JPH07120238A - Measurement by three-dimensional measuring device - Google Patents

Measurement by three-dimensional measuring device

Info

Publication number
JPH07120238A
JPH07120238A JP26490693A JP26490693A JPH07120238A JP H07120238 A JPH07120238 A JP H07120238A JP 26490693 A JP26490693 A JP 26490693A JP 26490693 A JP26490693 A JP 26490693A JP H07120238 A JPH07120238 A JP H07120238A
Authority
JP
Japan
Prior art keywords
area
halation
slit
light reflection
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26490693A
Other languages
Japanese (ja)
Inventor
Tomohiro Fukuoka
知浩 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP26490693A priority Critical patent/JPH07120238A/en
Publication of JPH07120238A publication Critical patent/JPH07120238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To prevent the occurrence of measuring difference when halation is generated in a slit light reflection area by separating the reflection area into normal and halation areas in a luminance distribution with the slit-width direction. CONSTITUTION:A halation area Rh, whose luminance is more than a specified value of a normal area Rn, is widely distributed in the slit-width direction. By using this characteristics, a picture is scanned horizontally (e.g. in the slit- width direction) to measure the peak height Vmax and width Pw based on the luminance waveforms by respective scanning lines. Then, the areas Rn and Rh are separated, and a scanning line number N1 of the position where halation is generated and a scanning line number N2 of its ending position are stored. At the same time, the area Rh between N1 and N2 is subjected to an optimum diaphragm adjustment in order to obtain a picture data Dh of only the area Rh. On the basis of the data Dh and the picture data Dn of the area Rh, the picture data of one slit light relection area R is obtained and the three-dimensional coordinate of the surface of an object W to be measured is further obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー光等を利用し
た非接触型三次元測定器による測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring method using a non-contact type three-dimensional measuring instrument using laser light or the like.

【0002】[0002]

【従来の技術】コンピュータ処理のために物体の外形形
状を数値化する場合に、三次元測定器が用いられる。こ
の三次元測定器は、例えば、特開平2−212704号
公報に開示されているように、レーザー光等を利用した
表面検出器を測定ヘッドに取り付け、この測定ヘッドを
被測定物の外形に沿って移動させることにより、正確な
外形形状を数値化するものである。
2. Description of the Related Art A three-dimensional measuring device is used when digitizing the outer shape of an object for computer processing. In this three-dimensional measuring device, for example, as disclosed in Japanese Unexamined Patent Publication No. 2-212704, a surface detector using a laser beam or the like is attached to a measuring head, and the measuring head follows the outer shape of an object to be measured. The accurate outer shape is converted into a numerical value by moving it.

【0003】このようなレーザー光を利用した非接触型
三次元測定器においては、一般に、レーザー発振素子か
ら発射されるレーザー光をスリットを通じて被測定物に
投射し、該被測定物の表面に映出されるスリット状の光
反射領域をCCDカメラで受像し、かつ上記スリット状
の光反射領域の画像をスリット幅方向に順次走査して、
該光反射領域に関する画像データを得るようにしてい
る。
In a non-contact type three-dimensional measuring instrument using such a laser beam, a laser beam emitted from a laser oscillation element is generally projected onto an object to be measured through a slit and projected on the surface of the object to be measured. A CCD camera receives an image of the slit-shaped light reflection region that is emitted, and the images of the slit-shaped light reflection region are sequentially scanned in the slit width direction,
Image data concerning the light reflection area is obtained.

【0004】[0004]

【発明が解決しようとする課題】ところで、被測定物の
表面に映出されるスリット状の光反射領域Rの画像は、
正常な状態では図7(a)に示すような形状を有してい
るから、この画像を水平方向に走査すると、図7(b)
に示すような輝度波形が得られる。
By the way, the image of the slit-shaped light reflection region R projected on the surface of the object to be measured is
In a normal state, it has a shape as shown in FIG. 7A, so if this image is scanned in the horizontal direction, FIG.
A luminance waveform as shown in is obtained.

