変換し、系統12へ電力を送る。12は電
力系統で本発電機と電力のやりとりを行う。13は真空
容器で、発電機を真空中に保つ。14は真空排気装置
で、真空容器13内の気体を排出する。15はバックア
ップガイド軸受である。
A flywheel 7 stores energy in the form of rotational energy. In the case of FIG. 1, it also serves as the rotor rim. The flywheel 7 may be ring-shaped as shown in FIG. 1 or may be disk-shaped. A magnetic pole 8 is fixed to the flywheel 7. 9 is a stator coil.
10 is a stator core. Reference numeral 11 is a power supply, which receives electric power from the system 12 when it is electrically operated, converts it to an appropriate frequency, and supplies a current to the stator coil 9. When generating power, the power from the generator is used for grid 1
The frequency is converted to 2 and the power is sent to the grid 12. A power system 12 exchanges electric power with the generator. Reference numeral 13 is a vacuum container for keeping the generator in vacuum. A vacuum exhaust device 14 exhausts the gas in the vacuum container 13. Reference numeral 15 is a backup guide bearing.

【0019】本発電機はバルク1のピン止め力により、
回転軸に垂直な方向の振動を抑える性質を利用している
が、振動が大きくピン止めによる抑止力を超える場合に
備え、ガイド軸受15をもつ。16は駆動装置で、回転
子5を上下させる。17は減圧装置で、冷媒用タンク3
を含む冷媒4の流路の圧力を下げる。
This generator uses the pinning force of the bulk 1 to
It utilizes the property of suppressing vibration in the direction perpendicular to the rotation axis, but has a guide bearing 15 in case the vibration exceeds the deterrent force due to pinning. Reference numeral 16 is a drive device for moving the rotor 5 up and down. Reference numeral 17 is a decompression device, which is a refrigerant tank 3
The pressure of the flow path of the refrigerant 4 containing is reduced.

【0020】本発電機は基本的には次の手順で運転す
る。
The generator is basically operated by the following procedure.

【0021】 真空容器13中を真空排気し、回転子
5を駆動装置16で持ち上げた状態とする。
The inside of the vacuum container 13 is evacuated and the rotor 5 is lifted by the drive unit 16.

【0022】 冷媒4をバルク収納箱2に流入させ、
バルク1を超電導状態にする。
The refrigerant 4 is caused to flow into the bulk storage box 2,
The bulk 1 is brought into a superconducting state.

【0023】 駆動装置16を下げ、回転子5を下げ
る。ある時点で浮上用マグネット6とバルク1の間の反
発力と回転子5の重量がつりあい、回転子5が浮上す
る。
The drive device 16 is lowered and the rotor 5 is lowered. At a certain point, the repulsive force between the levitation magnet 6 and the bulk 1 and the weight of the rotor 5 are balanced, and the rotor 5 floats.

【0024】 電源11より電力を供給し、回転子5
を回転させ、回転エネルギーの形でフライホイール7に
エネルギーを貯える。
Power is supplied from the power supply 11 and the rotor 5
Is rotated and energy is stored in the flywheel 7 in the form of rotational energy.

【0025】 系統の状態により回転数を変化させ、
エネルギーを系統12との間でやりとりを行う。
The rotation speed is changed according to the state of the system,
Exchange energy with the grid 12.

【0026】本発明の発電機では、冷媒用タンク3に減
圧装置17を設けた。減圧装置17を用いて冷媒用タン
ク3を減圧することにより、液体の冷媒を蒸発させ、蒸
発熱を奪うことにより冷媒4の温度を下げ、バルク1を
過冷却状態とすることができる。バルク1は温度を低減
すると、ピン止めが向上すると共に浮上力(磁場の反発
力)が大きくなる性質がある。
In the generator of the present invention, the refrigerant tank 3 is provided with the pressure reducing device 17. By depressurizing the refrigerant tank 3 using the depressurizing device 17, the liquid refrigerant is evaporated and the heat of evaporation is removed to lower the temperature of the refrigerant 4 and bring the bulk 1 into a supercooled state. When the temperature of the bulk 1 is reduced, pinning is improved and the levitation force (magnetic field repulsive force) is increased.

【0027】浮上力を大きくとるとフライホイル7の重
量を大きくとれ、より大きなエネルギーを貯えることが
できる。また、不均一な磁場分布をもつ浮上用マグネッ
ト6の回転によりバルク1またはその周辺に渦電流が生
じた場合でも、温度の上昇は小さく抑えられる。不均一
磁場がある場合、回転子の回転速度が大きいほど渦電流
は大きくなるが、冷却状態が保たれれば十分な浮上力は
保たれ、渦電流の影響は小さくなる。このため、過冷却
状態にすることは、貯蔵エネルギー増大と振動抑制に対
し、効果がある。
When the floating force is increased, the weight of the flywheel 7 can be increased, and a larger amount of energy can be stored. Further, even if an eddy current is generated in the bulk 1 or its periphery due to the rotation of the levitation magnet 6 having a non-uniform magnetic field distribution, the temperature rise can be suppressed to a small level. In the presence of a non-uniform magnetic field, the eddy current increases as the rotation speed of the rotor increases, but if the cooling state is maintained, sufficient levitation force is maintained and the effect of the eddy current is reduced. Therefore, the supercooled state is effective for increasing the stored energy and suppressing the vibration.

【0028】また、減圧を行わない場合、バルク1の冷
却は冷媒4の流入によって行われるが、流入口に近い部
分と蒸発した冷媒の排出口近くでは冷却状態が異なり、
浮上力に不均一を生ずる。冷媒とその蒸発気体が存在す
る部分を減圧する場合、冷媒が一方向に吸い込まれるこ
との無いよう、冷媒の流入側と流出側を同時に減圧する
必要がある。すると冷媒はその流路全体にわたって、均
一な減圧状態となり、磁気軸受を構成する範囲に広がり
をもつバルク1を均一に冷却することができ、均一な浮
上力が得られる。これにより、回転子5の振動を抑制す
ることができる。
When the pressure reduction is not performed, the bulk 1 is cooled by the inflow of the refrigerant 4, but the cooling state is different between the portion near the inlet and the outlet for the evaporated refrigerant.
The levitation force becomes uneven. When decompressing the refrigerant and the portion where the vaporized gas exists, it is necessary to decompress the inflow side and the outflow side of the refrigerant at the same time so that the refrigerant is not sucked in one direction. Then, the refrigerant is brought into a uniform depressurized state over the entire flow path thereof, and the bulk 1 having a spread in the range forming the magnetic bearing can be uniformly cooled, and a uniform levitation force can be obtained. Thereby, the vibration of the rotor 5 can be suppressed.

