JPH07120231A - Appearance inspection device - Google Patents

Appearance inspection device

Info

Publication number
JPH07120231A
JPH07120231A JP5287436A JP28743693A JPH07120231A JP H07120231 A JPH07120231 A JP H07120231A JP 5287436 A JP5287436 A JP 5287436A JP 28743693 A JP28743693 A JP 28743693A JP H07120231 A JPH07120231 A JP H07120231A
Authority
JP
Japan
Prior art keywords
inspection
size
inspection target
inspection object
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5287436A
Other languages
Japanese (ja)
Inventor
Shigeyuki Murata
茂幸 村田
Yasumasa Tsukagoshi
康正 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP5287436A priority Critical patent/JPH07120231A/en
Publication of JPH07120231A publication Critical patent/JPH07120231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To make generation of algorithm easy which recognizes object shapes by changing the amount of data taken in from picture information obtained from an inspection object according to the size of the object and speed up the inspection. CONSTITUTION:In a compression factor setting part 1 of a size standardization device 10, actual inspection object size is read out of picture signal after A/D conversion (7) and the reference inspection object size out of a data base 14, and it is decided how many times (alpha) the inspection object is larger than the reference one. Based on the multiple alpha, thinning-out process part 2 does thinning with the use of land width of picture signal pattern and sizes in the longitudinal directions, for example, the picture data just as one of pixels is extracted and converted into standardization size pattern. Here, the pattern size becomes 1/alpha of the original. A reference value correcting part 3, based on the multiple alpha, corrects actual numbers of pixel of parts width and land width, etc. With these thinning and standardization, the process time for inclination code generation is shortened, for easier generation of recognition algorithm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、テレビカメラ等により
検査対象物を撮像し、その映像信号から検査対象物の形
状、寸法等を計測する検査装置に関するもので、例え
ば、プリント配線板上における電子部品やの電子部品の
はんだ付け状態をその外観状態で良否判定する検査装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection device for imaging an inspection object by a television camera or the like and measuring the shape, size, etc. of the inspection object from the video signal thereof. The present invention relates to an inspection device for determining the quality of a soldered state of an electronic component or an electronic component based on its appearance state.

【0002】[0002]