【0005】ところが、被測定物Wがプレス部品のよう
に鏡面に近い表面を有する場合、凹部においては、図8
に示すように、反射光が集光されるため、上記スリット
状の光反射領域Rのうち、上記凹部に相当する部分の輝
度が異常に高くなり、かつ図9(a)に示すように、そ
の高輝度部分がスリット幅からはみ出して、ハレーショ
ンを生じた領域Rh(以下、この領域を「ハレーション
領域」と呼ぶ)が正常領域Rn以外に発生することにな
る。したがって、このハレーション領域Rhの画像を水
平方向に走査すると、その輝度波形は図9(b)に示す
ようになる。
However, when the object W to be measured has a surface close to a mirror surface like a pressed part, in the concave portion, as shown in FIG.
As shown in Fig. 9, since the reflected light is condensed, the luminance of the portion corresponding to the concave portion in the slit-shaped light reflecting region R becomes abnormally high, and as shown in Fig. 9A, The high-brightness portion protrudes from the slit width, and an area Rh in which halation occurs (hereinafter, this area is referred to as a “halation area”) occurs in areas other than the normal area Rn. Therefore, when the image of this halation region Rh is scanned in the horizontal direction, its luminance waveform becomes as shown in FIG. 9B.

【0006】さらに、図10および図11に示すよう
に、上記ハレーション領域Rh以外の部位にも反射領域
Raが発生する現象が見られることもある。
Further, as shown in FIGS. 10 and 11, there may be a phenomenon in which the reflection area Ra is generated in a portion other than the halation area Rh.

【0007】図10および図11は、このような場合の
反射領域Rの画像と、ハレーション領域Rhの画像を水
平方向に走査して得られる輝度波形を示す。図9では、
輝度のピークが1箇所のみであるが、図10では、互い
に独立した輝度のピークが3箇所に現れており、また、
図11では、連続した輝度のピークが3箇所に現れてい
る。
FIG. 10 and FIG. 11 show luminance waveforms obtained by horizontally scanning the image of the reflection area R and the image of the halation area Rh in such a case. In Figure 9,
Although there is only one luminance peak, in FIG. 10, three mutually independent luminance peaks appear, and
In FIG. 11, continuous luminance peaks appear at three locations.

【0008】このように、スリット状の光反射領域Rに
ハレーション領域Rhが発生した場合、そのままでは、
測定不可能になるので、従来は、反射領域Rの全体に対
して、ハレーション領域Rhに適した絞り調整を施した
画像から、上記光反射領域Rに関する画像データを得て
いた。
As described above, when the halation region Rh is generated in the slit-shaped light reflection region R,
Since it becomes impossible to measure, conventionally, the image data regarding the light reflection region R is obtained from the image in which the aperture adjustment suitable for the halation region Rh is performed on the entire reflection region R.

【0009】したがって、正常領域Rnについてもハレ
ーション領域Rhと同一の絞り調整が施されるため、正
常領域Rnに関する画像データが不正確なものとなり、
測定誤差が生じるという問題があった。
Therefore, since the same aperture adjustment as that of the halation region Rh is performed on the normal region Rn, the image data on the normal region Rn becomes inaccurate.
There is a problem that a measurement error occurs.

【0010】本発明は、上述のような事情に鑑みてなさ
れたもので、スリット状の光反射領域にハレーションが
生じた場合の測定誤差の発生を防止し得る三次元測定器
による測定方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a measuring method using a three-dimensional measuring device capable of preventing the occurrence of a measurement error when halation occurs in a slit-shaped light reflection region. The purpose is to do.