【0029】本発明の別の実施例では、前記運転手順の
との間に減圧装置17を運転し、冷媒4の流路を減
圧する過程が入る。つまり、バルク1を過冷却状態と
し、大きな反発力を出しうる状態としてから回転子を駆
動装置16により運転開始の位置に設置する。これによ
り、重量が大きい回転子を確実に浮上させることができ
る。
In another embodiment of the present invention, a step of operating the decompression device 17 and decompressing the flow path of the refrigerant 4 is performed during the operation procedure. That is, the bulk 1 is placed in a supercooled state and a large repulsive force can be generated, and then the rotor is installed at the operation start position by the drive device 16. As a result, a rotor having a large weight can be reliably levitated.

【0030】本発明の別の実施例である図3には、重力
方向に駆動力が働く駆動装置16と、駆動装置16と回
転子5を結合、切離しを行う結合装置18を備えた。こ
れは例えばバルクを浮上用マグネットの上下に配した場
合に有利である。この場合の実施例を図2に示す。浮上
用マグネット6に対しバルク1を上下に取り付けた場
合、運転手順では回転子は上部のバルクに近く、下部
のバルクからは遠い位置にある。従って、上部のバルク
には浮上用マグネット6の磁場がしみこんでおり、下部
のバルクにはしみこんでいない。
FIG. 3, which is another embodiment of the present invention, is provided with a driving device 16 for exerting a driving force in the direction of gravity and a coupling device 18 for coupling and disconnecting the driving device 16 and the rotor 5. This is advantageous, for example, when the bulk is arranged above and below the levitation magnet. An example of this case is shown in FIG. When the bulk 1 is mounted above and below the levitation magnet 6, the rotor is located near the upper bulk and far from the lower bulk in the operating procedure. Therefore, the magnetic field of the levitation magnet 6 is impregnated in the upper bulk, and is not impregnated in the lower bulk.

【0031】運転手順では磁場はこの状態で固定され
るため、運転手順では、回転子5は上部バルクからは
引張力を、下部バルクからは反発力を受ける。このた
め、回転子5は上部バルクに接触したままとなるか非常
に近い位置に保たれ、回転不可能または高速回転する回
転子の位置としては安全上不適当な位置となる。本発明
の駆動装置16と結合装置18を用いれば上部バルク,
下部バルクから受ける力に抗して回転子5を適切な運転
位置に設置した後、浮上状態とすることができるうえ、
回転子5は上部バルク,下部バルクからの力を受けるた
め、重量を大きく取ることができ、貯蔵エネルギー増大
に効果がある。
Since the magnetic field is fixed in this state in the operating procedure, the rotor 5 receives a tensile force from the upper bulk and a repulsive force from the lower bulk in the operating procedure. For this reason, the rotor 5 remains in contact with the upper bulk or is kept at a very close position, which is a position unsafe or unsuitable for the position of the rotor rotating at high speed. With the drive device 16 and the coupling device 18 of the present invention, the upper bulk,
After placing the rotor 5 in an appropriate operating position against the force received from the lower bulk, it can be floated and
Since the rotor 5 receives the force from the upper bulk and the lower bulk, it can take a large weight and is effective in increasing the stored energy.

【0032】さらに、振動に対しては運転状態の状態
で上部バルクにしみこんだ磁束と、駆動装置16の力で
下部バルク側に回転子5を押しつけることによりしみこ
んだ磁束により、より大きな振動抑制効果が発揮でき
る。振動抑制についてはバルク1が下部にのみ存在する
場合でも同様の理由で効果がある。
Further, with respect to vibration, the magnetic flux that has penetrated into the upper bulk in the operating state and the magnetic flux that has penetrated by pressing the rotor 5 to the lower bulk side by the force of the drive unit 16 have a greater vibration suppressing effect. Can be demonstrated. The vibration suppression is effective for the same reason even when the bulk 1 exists only in the lower part.

【0033】また、駆動装置16を真空容器13の外部
下側に取付け、その駆動力をベローズなどの伸縮機構を
介して回転子5に伝達する場合、その駆動力は伸縮機構
に加わる真空容器内外の気圧差と伸縮機構断面積との積
で表される力と回転子5の重量の差に相当する力で重力
方向に働かさねばならない。この駆動力が不足した場
合、気圧差による力により回転子5は持ち上げられたま
まの状態となり、運転不可能となる。発電機が大型化し
た場合、駆動機構も回転子の重量に対応して大きくせね
ばならない。すると断面積も大きくなり、気圧差による
力も大きくなる。従って、重力方向に駆動力が働く駆動
装置16は重要である。
When the driving device 16 is attached to the outside of the vacuum container 13 and its driving force is transmitted to the rotor 5 through an expansion / contraction mechanism such as a bellows, the driving force is applied to the expansion / contraction mechanism inside and outside the vacuum container. The force represented by the product of the atmospheric pressure difference and the cross-sectional area of the expansion mechanism and the force corresponding to the difference in weight of the rotor 5 must act in the direction of gravity. When this driving force is insufficient, the rotor 5 remains lifted by the force due to the pressure difference, and the rotor 5 cannot be operated. When the generator becomes larger, the drive mechanism also has to be made larger in accordance with the weight of the rotor. Then, the cross-sectional area also increases and the force due to the pressure difference also increases. Therefore, the driving device 16 in which the driving force acts in the direction of gravity is important.