【従来の技術】テレビカメラ等により検査対象物を撮像
し、その映像信号から検査対象物の形状、寸法等を計測
し、検査する装置は従来から広く知られている。以下に
説明する実施例は、このような従来技術の一例として、
図2に多段照明式はんだ付け検査装置(例えば、特公平
5−21403)に関するものである。図2において、
光投射角の異なる多段の照明器5から、検査対象4を介
して反射光がテレビカメラ6で受光される。この照明を
上段と下段で切り換えることにより得られる各段の映像
信号をコード信号生成部8で組み合わせ、対象面の角度
分布を示す傾斜コードパターンを生成する。ここで、こ
の傾斜コードとは、対象面の角度を例えば角度に応じた
段階のコードで表したものである。以下この傾斜コード
について簡単に説明する。テレビカメラ6で受光された
各段(本実施例では上段、下段の2段を例示)の反射光
は次のようなものとなる。すなわち、検査対象物である
はんだ面は、その形状に応じて、最も輝度の高い反射光
を返す角度がそれぞれ異なる。一方、各段の照明器によ
り得られる画像は、特定の角度で最大輝度を示し、対象
面がこの角度から変化するに従い輝度が低下する。よっ
て検査対象に垂直方向である上からの照明は、平坦部の
輝度が高く、斜めからの照明は、傾斜角の高い部分の輝
度が高くなる。このような反射特性を利用し、はんだ面
の認識をする。更に、各段の照明により得られる画像か
ら対象面の角度を1から8あるいは1から4までの傾斜
コードで表し、これを検査対象物の形状に合わせ配置し
たものが傾斜コードパターンとなる。なお、段差照明検
査装置と傾斜コードパターン、及びその認識処理に関し
ては例えば特開平4−61549等に詳細に説明されて
いる。このようにして、得られた傾斜コードパターンを
利用して認識処理部9で検査対象の立体形状認識、なら
びに良否判定を行う。検査対象をプリント配線板上のは
んだ接合部とした場合を例に上げると、まず、検査対象
部を中心として受光部のテレビカメラの視野における各
段照明ごとの映像を撮る。この映像より傾斜コードを生
成するが、前述のように傾斜コードとは、テレビカメラ
の各画素位置の対象の角度を例えば8段階のコードとし
て表わすもので、傾斜コードが小さいほど平坦を示し、
傾斜コードが大きくなるに従って高い角度を示してい
る。また、この傾斜コードを生成する範囲は、事前にプ
リント配線板にある基準点より得られるランド位置の座
標をティーチング情報として記憶させ、検査を行う度に
はんだ付けランドに一致した形で設定される。この検査
ウインド内の各画素ごとに複数の映像信号よりコード生
成を行い、このコードパターンから対象物の立体形状を
認識し、良否判定を行う。
2. Description of the Related Art An apparatus for inspecting an object to be inspected by a television camera or the like, measuring the shape, size, etc. of the object to be inspected from the image signal, and inspecting it has been widely known. The embodiment described below is an example of such a conventional technique.
FIG. 2 relates to a multi-stage lighting type soldering inspection device (for example, Japanese Patent Publication No. 5-21403). In FIG.
Reflected light is received by the television camera 6 via the inspection target 4 from the multi-stage illuminator 5 having different light projection angles. The video signal of each stage obtained by switching the illumination between the upper stage and the lower stage is combined by the code signal generation unit 8 to generate an inclined code pattern indicating the angular distribution of the target surface. Here, this inclination code represents the angle of the target surface by, for example, a code at a stage corresponding to the angle. The tilt code will be briefly described below. The reflected light of each stage (in the present embodiment, two stages of the upper stage and the lower stage) received by the television camera 6 is as follows. That is, the solder surface, which is the inspection object, has different angles of returning the reflected light with the highest brightness depending on the shape. On the other hand, the image obtained by the illuminator at each stage shows the maximum brightness at a specific angle, and the brightness decreases as the target surface changes from this angle. Therefore, the illumination from above, which is perpendicular to the inspection target, has a high luminance in the flat portion, and the illumination from an oblique direction has a high luminance in a portion having a high inclination angle. By utilizing such reflection characteristics, the solder surface is recognized. Further, the angle of the target surface is represented by an inclination code of 1 to 8 or 1 to 4 from the image obtained by the illumination of each stage, and the inclination code pattern is formed by arranging the inclination code according to the shape of the inspection object. The step illumination inspection device, the inclination code pattern, and the recognition process thereof are described in detail in, for example, Japanese Patent Laid-Open No. 4-61549. In this way, the recognition processing unit 9 recognizes the three-dimensional shape of the inspection target by using the obtained inclination code pattern, and determines the quality. Taking the case where the inspection target is a solder joint on the printed wiring board as an example, first, an image is taken for each stage illumination in the field of view of the television camera of the light receiving unit with the inspection target as the center. A tilt code is generated from this image. As described above, the tilt code represents the target angle at each pixel position of the television camera as, for example, a code of 8 steps. The smaller the tilt code is, the flatter the code is.
The larger the tilt code is, the higher the angle is. In addition, the range for generating this inclination code is set in advance in such a manner that the coordinates of the land position obtained from the reference point on the printed wiring board are stored in advance as teaching information, and each time the inspection is performed, the land matches the soldering land. . Codes are generated from a plurality of video signals for each pixel in the inspection window, the three-dimensional shape of the object is recognized from the code pattern, and the quality is judged.