【0011】[0011]

【課題を解決するための手段】本発明による三次元測定
器による測定方法は、受像手段により検出されたスリッ
ト状の光反射領域におけるスリット幅方向の輝度分布か
ら、該光反射領域を正常領域とハレーション領域とに分
別し、上記正常領域に適した絞り調整を施した該正常領
域に関する画像データと、上記ハレーション領域に適し
た絞り調整を施した該ハレーション領域に関する画像デ
ータとから、上記光反射領域に関する画像データを得る
ことを特徴とするものである。
According to the measuring method by the three-dimensional measuring device of the present invention, the light reflection area is determined to be a normal area from the luminance distribution in the slit width direction in the slit-shaped light reflection area detected by the image receiving means. From the image data on the normal area, which has been divided into a halation area and which has been subjected to the aperture adjustment suitable for the normal area, and the image data on the halation area, which has been subjected to the aperture adjustment suitable for the halation area, from the light reflection area. It is characterized in that image data regarding

【0012】[0012]

【発明の作用および効果】本発明による三次元測定器に
よる測定方法は、正常領域に関する画像データと、ハレ
ーション領域に適した絞り調整を施した該ハレーション
領域に関する画像データとから、光反射領域に関する画
像データを得るよういにしているので、光反射領域にハ
レーションが生じた場合であっても、被測定物の外形形
状の正確な測定が可能になる。
According to the measuring method by the three-dimensional measuring device of the present invention, the image concerning the light reflection area is obtained from the image data concerning the normal area and the image data concerning the halation area which has been adjusted with the aperture suitable for the halation area. Since the data is obtained, it is possible to accurately measure the outer shape of the measured object even when halation occurs in the light reflection area.

【0013】[0013]

【実施例】以下、添付図面を参照して、本発明による三
次元測定器による測定方法の実施例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of a measuring method using a coordinate measuring machine according to the present invention will be described below with reference to the accompanying drawings.

【0014】図1は、本発明が適用される三次元測定器
の全体構成を示す概略図である。この三次元測定器は、
測定ヘッド1と、測定ヘッド1の位置決め装置2と、コ
ントローラ3と、CPUを含むマイクロコンピュータ4
とによって構成されている。被測定物Wは,位置決め装
置1内に配置された定盤5上に固定治具6を介して載置
されて、測定ヘッド1の下方に配置される。
FIG. 1 is a schematic diagram showing the overall configuration of a three-dimensional measuring instrument to which the present invention is applied. This coordinate measuring machine
Measuring head 1, positioning device 2 for measuring head 1, controller 3, and microcomputer 4 including a CPU
It is composed of and. The object to be measured W is placed on the surface plate 5 arranged in the positioning device 1 via the fixing jig 6, and is arranged below the measuring head 1.

【0015】図2は、測定ヘッド1の概念的構成を示
し、レーザー発振素子10から発射され、かつ投光レン
ズ11を経たレーザー光12は、スリット13を通じて
スリットレーザー光12′に変換されて被測定物Wの表
面に投射され、被測定物Wの表面に、図7(a)または
図9(a)〜図11(a)に示すようなスリット状の光
反射領域Rを映出する。この光反射領域Rは、絞り機構
14および受光レンズ15を経て、CCDエリアセンサ
16で受像されるようになっている。
FIG. 2 shows a conceptual configuration of the measuring head 1, in which the laser light 12 emitted from the laser oscillation element 10 and passing through the light projecting lens 11 is converted into a slit laser light 12 'through a slit 13 and is irradiated. It is projected on the surface of the object to be measured W, and a slit-shaped light reflection region R as shown in FIG. 7A or FIGS. 9A to 11A is projected on the surface of the object to be measured W. The light reflection area R is adapted to be received by the CCD area sensor 16 via the diaphragm mechanism 14 and the light receiving lens 15.

【0016】図3は、三次元測定器の機能ブロック図を
示し、測定ヘッド1は、レーザー発振回路17と、CC
Dエリアセンサ16の駆動回路18と、絞り調整回路1
9とを備えている。マイクロコンピュータ4は、CCD
エリアセンサ16からの入力信号に基づいて、レーザー
発振回路17,CCDエリアセンサ駆動回路18,絞り
調整回路19および位置決め装置2を制御する。
FIG. 3 shows a functional block diagram of the three-dimensional measuring device. The measuring head 1 includes a laser oscillation circuit 17 and a CC.
Driving circuit 18 for D area sensor 16 and aperture adjustment circuit 1
9 and 9. The microcomputer 4 is a CCD
The laser oscillation circuit 17, the CCD area sensor drive circuit 18, the diaphragm adjustment circuit 19 and the positioning device 2 are controlled based on the input signal from the area sensor 16.