【0034】図4,図5に本発明高温超電導体収納容器
2の実施例を示す。図4は図5のA−A断面を示す。図
5には密封容器の例を示すが、密封されない場合もあ
る。
4 and 5 show an embodiment of the high temperature superconductor storage container 2 of the present invention. FIG. 4 shows an AA cross section of FIG. FIG. 5 shows an example of a sealed container, but it may not be sealed.

【0035】20はバルク1を囲み、固定する部材で、
以後リブと記す。
Reference numeral 20 is a member for enclosing and fixing the bulk 1.
Hereinafter referred to as ribs.

【0036】21はバルク1と浮上用マグネットの間に
ある部材で、以後上板と記す。
Reference numeral 21 denotes a member between the bulk 1 and the levitation magnet, which will be referred to as an upper plate hereinafter.

【0037】22はベースで、バルク1を支える基礎と
なる。
Reference numeral 22 denotes a base, which is a base for supporting the bulk 1.

【0038】23は第1支持材で、ベース22の上に乗
り、バルク1を押し上げる役目を持つ。
Reference numeral 23 is a first support member, which has a role of riding on the base 22 and pushing up the bulk 1.

【0039】24は第2支持材で、始めバネ定数が小さ
く、バルク1を所定の位置に設置した後バネ定数が大き
くなる。
Reference numeral 24 denotes a second support member, which has a small spring constant at the beginning and a large spring constant after the bulk 1 is installed at a predetermined position.

【0040】25は冷媒4の流路である。Reference numeral 25 is a flow path for the refrigerant 4.

【0041】26は第3支持材で、低温でも弾性を持
つ。
Reference numeral 26 is a third support material, which has elasticity even at low temperatures.

【0042】本発明のバルク収納箱2では複数のバルク
1を分離して収納した。前記したように、大きい浮上力
を得るためにバルク1を十分に冷却することが必要であ
る。このため、バルク1は冷媒4に接する面積を大きく
取る方がよい。従ってバルク1を平面的に配置した場
合、バルク1の冷却状態を保つためにはバルク1の間に
冷媒4の流路25を設け、冷媒4に接する面積を大きく
取るとともに、バルク1を冷却して、温度が上がった冷
媒4が排出されやすくする方が有利である。
In the bulk storage box 2 of the present invention, a plurality of bulks 1 are stored separately. As mentioned above, it is necessary to cool the bulk 1 sufficiently to obtain a large levitation force. For this reason, it is preferable that the bulk 1 has a large area in contact with the refrigerant 4. Therefore, when the bulk 1 is arranged in a plane, in order to maintain the cooling state of the bulk 1, a flow path 25 for the coolant 4 is provided between the bulks 1, a large area in contact with the coolant 4 is taken, and the bulk 1 is cooled. Therefore, it is more advantageous to make it easier to discharge the refrigerant 4 whose temperature has risen.

【0043】一方、浮上力は浮上用マグネット6に対向
するバルク1の面積が大きいほど大きくなるため、多数
のバルク1を敷き詰める方が有利である。浮上させる物
体の重量が浮上力に比べて小さく、浮上ギャップが十分
とれ、バルク1を十分冷媒4に浸すことができればバル
ク1を敷きつめても十分に冷却できる。しかし、磁気軸
受の性能を有効に用い、大重量の物体を支えるためには
必要となる浮上性能を発揮しうる対向面積をもつようバ
ルクをまとめて並べ、群とし、群の間に適切な冷媒4の
流路25を設けることが必要である。
On the other hand, since the levitation force increases as the area of the bulk 1 facing the levitation magnet 6 increases, it is advantageous to spread a large number of bulks 1. If the weight of the object to be levitated is smaller than the levitation force, the levitating gap is sufficient, and the bulk 1 can be sufficiently immersed in the refrigerant 4, the bulk 1 can be sufficiently cooled even if it is spread. However, bulks are grouped together so that they have opposing areas that can exhibit the levitation performance required to support heavy objects by effectively using the performance of magnetic bearings. It is necessary to provide four channels 25.

【0044】図1に示すように真空中でバルク収納箱2
を用いる場合、バルク収納箱2は、内部と外部の気圧差
によって受ける力による変形を小さく抑えねばならな
い。バルク収納箱2を図5に示すような密閉容器とする
と、バルク1と浮上用マグネット6の間を仕切る上板2
1は、浮上力を有効に利用するため、変形を小さくでき
る範囲で薄くする方がよい。上板21にリブ20を接合
すると、変形を抑えると同時に上板21を薄くできる。
バルク1を分離して収納すればこのリブ20を設ける構
造とすることができ、浮上力を有効に利用できる。
As shown in FIG. 1, a bulk storage box 2 in vacuum
In the case of using, the bulk storage box 2 must be suppressed from being deformed by a force applied by a pressure difference between the inside and the outside. If the bulk storage box 2 is a closed container as shown in FIG. 5, the upper plate 2 that partitions the bulk 1 and the levitation magnet 6 from each other.
In No. 1, since the levitation force is effectively used, it is better to make it thinner within a range where deformation can be reduced. By joining the ribs 20 to the upper plate 21, the deformation of the upper plate 21 can be suppressed and the thickness of the upper plate 21 can be reduced.
If the bulk 1 is stored separately, the rib 20 can be provided and the levitation force can be effectively used.