【0003】[0003]

【発明が解決しようとする課題】このように、多段照明
式の外観検査装置は、検査範囲内において各画素ごとに
対象面の傾斜角をコード信号に生成している。しかし、
検査対象の寸法は多様であり、特に角形チップ部品にお
いては検査範囲内の画素数が約千にもなるため、検査範
囲内の各画素全てをコード信号に生成していてはその処
理時間が多大なものとなる。また、検査対象によっては
検査範囲の寸法差が5倍近くなるため、認識処理部にお
いて、認識アルゴリズムを作成する際、寸法の異なる検
査対象を同じアルゴリズムで比較するのが難しく、また
パラメータ調整も複雑化することになる。なお、このよ
うな問題は多段照明式の外観検査装置に限らず、特に大
小各種の電子部品を搭載した基板を検査するあらゆる検
査装置において、発生する問題である。
As described above, the multi-stage illumination type visual inspection apparatus generates the inclination angle of the target surface as a code signal for each pixel within the inspection range. But,
Since the size of the inspection target is diverse, and in particular, the number of pixels in the inspection range is about 1000 in the case of the rectangular chip part, it takes a lot of processing time if all the pixels in the inspection range are generated in the code signal. It will be Further, depending on the inspection object, the dimensional difference of the inspection range is nearly five times, so it is difficult to compare the inspection objects having different dimensions with the same algorithm when creating the recognition algorithm in the recognition processing unit, and the parameter adjustment is complicated. Will be changed. It should be noted that such a problem is not limited to the multi-stage illumination type appearance inspection device, but is a problem that occurs particularly in any inspection device that inspects a board on which various large and small electronic components are mounted.

【0004】[0004]

【課題を解決するための手段】前記問題点を解決するた
め、本発明は、検査対象物から得られた画像情報から検
査対象物の大きさに応じて、該検査対象物からのデータ
取り込み量を変えることを特徴としたものである。
In order to solve the above-mentioned problems, the present invention relates to the amount of data to be taken in from the inspection object according to the size of the inspection object from the image information obtained from the inspection object. It is characterized by changing.

【0005】[0005]

【作用】このようにすることにより、 検査対象のサイ
ズが様々でも、等価的に一定の大きさに画一処理するこ
とで、傾斜コード生成処理時間が短縮でき、また認識ア
ルゴリズムを作成する上でも比較検討が容易になる。
By doing so, even if the size of the inspection object varies, the gradient code generation processing time can be shortened by performing uniform processing to a uniform size, and also in creating the recognition algorithm. Comparison examination becomes easy.

【0006】[0006]