【0017】本実施例による三次元測定器による測定方
法は、「ハレーション領域Rhが、正常領域Rnに比較
して、輝度が所定値以上であり、かつ輝度がスリット幅
方向に広く分布している」という特性を利用したもので
あり、画像を水平方向(スリット幅方向)に走査して、
各水平走査線ごとの輝度波形から、ピークの山の高さV
maxと幅Pwとを測定して、正常領域Rnとハレーシ
ョン領域Rhとを分別し、図4に示すように、ハレーシ
ョンが発生し始めた位置の走査線の番号N1と、ハレー
ションが終了する位置の走査線の番号N2とを記憶し、
かつこのN1〜N2間の領域、すなわち、ハレーション
領域Rhに関しては、この領域Rhに最適の絞りに調整
して、この領域Rhのみの画像データDhを採り、この
画像データDhと正常領域Rnの画像データDnとか
ら、1本のスリット状の光反射領域Rの画像データを得
て、被測定物W表面の三次元座標を得ることを特徴とす
るものである。
The measuring method by the three-dimensional measuring device according to the present embodiment is that "the halation region Rh has a luminance equal to or higher than a predetermined value and the luminance is widely distributed in the slit width direction as compared with the normal region Rn. Is used to scan an image in the horizontal direction (slit width direction),
From the luminance waveform for each horizontal scanning line, the peak height V
By measuring the max and the width Pw, the normal region Rn and the halation region Rh are separated, and as shown in FIG. 4, the scanning line number N1 at the position where the halation starts to occur and the position where the halation ends. Remember the scan line number N2 and
Further, regarding the area between N1 and N2, that is, the halation area Rh, the aperture is adjusted to the optimum aperture for this area Rh, the image data Dh of only this area Rh is taken, and the image data of this image data Dh and the normal area Rn are taken. It is characterized in that image data of one slit-shaped light reflection region R is obtained from the data Dn to obtain three-dimensional coordinates of the surface of the object to be measured W.

【0018】図5および図6は、マイクロコンピュータ
4が実行する三次元測定ルーチンのフローチャートを示
す。
5 and 6 are flowcharts of the three-dimensional measurement routine executed by the microcomputer 4.

【0019】先ず、絞りを正常状態に設定し(図5,S
1)、CCDエリアセンサ16で受像したスリット状の
光反射領域Rに対するスリット幅方向の走査を、第1番
目の走査線(n=1)について開始する(S2)。次
に、ハレーションフラグFhをゼロにリセットし(S
3)、輝度波形のピーク値Vmaxと幅Pwとを求める
(S4)。そして、輝度波形のピーク値Vmaxが所定
のしきい値V0 よりも大きいか否かを判定し(S5)、
Vmax≦V0 であれば(S5:NO)、測定ヘッド1
の位置を調整して(S6)、S1にリターンする。
First, the diaphragm is set to a normal state (see FIG. 5, S).
1) The scanning of the slit-shaped light reflection region R received by the CCD area sensor 16 in the slit width direction is started for the first scanning line (n = 1) (S2). Next, the halation flag Fh is reset to zero (S
3) Obtain the peak value Vmax and the width Pw of the luminance waveform (S4). Then, it is determined whether or not the peak value Vmax of the luminance waveform is larger than a predetermined threshold value V 0 (S5),
If Vmax ≦ V 0 (S5: NO), the measuring head 1
The position is adjusted (S6) and the process returns to S1.