【0045】本発明の別の実施例では、バルク1を固定
する部材のバルク1の最上部と同じ高さに冷媒4の流路
25を設けた。この構造を図6に示す。バルク1を固定
する部材は図5に示すようなリブ構造や、支柱などがあ
り、バルク収納箱2が必要とする強度により構造を選択
する。冷媒4の流路25はリブ20を切り欠くことや、
支柱に間隔をあけることで確保される。冷媒4はバルク
1の温度を下げるとバルク1から熱を奪い、温度が上昇
し、バルク収納箱2の上部に集まる。すると浮上力を発
揮すべきバルク1の上部の温度が下がらず、浮上力が得
られなくなる。従って温度が上昇した冷媒4をバルク収
納箱2の外部に排出する流路25が必要である。図1に
示すようなスラスト軸受の場合、構造的に軸受面が水平
である方が簡便である。この構造で強度を上げるため内
部にリブ20を設置した場合、リブ20に必要な厚さが
バルク1の厚さよりも大きいと温度の上がった冷媒4が
バルク1に接したままとなり、さらに水平構造のため外
部へ排出されず、バルク1が十分冷却されない。従って
本発明の構造とし、効率よくバルク1を冷却することは
大きな浮上力を得るために有効である。
In another embodiment of the present invention, the flow path 25 for the coolant 4 is provided at the same height as the uppermost part of the bulk 1 of the member for fixing the bulk 1. This structure is shown in FIG. The member for fixing the bulk 1 has a rib structure as shown in FIG. 5 or a pillar, and the structure is selected according to the strength required by the bulk storage box 2. The flow path 25 of the refrigerant 4 has the rib 20 cut out,
Secured by spacing the columns. When the temperature of the bulk 1 is lowered, the refrigerant 4 takes heat from the bulk 1, the temperature rises, and collects on the upper part of the bulk storage box 2. Then, the temperature of the upper portion of the bulk 1 which should exert the levitation force does not decrease, and the levitation force cannot be obtained. Therefore, the flow path 25 for discharging the coolant 4 having an increased temperature to the outside of the bulk storage box 2 is required. In the case of the thrust bearing as shown in FIG. 1, it is easier for the bearing surface to be horizontal in terms of structure. In this structure, when the ribs 20 are installed inside to increase the strength, if the thickness required for the ribs 20 is larger than the thickness of the bulk 1, the coolant 4 whose temperature has risen remains in contact with the bulk 1 and the horizontal structure is further increased. Therefore, it is not discharged to the outside and the bulk 1 is not sufficiently cooled. Therefore, the structure of the present invention and efficient cooling of the bulk 1 are effective for obtaining a large levitation force.

【0046】本発明の別の実施例では、バルク1を所定
の位置に設置する際にはバネ定数が小さく、設置後にバ
ネ定数が大きくなる部材(第2支持材)24を用いバル
ク1を支えた。前記したように、上板21は浮上力を有
効に利用するため、薄板構造とする方が有効であり、バ
ルク1も上板21に接するように設置するのがよい。バ
ルク1は、ベース22に第1支持材23を立て、その上
に設置する。これは、冷媒4の流路25を確保するため
である。しかし、バルク1,第1支持材23ともに製造
上の寸法公差を有し、上板21にバルク1の角部が強く
押しつけられた場合、上板21は大きく変形し、十分な
浮上ギャップがとれなくなり、浮上用マグネット6がバ
ルク収納箱2に接触する可能性が生じる。この状態を図
7に示す。本発明では第1支持材23とバルク1の間に
第2支持材24を設けた。これを図8に示す。バルク収
納箱2の製造時、第1支持材23とバルク1の間にバネ
定数の小さい第2支持材24を挿入し、ベース22で押
し上げ、各部の寸法公差を吸収し、バルク1を上板21
に接するように設置する。この後第2支持材24のバネ
定数が大きくなり、バルク1に浮上物体の重量が加わっ
ても位置を変えることなく浮上物体の重量を支え、浮上
ギャップを保つことができる。
In another embodiment of the present invention, the bulk 1 is supported by using a member (second support member) 24 having a small spring constant when the bulk 1 is installed at a predetermined position and a large spring constant after the installation. It was As described above, since the upper plate 21 effectively utilizes the levitation force, it is more effective to have a thin plate structure, and it is preferable to install the bulk 1 so as to be in contact with the upper plate 21. In the bulk 1, the first support member 23 is set up on the base 22 and installed on the first support member 23. This is to secure the flow path 25 of the refrigerant 4. However, both the bulk 1 and the first support member 23 have manufacturing dimensional tolerances, and when the corners of the bulk 1 are strongly pressed against the upper plate 21, the upper plate 21 is largely deformed and a sufficient floating gap is taken. There is a possibility that the floating magnet 6 will come into contact with the bulk storage box 2. This state is shown in FIG. In the present invention, the second support material 24 is provided between the first support material 23 and the bulk 1. This is shown in FIG. At the time of manufacturing the bulk storage box 2, the second support material 24 having a small spring constant is inserted between the first support material 23 and the bulk 1 and pushed up by the base 22 to absorb the dimensional tolerance of each part, and the bulk 1 is placed on the upper plate. 21
Install it so that it touches. After that, the spring constant of the second support member 24 increases, and even if the weight of the floating object is added to the bulk 1, the weight of the floating object can be supported without changing the position and the floating gap can be maintained.

【0047】本発明の別の実施例では低温中で弾性を有
する部材(第3支持材)26を用いてバルク1を支持し
た。この例を図9に示す。前記したように、磁気軸受に
十分な浮上ギャップを持たせるため、バルク1は常に上
板21に接した状態に保つのがよい。バルク収納箱2を
製作する際、バルク1を上板21に接するように設置し
ても、冷却状態では各部に収縮が起こり、バルク収納箱
2の収縮と、バルク1と支持材の収縮の和が異なれば上
板21とバルク1との間にギャップを生じるか、バルク
1が上板21を押し上げ、バルク収納箱2に変形を生じ
る。このため、バルク1の支持材としてバネを用いて常
に上板21に接するようにしたい。しかし一般に金属は
低温で脆化し、弾性を失う。このため、通常の金属バネ
とは異なる低温中で弾性を有する第3支持材26を用い
てバルク1を支持した。第3支持材26は、例えばセラ
ミックス製である。
In another embodiment of the present invention, the bulk 1 is supported by using a member (third support material) 26 having elasticity at low temperature. An example of this is shown in FIG. As described above, it is preferable to keep the bulk 1 in contact with the upper plate 21 at all times so that the magnetic bearing has a sufficient floating gap. When the bulk storage box 2 is manufactured, even if the bulk storage box 2 is installed so as to contact the upper plate 21, contraction occurs in each part in the cooled state, and the sum of the contraction of the bulk storage box 2 and the contraction of the bulk 1 and the support material. If the difference is different, a gap is generated between the upper plate 21 and the bulk 1, or the bulk 1 pushes up the upper plate 21 and the bulk storage box 2 is deformed. For this reason, it is desirable to use a spring as a support material for the bulk 1 so as to always contact the upper plate 21. However, metals generally become brittle at low temperatures and lose elasticity. Therefore, the bulk 1 is supported by using the third support member 26 having elasticity at a low temperature different from that of a normal metal spring. The third support member 26 is made of, for example, ceramics.