【実施例】本発明は、検査範囲の寸法を認識し、一定の
大きさ(標準寸法)に対して何倍の大きさであるかを算
出し、その結果より得られている映像信号から間引き処
理を行い、残った一定量の映像信号により、判定あるい
は寸法測定するものである。従って、検査対象のサイズ
が様々でも、等価的に一定の大きさに画一処理すること
で、傾斜コード生成処理時間が短縮でき、また認識アル
ゴリズムを考案する上でも比較検討が容易になる。以下
図面に従って、本発明の実施例について説明する。図1
の装置は、検査範囲の寸法を認識し、一定の大きさに対
して何倍の大きさであるかを算出し、その結果より得ら
れている映像信号から間引き処理を行い、残った一定サ
イズにおける映像データを得るものである。本発明の寸
法標準化装置10を段差照明式検査機に用いた一実施例
を図1、図2に基づき説明する。この寸法基準化装置1
0は、一例として、図2に示した従来のA/D変換回路
7とコード生成部8の間に加えることにする。検査対象
は、プリント配線板上の角形チップ部品のはんだ接合部
と仮定する。図2の検査対象4をテレビカメラ6で捕ら
えた映像信号はA/D変換回路7でデジタルデータに変
換された後、寸法標準化装置10に入る。このデジタル
化された映像信号のパターンの一例を表わすと図3のよ
うになる。ここで、同図の1マスは1画素で、この例で
は一つのリードとその部分のはんだ状態を示している。
11はリード、aは最も反射の強い部分、すなわち、平
坦な部分、bはaより反射の弱い部分、cはbより反射
の弱い部分、dは最も反射が弱い部分で最も急峻な部分
を表す。図5は図3におけるX−Yに相当する部分の基
板断面図で、12ははんだ、13はランドを示す。次に
この動作を説明する。まず、圧縮率設定部1で実際の検
査対象寸法と、データベース14の検査対象基準の寸法
を読み取り、検査対象が基準の何倍(α)かを求める。
このαを基に、間引き処理部2で、映像信号パターンの
ランド幅方向と長さ方向の寸法から間引き処理を行い。
図4のようなランド幅方向と長さ方向の寸法パターンに
書換える。次に図3、図4の例を用いて、この動作につ
いてより具体的に説明する。まず、圧縮率設定部1でデ
ータベース14から検査対象のランド幅Iと長さJを読
み取り、これを基準寸法として実際の検査対象がその何
倍の大きさであるかを算出する。この例の場合、検査対
象のランド幅iと長さjから基準寸法ランド幅I、長さ
Jに対して何倍(α)の大きさであるかを算出し、その
結果α=2を得る。このαを基に、間引き処理部2で、
映像信号パターンのランド幅方向iと長さ方向jの寸法
から画素の間引き処理を行い。ランド幅方向iと長さ方
向jの寸法からそれぞれ4画素中から1画素分の映像デ
ータだけを抽出し、図4のようなランド幅方向Iと長さ
方向Jの寸法パターンに書換える。図に示した例では図
4のa1は図3のa1、a2、a3、a4から抽出され
た1画素であり、同じくd1は図3のd1、d2、d
3、d4から抽出された1画素である。このように間引
き(抽出)処理により、図3のパターンの寸法はもとの
寸法の1/2(面積は1/4)となる。また、圧縮率設
定部1で得られたαを基に基準値修正部3ではティーチ
ング時に教えた実際の部品幅の画素数やランド幅の画素
数とはんだ付け検査に必要な諸条件を修正する機能を持
たせている。次に、コード作成部8では、間引き処理さ
れ、標準化された照明5を上段と下段で切り換えること
により得られた映像信号データから対象面の角度分布を
示す傾斜コードパターンを生成する。検査対象物である
はんだ面は、その形状に応じて、最も輝度の高い光を反
射する角度がそれぞれ異なる。一方、各段の照明器によ
り得られる画像は、特定の角度で最大輝度を示し、対象
面がこの角度から変化するに従い輝度が低下する。よっ
て検査対象に垂直方向である上からの照明は、平坦部の
輝度が高く、斜めからの照明は、傾斜角の高い部分の輝
度が高くなる。このような反射特性を利用し、対象面の
角度分布を示す傾斜コードパターンを生成する。このよ
うにして、得られた傾斜コードパターンを利用して認識
処理部9で検査対象の立体形状を認識し、良否判定を行
う。認識処理部9では傾斜コードパターンからはんだ形
状を認識しはんだ付け状態の良否を判定する。この技術
に関しては前述の通り、特許平4−61549号公報に
記載されている。なお、 寸法標準化装置10は一例と
して、A/D変換回路7とコード信号生成部8の間に設
けた例について説明した。この場合は、データ数が減る
ことからコード生成に要する時間が短縮でき、最適であ
る。しかし、寸法標準化装置10はコード信号生成部8
と認識処理部9の間に設けて、コード化されたデータか
ら間引き処理をするようにしても良い。また、以上の説
明では段差照明検査装置を例に説明したが、本発明は従
来から広く知られている画像による検査装置一般に用い
ることは容易に理解でき、上記実施例に限定されるもの
ではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention recognizes the size of an inspection range, calculates how many times the size is a certain size (standard size), and decimates a video signal obtained from the result. Processing is performed, and determination or dimension measurement is performed based on a certain amount of remaining video signal. Therefore, even if the size of the inspection object varies, uniform processing to a uniform size can shorten the processing time for the gradient code generation, and facilitates the comparative study in devising the recognition algorithm. Embodiments of the present invention will be described below with reference to the drawings. Figure 1
The device recognizes the size of the inspection range, calculates how many times it is larger than a certain size, thins out the video signal obtained from the result, and leaves the remaining constant size. To obtain video data in. An embodiment in which the dimension standardizing apparatus 10 of the present invention is used in a step illumination type inspection machine will be described with reference to FIGS. 1 and 2. This size standardization device 1
As an example, 0 is added between the conventional A / D conversion circuit 7 and the code generation unit 8 shown in FIG. It is assumed that the inspection target is the solder joint part of the rectangular chip part on the printed wiring board. The video signal obtained by capturing the inspection object 4 in FIG. 2 with the television camera 6 is converted into digital data by the A / D conversion circuit 7, and then enters the dimension standardization device 10. An example of the pattern of this digitized video signal is shown in FIG. Here, one cell in the figure is one pixel, and in this example, one lead and the soldering state of that portion are shown.
Reference numeral 11 is a lead, a is a portion where reflection is strongest, that is, a flat portion, b is a portion where reflection is weaker than a, c is a portion where reflection is weaker than b, and d is a portion where reflection is weakest and the steepest portion. . FIG. 5 is a cross-sectional view of the substrate of a portion corresponding to XY in FIG. 3, in which 12 is a solder and 13 is a land. Next, this operation will be described. First, the compression rate setting unit 1 reads the actual inspection object dimensions and the inspection object reference dimensions of the database 14, and determines how many times (α) the inspection object is the reference.
Based on this α, the thinning-out processing unit 2 carries out thinning-out processing from the dimensions of the video signal pattern in the land width direction and the length direction.
It is rewritten to the dimension patterns in the land width direction and the length direction as shown in FIG. Next, this operation will be described more specifically with reference to the examples of FIGS. First, the compression ratio setting unit 1 reads the land width I and the length J of the inspection target from the database 14, and calculates the actual size of the inspection target by using the land width I and the length J as reference dimensions. In the case of this example, it is calculated from the land width i and the length j of the inspection object how many times (α) the reference dimension land width I and the length J are, and as a result α = 2 is obtained. . Based on this α, the thinning processing unit 2
Pixels are thinned out from the dimensions of the land width direction i and the length direction j of the video signal pattern. From the dimensions of the land width direction i and the length direction j, only the image data for one pixel is extracted from each of the four pixels, and rewritten into the dimension patterns of the land width direction I and the length direction J as shown in FIG. In the example shown in the figure, a1 in FIG. 4 is one pixel extracted from a1, a2, a3, a4 in FIG. 3, and d1 is also d1, d2, d in FIG.
It is one pixel extracted from 3 and d4. As described above, the thinning (extracting) process reduces the size of the pattern of FIG. 3 to 1/2 (the area is 1/4) of the original size. Further, based on α obtained by the compression ratio setting unit 1, the reference value correction unit 3 corrects the actual number of pixels of the component width and the number of pixels of the land width and various conditions necessary for the soldering inspection, which are taught during teaching. It has a function. Next, the code creation unit 8 generates a tilt code pattern indicating the angular distribution of the target surface from the video signal data obtained by switching the thinned and standardized illumination 5 between the upper stage and the lower stage. The solder surface, which is the inspection object, has different angles for reflecting the light with the highest brightness depending on the shape thereof. On the other hand, the image obtained by the illuminator at each stage shows the maximum brightness at a specific angle, and the brightness decreases as the target surface changes from this angle. Therefore, the illumination from above, which is perpendicular to the inspection target, has a high luminance in the flat portion, and the illumination from an oblique direction has a high luminance in a portion having a high inclination angle. By utilizing such a reflection characteristic, a tilt code pattern indicating the angle distribution of the target surface is generated. In this way, the recognition processing unit 9 recognizes the three-dimensional shape of the inspection target by using the obtained inclination code pattern, and determines the quality. The recognition processing unit 9 recognizes the solder shape from the inclined code pattern and determines the quality of the soldering state. As described above, this technique is described in Japanese Patent Laid-Open No. 4-61549. In addition, as an example, the dimension standardization device 10 has been described as being provided between the A / D conversion circuit 7 and the code signal generation unit 8. In this case, the time required for code generation can be shortened because the number of data is reduced, which is optimal. However, the dimension standardization apparatus 10 is
It may be provided between the recognition processing unit 9 and the recognition processing unit 9 to perform thinning processing from coded data. Further, in the above description, the step illumination inspection apparatus has been described as an example, but it can be easily understood that the present invention is generally used for a widely known image inspection apparatus, and the present invention is not limited to the above embodiment. .

【0007】[0007]

【発明の効果】以上述べたように、本発明の寸法標準化
方式により検査対象の寸法を一定にすることは、対象物
の形状を認識するアルゴリズムの作成を容易にする。ま
た、検査速度の向上にもなるため、検査装置における性
能向上に著しい効果がある。
As described above, making the dimensions of the inspection object constant by the dimension standardization method of the present invention facilitates the creation of an algorithm for recognizing the shape of the object. In addition, since the inspection speed is also improved, there is a remarkable effect in improving the performance of the inspection device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による寸法標準化方式の基本構成を示す
ブロック図。
FIG. 1 is a block diagram showing a basic configuration of a dimension standardization method according to the present invention.

【図2】多段照明式外観検査装置の基本装置構成図。FIG. 2 is a basic device configuration diagram of a multi-stage illumination type visual inspection device.

【図3】本発明を説明する画像信号パターンのモデル
図。
FIG. 3 is a model diagram of an image signal pattern for explaining the present invention.

【図4】本発明を説明する画像信号パターンの基準化さ
れたモデル図。
FIG. 4 is a scaled model diagram of an image signal pattern illustrating the present invention.

【図5】はんだ付け部の断面図FIG. 5 is a sectional view of the soldering part.

【符号の説明】[Explanation of symbols]

1 圧縮率設定部 2 間引き処理部 3 基準値修正部 4 検査対象 5 照明器 6 受光センサ(テレビカメラ) 8 コード生成部 9 認識処理部 10 寸法標準化装置 1 compression rate setting unit 2 thinning processing unit 3 reference value correction unit 4 inspection target 5 illuminator 6 light receiving sensor (TV camera) 8 code generation unit 9 recognition processing unit 10 dimension standardization device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G06T 1/00 H04N 7/18 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G06T 1/00 H04N 7/18 B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 検査対象物を撮像し得られた画像情報か
ら検査対象物の外観形状を検査する装置において、前記
検査対象物から得られた画像情報から検査対象物の大き
さに応じて該検査対象物の画像情報の取り込み量を変え
ることを特徴とした外観形状検査装置。
1. An apparatus for inspecting an external shape of an inspection target from image information obtained by imaging the inspection target, the image information being obtained from the inspection target according to the size of the inspection target. An appearance shape inspection device characterized by changing the amount of image information to be inspected.
【請求項2】 検査対象物を撮像し得られた画像情報か
ら検査対象物の外観形状を検査する装置において、検査
対象寸法標準値と検査対象実寸法を比較し倍率を求める
手段と、該手段により求めた倍率に基づき前記実寸法を
前記寸法標準値に等しくするように前記画像情報を間引
く手段を有すること特徴とする外観形状検査装置
2. An apparatus for inspecting an external shape of an inspection object from image information obtained by picking up an image of the inspection object, a means for comparing a standard value for the inspection object and an actual size for the inspection, and obtaining a magnification, the means. An appearance shape inspection device having means for thinning out the image information so that the actual size is made equal to the standard size value based on the magnification obtained by
【請求項3】 検査対象への投光角度が相違する複数組
の照明光源と、その照明光源による検査対象からの反射
光を検査対象からの反射光輝度分布として受光しかつ電
気信号データとして出力するための受光センサと、前記
複数照明光源の発光位置を切換えて得られる複数の前記
受光センサ出力信号パターンを基に検査対象を含む2次
元検査領域内の各面の角度を表すコードの生成を行うコ
ード信号生成部と、該生成コードの前記検査領域におけ
る分布状態を基に前記検査対象の立体的形状を認識する
ことが可能な認識処理装置とを有する外観形状検査装置
において、前記検査対象物の寸法が標準寸法と異なる場
合に、前記受光センサ出力を間引き、処理データ量を前
記標準寸法に対するデータ量と等しくすることを特徴と
した外観形状検査装置。
3. A plurality of sets of illumination light sources having different light projection angles to the inspection target, and reflected light from the inspection target by the illumination light sources is received as a reflected light intensity distribution from the inspection target and output as electrical signal data. For generating a code representing the angle of each surface in the two-dimensional inspection area including the inspection object based on the plurality of light receiving sensor output signal patterns obtained by switching the light emitting positions of the plurality of illumination light sources. In the appearance shape inspection device, which includes a code signal generation unit for performing, and a recognition processing device capable of recognizing a three-dimensional shape of the inspection target based on a distribution state of the generated code in the inspection region, the inspection target object When the size of the above is different from the standard size, the output of the light receiving sensor is thinned out and the processed data amount is made equal to the data amount with respect to the standard size. Place
JP5287436A 1993-10-22 1993-10-22 Appearance inspection device Pending JPH07120231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5287436A JPH07120231A (en) 1993-10-22 1993-10-22 Appearance inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5287436A JPH07120231A (en) 1993-10-22 1993-10-22 Appearance inspection device

Publications (1)

Publication Number Publication Date
JPH07120231A true JPH07120231A (en) 1995-05-12

Family

ID=17717298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5287436A Pending JPH07120231A (en) 1993-10-22 1993-10-22 Appearance inspection device

Country Status (1)

Country Link
JP (1) JPH07120231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277405A (en) * 2001-03-14 2002-09-25 Saki Corp:Kk Visual inspection method and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277405A (en) * 2001-03-14 2002-09-25 Saki Corp:Kk Visual inspection method and device therefor

Similar Documents

Publication Publication Date Title
EP1333275B1 (en) Method and apparatus for inspecting the surface of substrates
KR100586293B1 (en) Defect inspection method
US20020029125A1 (en) Color optical inspection system
JPH07120231A (en) Appearance inspection device
US6888958B1 (en) Method and apparatus for inspecting patterns
JPH09153133A (en) Method for calculating threshold
US6510240B1 (en) Automatic detection of die absence on the wire bonding machine
JP3342171B2 (en) Component position recognition method and position recognition device
JP3015641B2 (en) Component position recognition device
JPH08152412A (en) Appearance inspection device
JPH07140086A (en) Appearance shape inspection device
JP3182936B2 (en) Lead end detection method
JPH0399211A (en) Recognition of body
JPH08147468A (en) Position recognizing method for bag by image processing
JPH0674714A (en) Substrate position detecting method
JPH0399250A (en) Mounting state recognizing apparatus
JPH0926313A (en) Object recognition method in visual inspection apparatus for electronic-component mounting board
JP2644263B2 (en) Position recognition device
JP2003196642A (en) Image processing noise removing device and method
JPH06160035A (en) Substrate inspection device
KR0155814B1 (en) Method for perceiving the chip of pcb
JP3386491B2 (en) Automatic focusing method
JPS60200375A (en) Template matching system
JPH03154176A (en) Pattern processing method
JP2971793B2 (en) Position detection device