【0020】また、Vmax>V0 であれば(S5:Y
ES)、輝度波形の幅Pwが所定のしきい値P0 よりも
大きいか否か、すなわち、ハレーション領域Rhである
か否かを判定する(S7)。そして、Pw≦P0 であれ
ば(S7:NO)、正常領域Rnであると判断して、ハ
レーションフラグFhはゼロのままで(S8)、図6の
S9に進み、最終走査線(n=nEND )に沿う走査が終
了したか否かを判定し、最終走査線に達しない間は(S
9:NO)、nをインクリメントして(S10)、S3
に戻る。
If Vmax> V 0 (S5: Y
ES), it is determined whether or not the width Pw of the luminance waveform is larger than a predetermined threshold P 0 , that is, whether or not it is the halation region Rh (S7). Then, if Pw ≦ P 0 (S7: NO), it is determined to be the normal region Rn, the halation flag Fh remains zero (S8), the process proceeds to S9 in FIG. 6, and the final scanning line (n = (n END ), it is determined whether or not the scanning along the line is completed, and if the final scanning line is not reached (S
9: NO), n is incremented (S10), S3
Return to.

【0021】一方、Pw>P0 であれば(S7:YE
S)、ハレーション領域Rhであると判断して、ハレー
ションフラグFhがゼロであるか否かを調べ(S1
1)、Fh=0であれば(S11:YES)、このハレ
ーション領域Rhが始まった最初の走査線の番号をN1
として記憶し(S12)、かつ次の走査線の番号をN2
とし(S13)、ハレーションフラグFhを1にセット
する。そして、ハレーション領域Rhを走査している間
は、処理がS9→S10→S3→S4→S5→S7→S
11→S13→S14→S9の経路で反復するから、そ
の間に走査線の番号N2も順次インクリメントして、ハ
レーション領域Rhの最後の走査線の番号N2を記憶す
る。また、走査線N2+1からは再び正常領域Rnにな
るからS7→S8→S9の経路で正常領域Rnの走査が
続行され、最終走査線に沿った走査が終了(n=
END )したとき(S9:YES)、正常領域Rn、す
なわち、走査線に関しては、n=1〜(N1−1),
(N2+1)〜nEND の領域の画像データDnを記憶す
る(S15)。
On the other hand, if Pw> P 0 (S7: YE
S), it is determined that it is the halation region Rh, and it is checked whether or not the halation flag Fh is zero (S1
1) If Fh = 0 (S11: YES), the number of the first scanning line where the halation region Rh starts is N1.
(S12), and the number of the next scanning line is N2.
(S13), and the halation flag Fh is set to 1. Then, while scanning the halation region Rh, the processing is S9 → S10 → S3 → S4 → S5 → S7 → S.
Since the process is repeated in the route of 11 → S13 → S14 → S9, the scanning line number N2 is also sequentially incremented during that time, and the last scanning line number N2 of the halation region Rh is stored. Further, since the scanning line N2 + 1 becomes the normal region Rn again, the scanning of the normal region Rn is continued along the route of S7 → S8 → S9, and the scanning along the final scanning line is completed (n =
n END ) (S9: YES), for the normal region Rn, that is, for the scanning line, n = 1 to (N1-1),
The image data Dn in the area of (N2 + 1) to n END is stored (S15).

【0022】次に、ハレーション領域Rh、すなわち、
走査線に関しては、n=N1〜N2を対象に、該ハレー
ション領域Rhに最適な絞りに調整し(S16)、この
状態で画像を取り込み(S17)、n=N1〜N2の領
域の画像データDhを記憶する(S18)。そして、両
画像データDn,Dhから三次元座標を演算して(S1
9)、このルーチンを終了する。
Next, the halation region Rh, that is,
Regarding the scanning line, the aperture is adjusted to the optimum aperture for the halation region Rh for n = N1 to N2 (S16), the image is captured in this state (S17), and the image data Dh of the region of n = N1 to N2 is acquired. Is stored (S18). Then, three-dimensional coordinates are calculated from both image data Dn and Dh (S1
9) The routine is finished.

【0023】以上の説明から明らかなように、本実施例
による三次元測定器による測定方法は、正常領域Rnに
関する画像データDnと、ハレーション領域Rhに適し
た絞り調整を施した該ハレーション領域Rhに関する画
像データDhとから、スリット状の光反射領域Rに関す
る画像データを得るよういにしているので、光反射領域
Rにハレーションが生じた場合であっても、被測定物W
の外形形状の正確な測定が可能になる。
As is clear from the above description, the measuring method by the three-dimensional measuring device according to the present embodiment relates to the image data Dn regarding the normal region Rn and the halation region Rh subjected to the aperture adjustment suitable for the halation region Rh. Since the image data regarding the slit-shaped light reflection area R is obtained from the image data Dh, even if halation occurs in the light reflection area R, the object to be measured W is measured.
It is possible to accurately measure the outer shape of the.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用される三次元測定器の全体構成を
示す概略図
FIG. 1 is a schematic diagram showing an overall configuration of a coordinate measuring machine to which the present invention is applied.

【図2】測定ヘッドの概念的構成を示す図FIG. 2 is a diagram showing a conceptual configuration of a measuring head.

【図3】三次元測定器の機能ブロック図[Fig. 3] Functional block diagram of the coordinate measuring machine

【図4】本発明の方法の説明に供する図FIG. 4 is a diagram for explaining the method of the present invention.

【図5】本発明の方法の説明に供するフローチャートの
前半部分
FIG. 5: The first half of the flow chart used for explaining the method of the present invention.

【図6】本発明の方法の説明に供するフローチャートの
後半部分
FIG. 6 is the second half of the flow chart for explaining the method of the present invention.

【図7】正常の光反射領域とこの領域を走査して得られ
る輝度波形を示す図
FIG. 7 is a diagram showing a normal light reflection area and a luminance waveform obtained by scanning this area.

【図8】光反射領域におけるハレーション発生の原理を
説明する図
FIG. 8 is a diagram for explaining the principle of halation generation in a light reflection area.

【図9】ハレーションが発生した光反射領域の1例とこ
の領域を走査して得られる輝度波形を示す図
FIG. 9 is a diagram showing an example of a light reflection area in which halation occurs and a luminance waveform obtained by scanning this area.

【図10】ハレーションが発生した光反射領域の他の例
とこの領域を走査して得られる輝度波形を示す図
FIG. 10 is a diagram showing another example of a light reflection area where halation occurs and a luminance waveform obtained by scanning this area.

【図11】ハレーションが発生した光反射領域のさらに
他の例とこの領域を走査して得られる輝度波形を示す図
FIG. 11 is a diagram showing still another example of a light reflection area where halation occurs and a luminance waveform obtained by scanning this area.

【符号の説明】[Explanation of symbols]

1 測定ヘッド 2 位置決め装置 3 コントローラ 4 マイクロコンピュータ 10 レーザー発振素子 12 レーザー光 12′ スリットレーザー光 13 スリット 14 絞り機構 16 CCDエリアセンサ 1 Measuring Head 2 Positioning Device 3 Controller 4 Microcomputer 10 Laser Oscillator 12 Laser Light 12 'Slit Laser Light 13 Slit 14 Aperture Mechanism 16 CCD Area Sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光をスリットを通じて被測定物に投射
し、該被測定物の表面に映出されるスリット状の光反射
領域の受像に基づいて、上記被測定物の表面形状を測定
するようにした三次元測定器による測定方法において、 受像手段により検出された上記スリット状の光反射領域
におけるスリット幅方向の輝度分布から、該光反射領域
を正常領域とハレーション領域とに分別し、上記正常領
域に適した絞り調整を施した該正常領域に関する画像デ
ータと、上記ハレーション領域に適した絞り調整を施し
た該ハレーション領域に関する画像データとから、上記
光反射領域に関する画像データを得ることを特徴とする
三次元測定器による測定方法。
1. A method of projecting light through a slit onto an object to be measured, and measuring the surface shape of the object to be measured based on an image of a slit-shaped light reflection region projected on the surface of the object to be measured. In the measuring method using the three-dimensional measuring device, the light reflection area is divided into a normal area and a halation area from the luminance distribution in the slit width direction in the slit-shaped light reflection area detected by the image receiving means, and the normal area is Image data relating to the light reflection area is obtained from image data relating to the normal area which has been subjected to aperture adjustment suitable for the above, and image data relating to the halation area having undergone diaphragm adjustment suited to the above halation area. Measuring method using a three-dimensional measuring instrument.
JP26490693A 1993-10-22 1993-10-22 Measurement by three-dimensional measuring device Pending JPH07120238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26490693A JPH07120238A (en) 1993-10-22 1993-10-22 Measurement by three-dimensional measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26490693A JPH07120238A (en) 1993-10-22 1993-10-22 Measurement by three-dimensional measuring device

Publications (1)

Publication Number Publication Date
JPH07120238A true JPH07120238A (en) 1995-05-12

Family

ID=17409862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26490693A Pending JPH07120238A (en) 1993-10-22 1993-10-22 Measurement by three-dimensional measuring device

Country Status (1)

Country Link
JP (1) JPH07120238A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069063A (en) * 2007-09-14 2009-04-02 Nikon Corp Measurement method, shape measurement method, measuring device, and shape measuring apparatus
JP2010540955A (en) * 2007-10-02 2010-12-24 インテクプラス カンパニー、リミテッド Optical inspection method
US8829368B2 (en) 2008-09-10 2014-09-09 Japan Display West Inc. Resistive film type input device, display device with input function, and electronic apparatus
WO2016021124A1 (en) * 2014-08-04 2016-02-11 パナソニックIpマネジメント株式会社 Package loading instruction method and loading instruction system
WO2024111022A1 (en) * 2022-11-21 2024-05-30 株式会社Fuji Component appearance inspection device and component appearance inspection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069063A (en) * 2007-09-14 2009-04-02 Nikon Corp Measurement method, shape measurement method, measuring device, and shape measuring apparatus
JP2010540955A (en) * 2007-10-02 2010-12-24 インテクプラス カンパニー、リミテッド Optical inspection method
US8829368B2 (en) 2008-09-10 2014-09-09 Japan Display West Inc. Resistive film type input device, display device with input function, and electronic apparatus
WO2016021124A1 (en) * 2014-08-04 2016-02-11 パナソニックIpマネジメント株式会社 Package loading instruction method and loading instruction system
JPWO2016021124A1 (en) * 2014-08-04 2017-05-18 パナソニックIpマネジメント株式会社 Luggage loading instruction method and loading instruction system
US10029857B2 (en) 2014-08-04 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Package loading instruction method and loading instruction system
WO2024111022A1 (en) * 2022-11-21 2024-05-30 株式会社Fuji Component appearance inspection device and component appearance inspection method

Similar Documents

Publication Publication Date Title
JP2943499B2 (en) Height measuring method and device
US5909285A (en) Three dimensional inspection system
US6529280B1 (en) Three-dimensional measuring device and three-dimensional measuring method
EP0532169B1 (en) Optical Inspection Probe
EP0391532A2 (en) Apparatus for measuring three-dimensional curved surface shapes
JP2651093B2 (en) Shape detection method and device
JPH04105341A (en) Method and equipment for detecting bending and floating of lead of semiconductor device
US7688479B2 (en) Compensation apparatus for image scan
JPH07120238A (en) Measurement by three-dimensional measuring device
JP3255299B2 (en) Position detection method and apparatus, and exposure method and apparatus
JP2557650B2 (en) Sample shape measuring device
JPH11132763A (en) Distance measuring method
JP3598861B2 (en) Method and apparatus for detecting angular deviation of laser oscillator mirror
JP2522191B2 (en) IC lead height measuring device
JP3067819B2 (en) Shape measuring device
JP2009186216A (en) Three-dimensional shape measuring device
JP2816257B2 (en) Non-contact displacement measuring device
JP2986130B2 (en) Mark detection processing method
JPH05272969A (en) Range finder
JP3164615B2 (en) Optical measuring device
JP3387961B2 (en) Automatic tracking surveying instrument
JPH05209719A (en) Scan type laser displacement meter
EP0526070A2 (en) Apparatus and method for determining geometrical parameters of an optical system
JP2616679B2 (en) QFP lead inspection device and method
JP2838328B2 (en) Mounting board appearance inspection device