【0048】本発明の別の実施例では扇形のバルク1を
円周上に配置した。浮上用マグネット6が不均一な磁場
分布をもつ場合や、バルク1が円周上で不連続に配置さ
れている場合、浮上用マグネット6を含む回転子5の回
転によりバルク1またはその周辺に渦電流が生じ、温度
が上昇し、浮上ギャップを保てなくなる。渦電流は回転
子5の回転速度が大きいほど大きくなる。このため、互
いに対向するバルク1と浮上用マグネット6は同心円状
である方がよい。一方、前記したように、バルク1の配
置としてはバルク1の群ごとに間隔をおく方が、バルク
1の冷却されやすさとバルク収納箱2の強度の点から有
利である。従って、バルク1の形状は扇形とし、円周上
に配置すると十分な冷却状態が保たれ、渦電流による熱
発生も小さく、バルク収納箱2の強度も大きくとること
ができ、十分な浮上ギャップをとれ、有利である。
In another embodiment of the invention, the fan-shaped bulks 1 are arranged on the circumference. When the levitation magnet 6 has an inhomogeneous magnetic field distribution, or when the bulk 1 is discontinuously arranged on the circumference, the rotor 5 including the levitation magnet 6 rotates to swirl the bulk 1 or its periphery. An electric current is generated, the temperature rises, and the floating gap cannot be maintained. The eddy current increases as the rotation speed of the rotor 5 increases. For this reason, it is preferable that the bulk 1 and the levitation magnet 6 facing each other be concentric. On the other hand, as described above, it is more advantageous to arrange the bulks 1 in groups of the bulks 1 in terms of the ease of cooling the bulks 1 and the strength of the bulk storage box 2. Therefore, if the bulk 1 is fan-shaped and arranged on the circumference, a sufficient cooling state is maintained, heat generation due to eddy current is small, and the bulk storage box 2 can have a large strength and a sufficient floating gap can be obtained. It is advantageous.

【0049】本発明の別の実施例では、リブ20を溶接
以外の方法で製作し、上板21をリブ20に局部的溶接
にて固定した。バルク収納箱2は回転子5との間の浮上
ギャップを十分に取るため、上板21の平面度を精度良
く製作する必要がある。上板21が接合されるリブ20
は柱を組み合わせ、接合した形であるが、溶接にて製作
した場合、熱による変形が大きく、寸法精度を高くとる
ことができない。また、低温で回転子5の重量とバルク
収納箱2の内外の気圧差による力を支えねばならず、リ
ブ20は十分な強度を持たねばならない。このため、本
発明ではリブ20を溶接以外の方法、例えば厚板からワ
イヤカットにてリブ20をくりぬく方法で製作した。上
板21は磁気軸受の浮上ギャップを大きくとるため薄板
を用いる。上板21はバルク収納箱2の内外の気圧差に
よる力による変形を小さく抑え、さらに真空シールの構
造とせねばならない。外周部のみの接合とすると、気圧
差により大きく変形し、必要な浮上ギャップをとること
ができなくなる。また、ボルトなどによる固定では真空
シールを行うことができない。このため、本発明では上
板21は多数箇所の局部的溶接にてリブ20に接合し変
形を最小限に抑えると共に、真空シールを行った。この
方法により、変形が少ないバルク収納箱2を製作するこ
とができ、十分な浮上ギャップをもつ磁気軸受を構成す
ることができた。
In another embodiment of the present invention, the rib 20 is manufactured by a method other than welding, and the upper plate 21 is fixed to the rib 20 by local welding. Since the bulk storage box 2 has a sufficient floating gap between the bulk storage box 2 and the rotor 5, the flatness of the upper plate 21 needs to be accurately manufactured. Rib 20 to which upper plate 21 is joined
Is a shape in which columns are combined and joined, but when manufactured by welding, deformation due to heat is large and dimensional accuracy cannot be high. Further, at low temperature, the weight of the rotor 5 and the force due to the pressure difference between the inside and the outside of the bulk storage box 2 must be supported, and the rib 20 must have sufficient strength. Therefore, in the present invention, the rib 20 is manufactured by a method other than welding, for example, a method of hollowing the rib 20 by wire cutting from a thick plate. As the upper plate 21, a thin plate is used in order to increase the floating gap of the magnetic bearing. The upper plate 21 is required to suppress deformation due to a force due to a pressure difference between the inside and outside of the bulk storage box 2 and to have a vacuum seal structure. If only the outer peripheral portion is joined, it will be largely deformed due to the difference in atmospheric pressure, and it will not be possible to obtain a necessary floating gap. Also, vacuum sealing cannot be performed by fixing with bolts or the like. Therefore, in the present invention, the upper plate 21 is joined to the rib 20 by local welding at a large number of places to minimize the deformation, and vacuum sealing is performed. By this method, the bulk storage box 2 with less deformation can be manufactured, and the magnetic bearing having a sufficient floating gap can be constructed.

【0050】更に、本発明の別の実施例では、浮上物体
の位置を監視し、規定の範囲を越えた場合、超電導磁気
装置の運転を停止した。本発明の超電導磁気装置を磁気
軸受として用いる場合、浮上させる物体は回転運動をす
る。この場合、回転運動する物体は周囲と非接触の状態
で運動するため、機械的損失を低くできる特徴がある。
Further, in another embodiment of the present invention, the position of the levitating object is monitored, and when the position exceeds the specified range, the operation of the superconducting magnetic device is stopped. When the superconducting magnetic device of the present invention is used as a magnetic bearing, the levitated object makes a rotational motion. In this case, the rotating object moves without contact with the surroundings, so that the mechanical loss can be reduced.

【0051】一方、前記したようにバルク1を十分な冷
却状態に保てない場合、浮上ギャップが小さくなり、バ
ルク1のもつピン止め力が低下し、振動が大きくなる。
この状態で運転を続行すると、回転する物体は周囲の構
造物に接触し、装置を破損する恐れが有る。このため、
周囲構造の位置に対応して安全範囲を定め、浮上物体の
位置を監視し、前記範囲を越えた場合、超電導磁気装置
の運転を停止することは安全に装置を運転する上で有用
である。
On the other hand, as described above, when the bulk 1 cannot be kept in a sufficiently cooled state, the floating gap becomes small, the pinning force of the bulk 1 is reduced, and vibration is increased.
If the operation is continued in this state, the rotating object may come into contact with surrounding structures and damage the device. For this reason,
It is useful to safely operate the device by defining a safe range corresponding to the position of the surrounding structure, monitoring the position of the levitating object, and stopping the operation of the superconducting magnetic device when exceeding the range.

【0052】本発明の別の実施例で電力系統12と接続
している固定子コイル9と、浮上マグネット6に対向配
置されたバルク1を含む超電導磁気装置を0.7atmから
10torrまたは0.1torr 以下の雰囲気中で使用した。
バルク1を用いた磁気軸受を減圧して雰囲気中で用いる
ことは、低温に保ち必要があるバルク1に対して、周囲
と断熱状態とする上で有効である。また浮上状態で回転
する回転子5により生じる風損を低下する上で有効であ
る。
In another embodiment of the present invention, a superconducting magnetic device including a stator coil 9 connected to an electric power system 12 and a bulk 1 opposed to a levitation magnet 6 is installed at 0.7 atm to 10 torr or 0.1 torr. It was used in the following atmosphere.
It is effective to reduce the pressure of the magnetic bearing using the bulk 1 and use it in the atmosphere for keeping the bulk 1 in a heat insulating state with respect to the bulk 1 which needs to be kept at a low temperature. It is also effective in reducing windage loss caused by the rotor 5 that rotates in a floating state.

【0053】一方、減圧した気体中に電圧がかかった電
極があるとき、電極の距離と気圧の圧力と電圧がある条
件を満たすとき、電極間で火花が生じる。この条件は、
電極周囲に存在する気体の種類によっても異なる。火花
を生じるときの電極間の電圧を火花電極と言い、気体の
圧力と電極の距離の積の関数である。これをパッシェン
の法則という。火花電圧が最小になる電圧を最小火花電
圧と呼び、空気の場合は、気圧と電極の距離の積が5.
67mmHg のとき、330Vである。固定しコイル9
にはその運転状態に応じた電圧がかかっているが、パッ
シェンの法則により定められている条件を満たすと、装
置は絶縁破壊を起し、電気的に装置が破壊される。これ
を避けるために、超電導磁気装置を0.7atmから10to
rrまたは0.1torr 以下の雰囲気中で使用することは有
効である。
On the other hand, when there is an electrode to which a voltage is applied in the depressurized gas, a spark is generated between the electrodes when the distance between the electrodes and the pressure and voltage of the atmospheric pressure satisfy certain conditions. This condition is
It also depends on the type of gas present around the electrode. The voltage between the electrodes when a spark is generated is called the spark electrode and is a function of the product of gas pressure and electrode distance. This is called Paschen's law. The minimum spark voltage is called the minimum spark voltage. In the case of air, the product of atmospheric pressure and electrode distance is 5.
It is 330 V at 67 mmHg. Fixed coil 9
Is applied with a voltage according to its operating state, but when the condition defined by Paschen's law is satisfied, the device causes dielectric breakdown, and the device is electrically destroyed. In order to avoid this, the superconducting magnetic device is changed from 0.7 atm to 10 to
It is effective to use in an atmosphere of rr or less than 0.1 torr.

【0054】[0054]

【発明の効果】以上のように、本発明によれば、磁気軸
受の浮上力を大きく、安定且つ均一に取ることができ、
フライホイール発電機が貯蔵する回転エネルギーを大き
く取り、回転子の振動を小さく抑えることができる。
As described above, according to the present invention, the levitation force of the magnetic bearing can be made large, stable and uniform,
A large amount of rotational energy is stored in the flywheel generator, and vibration of the rotor can be suppressed to a small level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフライホイール発電機の側断面図であ
る。
FIG. 1 is a side sectional view of a flywheel generator of the present invention.

【図2】図2は図1のフライホイール発電機の要部側断
面図である。
FIG. 2 is a side sectional view of a main part of the flywheel generator shown in FIG.

【図3】本発明の他の実施例であるフライホイール発電
機の要部側断面図である。
FIG. 3 is a side sectional view of a main part of a flywheel generator that is another embodiment of the present invention.

【図4】図4は図1のフライホイール発電機のバルク収
納箱の平面図である。
FIG. 4 is a plan view of a bulk storage box of the flywheel generator of FIG. 1.

【図5】図4のフライホイール発電機のバルク収納箱の
側断面図である。
5 is a side sectional view of the bulk storage box of the flywheel generator of FIG.

【図6】図4のバルク収納箱内に配置されたバルクの斜
視図である。
6 is a perspective view of the bulk placed in the bulk storage box of FIG. 4. FIG.

【図7】先行技術として示したバルク収納箱の側断面図
である。
FIG. 7 is a side sectional view of the bulk storage box shown as the prior art.

【図8】図4のバルク収納箱の側断面図である。8 is a side sectional view of the bulk storage box of FIG.

【図9】本発明のバルク収納箱の側断面図である。FIG. 9 is a side sectional view of the bulk storage box of the present invention.

【符号の説明】[Explanation of symbols]

1…高温超電導体(バルク)、2…バルク収納箱、3…
冷媒用タンク、4…冷媒、5…回転子、6…浮上用マグ
ネット、7…フライホイール、8…磁極、9…固定子コ
イル、10…固定子鉄心、11…電源、12…電力系
統、13…真空容器、14…真空排気装置、15…バッ
クアップガイド軸受、16…駆動装置、17…減圧装
置、18…結合装置、20…リブ、21…上板、22…
ベース、23…第1支持材、24…第2支持材、25…
流路、26…第3支持材。
1 ... High temperature superconductor (bulk), 2 ... Bulk storage box, 3 ...
Refrigerant tank, 4 ... Refrigerant, 5 ... Rotor, 6 ... Levitating magnet, 7 ... Flywheel, 8 ... Magnetic pole, 9 ... Stator coil, 10 ... Stator core, 11 ... Power supply, 12 ... Power system, 13 ... vacuum container, 14 ... vacuum exhaust device, 15 ... backup guide bearing, 16 ... drive device, 17 ... decompression device, 18 ... coupling device, 20 ... rib, 21 ... upper plate, 22 ...
Base, 23 ... First support material, 24 ... Second support material, 25 ...
Channel, 26 ... Third support material.

フロントページの続き (71)出願人 000180368 四国電力株式会社 香川県高松市丸の内2番5号 (72)発明者 田中 昭二 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 森本 博 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 八坂 保弘 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 鈴木 宏和 東京都千代田区内幸町一丁目1番3号 東 京電力株式会社内 (72)発明者 遠藤 雅彦 東京都千代田区内幸町一丁目1番3号 東 京電力株式会社内 (72)発明者 鈴木 建哉 東京都千代田区内幸町一丁目1番3号 東 京電力株式会社内 (72)発明者 村上 雅人 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 高市 浩 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内Front page continuation (71) Applicant 000180368 Shikoku Electric Power Co., Inc. 2-5 Marunouchi, Takamatsu City, Kagawa Prefecture (72) Inventor Shoji Tanaka 1-14-3 Shinonome, Koto-ku, Tokyo International Superconducting Technology Center Induction Engineering Laboratory (72) Inventor Hiroshi Morimoto 3-1-1, Saiwaicho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Factory (72) Inventor Yasuhiro Yasaka 3-1-1, Saiwaicho, Hitachi City, Ibaraki Hitachi, Ltd. Hitachi Works (72) Inventor Hirokazu Suzuki 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Company (72) Inventor Masahiko Endo 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo In Tokyo Electric Power Company (72) Inventor Kenya Suzuki 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Company (72) Inventor Masato Murakami 1-14-3 Shinonome, Koto-ku, Tokyo Foundation International Superconductivity Industrial Technology Research Center Superconductivity Engineering Laboratory (72 ) Inventor Hiroshi Takaichi 1-14-3 Shinonome, Koto-ku, Tokyo International Superconductivity Industrial Technology Research Center Superconductivity Engineering Laboratory

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】電力系統と接続している固定子と、フライ
ホイールを設置した浮上用マグネットに対向配置された
高温超電導体と、該高温超電導体に蒸気圧を1気圧以下
にした冷媒を供給して高温超電導体を冷却する手段を設
けたことを特徴とする超電導磁気装置。
1. A stator connected to an electric power system, a high-temperature superconductor opposite to a levitation magnet on which a flywheel is installed, and a refrigerant having a vapor pressure of 1 atm or less supplied to the high-temperature superconductor. And a means for cooling the high-temperature superconductor, the superconducting magnetic device.
【請求項2】上記冷却手段として冷媒の流路に減圧装置
を備えたことを特徴とする請求項1記載の超電導磁気装
置。
2. The superconducting magnetic device according to claim 1, wherein a depressurizing device is provided in the coolant passage as the cooling means.
【請求項3】上記減圧装置により冷媒の流路を減圧した
後に回転子を運転開始の位置に設置することを特徴とす
る請求項1記載の超電導磁気装置。
3. The superconducting magnetic device according to claim 1, wherein the rotor is installed at a position where the operation is started after the pressure reducing device decompresses the flow path of the refrigerant.
【請求項4】浮上用マグネットに対向配置された高温超
電導体と、該高温超電導体を冷却する手段と、浮上用マ
グネットを駆動する駆動装置とを備え、駆動装置にて該
高温超電導体が浮上用マグネットの磁力の影響が小さく
なる距離まで離し、該高温超電導体を冷却し、超電導状
態となった後、浮上用マグネットを高温超電導体に接近
させて運転することを特徴とする超電導磁気装置。
4. A high-temperature superconductor disposed opposite to a levitation magnet, means for cooling the high-temperature superconductor, and a drive device for driving the levitation magnet, wherein the high-temperature superconductor is levitated by the drive device. A superconducting magnetic device, characterized in that the levitation magnet is operated close to the high-temperature superconductor after the high-temperature superconductor is cooled to a superconducting state by being separated to a distance where the influence of the magnetic force of the application magnet is reduced.
【請求項5】高温超電導体とこれに対向配置された浮上
用マグネットと、浮上用マグネットを重力方向に駆動さ
せる駆動装置とを備えたことを特徴とする超電導磁気装
置。
5. A superconducting magnetic device comprising: a high-temperature superconductor, a levitation magnet arranged opposite to the high-temperature superconductor, and a drive device for driving the levitation magnet in the direction of gravity.
【請求項6】浮上用マグネットと高温超電導体との間に
生じる反発力により物体を浮上させ、複数の高温超電導
体を分離して収納する収納容器を設けたことを特徴とす
る超電導磁気装置。
6. A superconducting magnetic device comprising a storage container for suspending a plurality of high temperature superconductors by suspending an object by a repulsive force generated between a levitation magnet and a high temperature superconductor.
【請求項7】浮上用マグネットと複数の高温超電導体と
の間に生じる反発力により物体を浮上させ、複数の高温
超電導体間に各高温超電導体を固定する固定部材と、各
固定部材間に冷媒流路を設けた収納容器を使用したこと
を特徴とする超電導磁気装置。
7. A fixing member for levitating an object by a repulsive force generated between a levitation magnet and a plurality of high-temperature superconductors to fix each high-temperature superconductor between the plurality of high-temperature superconductors, and between the fixing members. A superconducting magnetic device characterized by using a storage container provided with a coolant flow path.
【請求項8】高温超電導体と浮上用マグネットの間に生
じる反発力により物体を浮上させ、高温超電導体を所定
の位置に設置する際にはバネ定数が小さく、所定の位置
に設置した後バネ定数が大きくなる部材を用いることを
特徴とする超電導磁気装置。
8. A spring constant is small when an object is levitated by a repulsive force generated between a high-temperature superconductor and a levitation magnet, and a high-temperature superconductor is installed at a predetermined position, and a rear spring is installed at the predetermined position. A superconducting magnetic device using a member having a large constant.
【請求項9】高温超電導体と浮上用マグネットの間に生
じる反発力により物体を浮上させ、高温超電導体とベー
スとの間に低温中で弾性を有する部材を配置することを
特徴とする超電導磁気装置。
9. A superconducting magnet, characterized in that an object is levitated by a repulsive force generated between a high temperature superconductor and a levitation magnet, and a member having elasticity at a low temperature is arranged between the high temperature superconductor and the base. apparatus.
【請求項10】浮上用マグネットと高温超電導体との間
に生じる反発力により物体を浮上させ、扇形の高温超電
導体を円周上に配置することを特徴とする超電導磁気装
置。
10. A superconducting magnetic device in which an object is levitated by a repulsive force generated between a levitation magnet and a high-temperature superconductor, and a fan-shaped high-temperature superconductor is arranged on the circumference.
【請求項11】浮上用マグネットと高温超電導体との間
に生じる反発力により物体を浮上させ、高温超電導体を
囲み、高温超電導体と浮上用マグネットの間以外にある
部材を溶接以外の方法で製作し、該高温超電導体と浮上
用マグネットの間にある部材を前記溶接以外の方法で製
作した部材に局部的溶接にて固定して製作した収納容器
を使用したことを特徴とする超電導磁気装置。
11. An object is levitated by the repulsive force generated between the levitation magnet and the high-temperature superconductor, the high-temperature superconductor is surrounded, and a member other than between the high-temperature superconductor and the levitation magnet is welded by a method other than welding. A superconducting magnetic device comprising a storage container manufactured by fixing a member between the high-temperature superconductor and the levitation magnet to a member manufactured by a method other than the welding by local welding. .
【請求項12】浮上用マグネットと高温超電導体との間
に生じる反発力により物体を浮上させ、物体の位置を監
視し、物体の位置が規定の範囲を外れると、運転を停止
することを特徴とする超電導磁気装置。
12. An object is levitated by a repulsive force generated between a levitation magnet and a high-temperature superconductor, the position of the object is monitored, and when the position of the object deviates from a prescribed range, the operation is stopped. And a superconducting magnetic device.
【請求項13】電力系統と接続している固定子と、浮上
用マグネットに対向配置された高温超電導体とを0.7t
orr から0.1torr または0.1torr 以下の雰囲気中で
使用することを特徴とする超電導磁気装置。
13. A stator connected to an electric power system and a high temperature superconductor arranged facing a levitation magnet are 0.7t.
A superconducting magnetic device which is used in an atmosphere of orr to 0.1 torr or less than 0.1 torr.
JP05264565A 1993-10-22 1993-10-22 Superconducting magnetic device and operating method thereof Expired - Fee Related JP3095316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05264565A JP3095316B2 (en) 1993-10-22 1993-10-22 Superconducting magnetic device and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05264565A JP3095316B2 (en) 1993-10-22 1993-10-22 Superconducting magnetic device and operating method thereof

Publications (2)

Publication Number Publication Date
JPH07123613A true JPH07123613A (en) 1995-05-12
JP3095316B2 JP3095316B2 (en) 2000-10-03

Family

ID=17405056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05264565A Expired - Fee Related JP3095316B2 (en) 1993-10-22 1993-10-22 Superconducting magnetic device and operating method thereof

Country Status (1)

Country Link
JP (1) JP3095316B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636548A1 (en) * 1996-03-14 1997-10-16 Gutt Hans Joachim Electrical machine using high-temperature superconductor
US5747426A (en) * 1995-06-07 1998-05-05 Commonwealth Research Corporation High performance magnetic bearing systems using high temperature superconductors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615558A (en) * 1992-07-03 1994-01-25 Amitec Corp Belt sander for metalworking

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747426A (en) * 1995-06-07 1998-05-05 Commonwealth Research Corporation High performance magnetic bearing systems using high temperature superconductors
DE19636548A1 (en) * 1996-03-14 1997-10-16 Gutt Hans Joachim Electrical machine using high-temperature superconductor

Also Published As

Publication number Publication date
JP3095316B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US6570286B1 (en) Full magnetic bearings with increased load capacity
Miyagawa et al. A 0.5 kWh flywheel energy storage system using a high-T/sub c/superconducting magnetic bearing
EP0559839B1 (en) High temperature superconducting magnetic bearings
EP0265288A2 (en) Magnetic refrigeration apparatus and method with conductive heat transfer
JPH0630546A (en) Turbine generator
US20040021382A1 (en) Magnetic bearing for suspending a rotating shaft using high tc superconducting material
US5341059A (en) Superconducting bearing unit and operating method thereof
JP4937687B2 (en) Superconducting flywheel device for power storage
EP2761729B1 (en) Electromechanical flywheels
JPH08178011A (en) Flywheel device
DK2850723T3 (en) Scalable device and device for accumulating and emitting energy
JP4028597B2 (en) Magnetic bearing for turbine
JP3095316B2 (en) Superconducting magnetic device and operating method thereof
US6369476B1 (en) High temperature superconductor bearings
JP3665878B2 (en) Bearing device and starting method thereof
JPH04282050A (en) Electric power storage device
Suzuki et al. Fundamental characteristics of prototype ring-shaped flywheel generator with superconducting levitated magnetic bearing
JPH08296645A (en) Magnetic bearing device
JPH08298745A (en) Flywheel device
JP4058831B2 (en) Superconducting magnetic bearing
JP2852157B2 (en) Flywheel generator
JP2001343020A (en) Superconductive magnetic bearing and superconductive flywheel
JPH08111946A (en) Superconducting flywheel device
JP3385771B2 (en) Superconducting magnetic bearing device
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees