JPH07118773A - Production of ti or ti alloy rolled stock - Google Patents

Production of ti or ti alloy rolled stock

Info

Publication number
JPH07118773A
JPH07118773A JP5263789A JP26378993A JPH07118773A JP H07118773 A JPH07118773 A JP H07118773A JP 5263789 A JP5263789 A JP 5263789A JP 26378993 A JP26378993 A JP 26378993A JP H07118773 A JPH07118773 A JP H07118773A
Authority
JP
Japan
Prior art keywords
strip
titanium
rolled
gas atmosphere
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5263789A
Other languages
Japanese (ja)
Inventor
Hiroo Suzuki
洋夫 鈴木
Hideki Fujii
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5263789A priority Critical patent/JPH07118773A/en
Publication of JPH07118773A publication Critical patent/JPH07118773A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE:To enlarge producible component system, to improve material quality/ uniformity, to improve yield, to simplify process control and to achieve energy saving by reducing the segregation of impurity element and alloy element in producing Ti or Ti alloy rolled stock. CONSTITUTION:A strip 4 is produced so that Ti or Ti alloy is plasma melted in an inert gas atmosphere, is successively subjected to continuous casting in the inert gas atmosphere and further to rolling. Otherwise, melting is executed by the skull melting method, in which high-frequency induction heating in vacuum is used for heat source, and successively a strip is produced in the same way, and further, is subjected to rolling. The strip 4 is preferable to be produced in a thickness of 1-5mm by the twin roll casting method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チタンまたはチタン合
金の圧延材を、溶解と連続鋳造を直結した工程を経て製
造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rolled material of titanium or titanium alloy through a process in which melting and continuous casting are directly connected.

【0002】[0002]

【従来の技術】チタンは軽くて優れた耐食性を有し、ま
たその圧延材は強度や延性にも優れていることから、化
学工業設備、各種産業機器、海洋構造物、屋根材、レジ
ャー用品等、用途が拡大し、需要が増大している。ま
た、Ti−6Al−4Vを代表とするチタン合金の圧延
材は、耐熱性にも優れ、さらに比強度も高いことから、
航空機部品、自動車部品等に使用され、その需要も増大
している。
2. Description of the Prior Art Titanium is light and has excellent corrosion resistance, and its rolled material is also excellent in strength and ductility. Therefore, chemical industrial equipment, various industrial equipment, marine structures, roofing materials, leisure goods, etc. , The applications are expanding, and the demand is increasing. Further, since a rolled material of titanium alloy represented by Ti-6Al-4V has excellent heat resistance and high specific strength,
It is used for aircraft parts, automobile parts, etc., and its demand is increasing.

【0003】ところで、チタンは活性金属であることか
ら、チタンおよびチタン合金は、大気との反応による酸
化や窒化を避けるため、従来はほとんどが、真空中でア
ーク溶解され鋳造されていた。すなわち、スポンジチタ
ンやチタンスクラップをプレスして固め、チタン合金の
場合は合金元素を添加して円柱形の棒状電極を製作し、
これを陰極として、真空中で水冷銅鋳型内の溶湯との間
にアークを作って電極を溶解し、該鋳型内で凝固させて
いた。鋳型は、アークの安定性確保のため、円柱形の電
極と同心円をなす円筒状であるため、得られるチタンま
たはチタン合金の鋳片は円柱形であった。また、チタン
またはチタン合金の溶解法として、電子ビーム再溶解法
(EBR法),プラズマ溶解法等も一部で試みられてい
るが、いずれも小規模な実験的なものであった。
By the way, since titanium is an active metal, most of titanium and titanium alloys have conventionally been arc-melted and cast in a vacuum in order to avoid oxidation and nitridation due to reaction with the atmosphere. That is, titanium sponge or titanium scrap is pressed and solidified, and in the case of a titanium alloy, alloy elements are added to produce a cylindrical rod electrode,
Using this as a cathode, an arc was created between the molten metal in a water-cooled copper mold and the electrode in a vacuum to melt the electrode and solidify in the mold. The mold had a cylindrical shape that was concentric with the cylindrical electrode in order to ensure the stability of the arc, and thus the obtained titanium or titanium alloy slab had a cylindrical shape. Further, as a melting method of titanium or a titanium alloy, an electron beam remelting method (EBR method), a plasma melting method, and the like have been partially tried, but all of them are small-scale experimental methods.

【0004】[0004]

【発明が解決しようとする課題】従来のチタンまたはチ
タン合金の真空アーク溶解法においては、Fe,Cr,
Mnなど分配係数の小さな元素を添加しようとする場
合、これら元素が著しい凝固偏析を生じるため、溶解可
能な成分系に限界があった。また、従来の真空アーク溶
解法で得られる鋳片は円柱状であるため、板、棒および
線等の圧延材を得るためには、鍛造や分塊圧延により、
断面を丸から長方形や正方形のスラブやビレットにし、
それらを熱間圧延していた。このため、スラブやビレッ
トの先後端クロップや、中間での再加熱時のスケールに
よるロス等で製造歩留りが非常に悪く、また製造工期が
長期に亘っていた。
In the conventional vacuum arc melting method for titanium or titanium alloy, Fe, Cr,
When adding an element having a small distribution coefficient such as Mn, these elements cause remarkable solidification segregation, so that there is a limit to the soluble component system. Further, since the cast piece obtained by the conventional vacuum arc melting method has a columnar shape, in order to obtain a rolled material such as a plate, a rod and a wire, by forging or slabbing,
Change the cross section from round to rectangular or square slab or billet,
They were hot rolling. For this reason, the production yield is very poor due to the leading and trailing edge crops of the slab and billet, the loss due to the scale during reheating in the middle, and the manufacturing period is long.

【0005】さらに、溶解が小ロットのバッチ処理であ
ったため、後工程でも小ロットの不連続処理となり、製
造条件の安定化に難があって製品の材質が不均一で、か
つ工程管理が複雑になるという問題もあった。またチタ
ン合金の場合は、一般に熱間加工性が劣り、鍛造や圧延
時に割れが生じ易く、これも製造可能成分系の限定原因
になっていた。
Furthermore, since the dissolution is a batch process of a small lot, the small lot is discontinuous even in the post-process, it is difficult to stabilize the manufacturing conditions, the material of the product is non-uniform, and the process control is complicated. There was also the problem of becoming. Further, in the case of titanium alloy, in general, the hot workability is inferior and cracks are likely to occur during forging or rolling, which is also a cause of limiting the manufacturable component system.

【0006】本発明は、チタンまたはチタン合金圧延材
の製造において、不純物元素および合金元素の偏析を軽
減し、熱間加工性の問題も解決して、チタン合金の製造
可能成分系の拡大を図り、さらに材質の向上と均一化、
製造歩留りの向上、工程管理の簡易化、省エネ等の達成
を目的とする。
The present invention reduces the segregation of impurity elements and alloy elements in the production of rolled titanium or titanium alloy, solves the problem of hot workability, and expands the manufacturable component system of titanium alloy. , Further improvement and homogenization of material,
The objective is to improve manufacturing yield, simplify process control, and save energy.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明法は、チタンまたはチタン合金を不活性ガス雰
囲気中でプラズマ溶解し、引続き不活性ガス雰囲気中に
て連続鋳造によりストリップを製造し、ついで該ストリ
ップを圧延することを特徴とするチタンまたはチタン合
金圧延材の製造方法である。また、溶解を真空中で高周
波誘導加熱を熱源とするスカルメルト法により行い、引
続き上記方法と同様、不活性ガス雰囲気中にて連続鋳造
によりストリップを製造し、ついで該ストリップを圧延
することを特徴とするチタンまたはチタン合金圧延材の
製造方法である。そして、ストリップは、双ロール鋳造
法により厚さ1〜5mmのものを製造するのが好ましく、
さらに該ストリップの顕熱を保持して熱間圧延し、ある
いは該ストリップを冷間圧延するのが好ましい。
To achieve the above object, the method of the present invention is to produce a strip by plasma-melting titanium or titanium alloy in an inert gas atmosphere and then continuously casting in the inert gas atmosphere. And then rolling the strip, which is a method for producing a rolled titanium or titanium alloy material. Further, melting is performed by a skull melt method using high-frequency induction heating as a heat source in a vacuum, and subsequently, similarly to the above method, a strip is manufactured by continuous casting in an inert gas atmosphere, and then the strip is rolled. This is a method for producing a rolled titanium or titanium alloy material. And, it is preferable to manufacture the strip with a thickness of 1 to 5 mm by a twin roll casting method,
Further, it is preferable to carry out hot rolling while maintaining the sensible heat of the strip, or to carry out cold rolling of the strip.

【0008】[0008]

【作用】以下、本発明を図面により詳細に説明する。第
1発明を、双ロール鋳造法により行う例を図1に示す。
まず、溶解すべきチタンまたはチタン合金からなる電極
棒1を、扉14から置換室10に入れ、雰囲気をアルゴ
ンガス等の不活性ガスで置換する。ついで扉15を開
け、搬送ローラー22により電極棒1を溶解室8に搬送
する。溶解室8内は不活性ガス雰囲気に保たれていて、
先行の電極棒2を所定の速度で送りつつ、その先端をプ
ラズマトーチ24により溶解している。溶接室8に装入
した電極棒1の先端を、先行の電極棒2の後端と接触さ
せ、先行の電極棒2と同一速度で送りつつ、溶接トーチ
23により溶接する。このとき、溶接トーチ23は点線
の位置から、電極棒1および2と同速度で走行させる。
溶解したチタンまたはチタン合金の溶湯3は、タンディ
ッシュ26で受け、プラズマトーチ25により所定の温
度に均一化する。
The present invention will be described in detail below with reference to the drawings. An example in which the first invention is carried out by a twin roll casting method is shown in FIG.
First, the electrode rod 1 made of titanium or titanium alloy to be melted is put into the replacement chamber 10 through the door 14 and the atmosphere is replaced with an inert gas such as argon gas. Then, the door 15 is opened, and the electrode rod 1 is transported to the melting chamber 8 by the transport roller 22. The inside of the melting chamber 8 is kept in an inert gas atmosphere,
The leading end of the electrode rod 2 is melted by the plasma torch 24 while feeding the preceding electrode rod 2 at a predetermined speed. The tip of the electrode rod 1 loaded in the welding chamber 8 is brought into contact with the rear end of the preceding electrode rod 2, and the welding is performed by the welding torch 23 while sending the electrode rod 1 at the same speed as the preceding electrode rod 2. At this time, the welding torch 23 is run at the same speed as the electrode rods 1 and 2 from the position indicated by the dotted line.
The molten metal 3 of titanium or titanium alloy is received by the tundish 26 and homogenized to a predetermined temperature by the plasma torch 25.

【0009】つぎに、チタンまたはチタン合金の溶湯3
を、同じく不活性ガス雰囲気に保たれている鋳造室9に
入れる。溶湯3をタンディッシュ26から堰27を経
て、双ロール28により鋳造し、ピンチローラー29で
引抜き、多段に設けた冷却ガスノズル30により冷却し
てストリップ4を製造し、コイラー31に巻き取り、カ
ッター34で切断してストリップコイル5とする。コイ
ラー31は2基設け(図は1基のみ示す)、交互に巻き
取るようにしておき、巻き終ったストリップコイル5
は、扉16を開けて置換室11に入れる。なお溶解室8
と鋳造室9の間は、両室の雰囲気ガスが同一なので、仕
切壁がなくてもよいが、溶解室8は溶解のために高温状
態を維持し、鋳造室9はストリップ4の冷却用ガスを使
用するため、仕切壁を設けた方がよい。
Next, molten metal 3 of titanium or titanium alloy
Are placed in a casting chamber 9 which is also kept in an inert gas atmosphere. The molten metal 3 is cast from the tundish 26 through the weir 27, by twin rolls 28, drawn out by a pinch roller 29, cooled by a cooling gas nozzle 30 provided in multiple stages to manufacture a strip 4, wound on a coiler 31, and cut by a cutter 34. And cut into strip coils 5. Two coilers 31 are provided (only one is shown in the figure) and they are wound alternately, and the strip coil 5 is wound.
Opens the door 16 and enters the replacement chamber 11. The melting chamber 8
Since the atmosphere gas in both chambers is the same as that in the casting chamber 9, there is no need for a partition wall, but the melting chamber 8 maintains a high temperature state for melting, and the casting chamber 9 uses the cooling gas for the strip 4 as a cooling gas. Since it is used, it is better to provide a partition wall.

【0010】このようにして製造したストリップコイル
5を、熱間圧延または冷間圧延して圧延材とする。熱間
圧延する場合は、扉18を開けて、ストリップコイル5
を保定炉13に入れ、所定温度で所定時間、加熱保持す
る。保定炉13では、鋳造されたストリップ4の顕熱を
利用し、必要に応じて加熱してもよい。保定炉13の雰
囲気は不活性ガスでも真空でもよく、前者の場合は置換
室11を不活性ガス雰囲気のままとし、扉18を開けて
ストリップコイル5を装入すればよく、後者の場合は、
置換室11を真空にした後、扉18を開けて装入する。
保定した後、扉19を開けてストリップコイル5を取出
し、熱間圧延機(図示せず)にて圧延する。熱間圧延の
雰囲気は大気でもよい。なお、ストリップ4を鋳造室9
にて巻き取らず、不活性ガス雰囲気のルーパー(図示せ
ず)を介し、必要に応じ保定炉を通して、熱間圧延機に
導入してもよい。
The strip coil 5 thus manufactured is hot-rolled or cold-rolled to obtain a rolled material. For hot rolling, open the door 18 and strip coil 5
Is placed in the holding furnace 13 and heated and held at a predetermined temperature for a predetermined time. In the holding furnace 13, sensible heat of the cast strip 4 may be used to heat the strip 4 if necessary. The atmosphere of the retaining furnace 13 may be an inert gas or a vacuum. In the former case, the replacement chamber 11 may be kept in an inert gas atmosphere, the door 18 may be opened and the strip coil 5 may be inserted. In the latter case,
After evacuating the replacement chamber 11, the door 18 is opened and charged.
After retaining, the door 19 is opened and the strip coil 5 is taken out and rolled by a hot rolling mill (not shown). The atmosphere of hot rolling may be air. The strip 4 is placed in the casting chamber 9
It may be introduced into the hot rolling mill through a looper (not shown) in an inert gas atmosphere, if necessary through a retaining furnace, without being wound.

【0011】冷間圧延する場合は、置換室11内あるい
は別途設けた冷却室(図示せず)の不活性ガス雰囲気中
で、酸化あるいは窒化を生じない温度域まで冷却した
後、必要に応じて表面手入れを行い、冷間圧延機(図示
せず)にて圧延する。熱間圧延あるいは冷間圧延した圧
延材は、熱処理および必要に応じて脱スケール処理を行
って圧延材製品となる。また、熱間圧延材をさらに冷間
圧延してもよい。
In the case of cold rolling, after cooling to a temperature range where oxidation or nitriding does not occur in the replacement chamber 11 or in an inert gas atmosphere in a cooling chamber (not shown) provided separately, it is necessary. The surface is cleaned and rolled by a cold rolling mill (not shown). The hot-rolled or cold-rolled rolled material is subjected to a heat treatment and, if necessary, a descaling treatment to be a rolled material product. Further, the hot rolled material may be further cold rolled.

【0012】以上述べた第1発明において、原料のプラ
ズマ溶解は、図2のように粉状あるいは小片状の原料6
を、タンディッシュ26内の溶湯3に落し込み、プラズ
マトーチ25を熱源として溶解する方法で行うこともで
きる。図2において、原料6は置換室10内のホッパー
35に収容し、不活性ガス雰囲気に置換した後、扉15
を開き、不活性ガス雰囲気に保たれた溶解室8内の原料
装入管36に入れ、タンディッシュ26に落し込む。
In the first invention described above, the plasma melting of the raw material is carried out by powdery or small piece raw material 6 as shown in FIG.
Can be dropped into the molten metal 3 in the tundish 26 and melted using the plasma torch 25 as a heat source. In FIG. 2, the raw material 6 is housed in the hopper 35 in the substitution chamber 10 and replaced with an inert gas atmosphere, and then the door 15
Is opened, put into the raw material charging pipe 36 in the melting chamber 8 kept in an inert gas atmosphere, and dropped into the tundish 26.

【0013】また、連続鋳造によりストリップ4を製造
する工程は、図1の例のような双ロール法による他、双
ベルト法等により直接ストリップを製造してもよい。双
ロール法によると、板厚1〜5mm程度の表面性状のよい
ストリップが精度よく製造できる。さらに、図2のよう
に薄肉スラブ7を鋳造した後、インラインミル33によ
り圧延してストリップ4を製造してもよい。図2におい
て、タンディッシュ26から溶湯3を冷却鋳型32に注
入し、プラズマトーチ25で所定温度に均一化する。冷
却鋳型32内で凝固シェルが形成され、ピンチローラー
29で引抜き、冷却ガスノズル30で冷却し、インライ
ンミル33で圧延してストリップ4を製造する。その他
の工程は、図1で説明したとおりである。
In the step of manufacturing the strip 4 by continuous casting, the strip may be directly manufactured by the twin belt method or the like as well as the twin roll method as shown in FIG. According to the twin roll method, a strip having a plate thickness of about 1 to 5 mm and good surface quality can be accurately manufactured. Further, the thin slab 7 may be cast as shown in FIG. 2 and then rolled by the in-line mill 33 to manufacture the strip 4. In FIG. 2, the molten metal 3 is poured into the cooling mold 32 from the tundish 26, and is homogenized to a predetermined temperature by the plasma torch 25. A solidified shell is formed in the cooling mold 32, drawn by the pinch roller 29, cooled by the cooling gas nozzle 30, and rolled by the in-line mill 33 to manufacture the strip 4. Other steps are as described in FIG.

【0014】つぎに、第2発明を、双ロール鋳造法によ
り行う例を図3に示す。まずスカルメルト法について説
明する。図3(a)のように、チタンまたはチタン合金
の原料6を銅鋳型ルツボ37に入れ、誘導加熱コイル3
8により真空中で高周波誘導加熱して溶解し、(b)の
ように溶湯3とする。銅鋳型ルツボ37を冷却すると
(c)のようにチタンまたはチタン合金は周囲から凝固
する。このとき銅鋳型ルツボ37を揺動させながら冷却
することにより、銅鋳型ルツボ37のエッジまでチタン
またはチタン合金で覆われ、チタンルツボ39が形成さ
れる(スカル法)。そして(d)のように溶湯3を取出
し、このチタンルツボ39(スカル)に、製造すべきチ
タンまたはチタン合金の原料6を装入し、扉14から置
換室10に入れ真空排気する。扉15を開き、溶解室8
に入れて真空中で高周波誘導加熱により原料6を溶解す
る。
Next, FIG. 3 shows an example in which the second invention is carried out by the twin roll casting method. First, the skull melt method will be described. As shown in FIG. 3A, the raw material 6 of titanium or titanium alloy is put into the copper mold crucible 37, and the induction heating coil 3
High-frequency induction heating is performed in a vacuum by means of 8 to melt, and a molten metal 3 is obtained as shown in FIG. When the copper mold crucible 37 is cooled, titanium or titanium alloy solidifies from the surroundings as shown in (c). At this time, by cooling while swinging the copper mold crucible 37, the edge of the copper mold crucible 37 is covered with titanium or a titanium alloy, and the titanium crucible 39 is formed (skull method). Then, as shown in (d), the molten metal 3 is taken out, the titanium crucible 39 (skull) is charged with the raw material 6 of titanium or titanium alloy to be produced, and the raw material 6 is put into the substitution chamber 10 through the door 14 and evacuated. Open the door 15 and melt chamber 8
And the raw material 6 is melted by high-frequency induction heating in vacuum.

【0015】このとき、誘導加熱コイル38には、コイ
ルの中心部が加熱される条件で通電すると、チタンの熱
伝導がわるいことからチタンルツボ39は溶解せず、不
純物の混入が避けられる。チタンルツボ39を傾けて溶
湯3をタンディッシュ26に注入し、空のチタンルツボ
39は扉20を開いて置換室12に入れ、扉21を開け
て取出し、再度原料6を装入し、置換室10に入れて繰
返し使用することができる。なお、スカルメルト法によ
る溶解を、不活性ガス雰囲気中で、アーク溶解により行
うこともできるが、電極から不純物元素が混入するおそ
れがあるので、本発明では不採用とする。
At this time, when the induction heating coil 38 is energized under the condition that the central portion of the coil is heated, the titanium crucible 39 is not melted because the heat conduction of titanium is poor, and the mixing of impurities is avoided. The titanium crucible 39 is tilted to inject the molten metal 3 into the tundish 26, and the empty titanium crucible 39 opens the door 20 and puts it in the substitution chamber 12, opens the door 21 and takes it out, and again charges the raw material 6 into the substitution chamber 10. It can be put in and used repeatedly. It should be noted that the melting by the skull melt method can be performed by arc melting in an inert gas atmosphere, but it is not adopted in the present invention because an impurity element may be mixed from the electrode.

【0016】タンディッシュ26内の溶湯3は第1発明
と同様に、堰27を経て双ロール28により鋳造してス
トリップ4を製造してもよく、また、図2のように冷却
鋳型32に注入して薄肉スラブ7としインラインミル3
3で圧延してストリップ4を製造してもよい。ストリッ
プ4の圧延については、上記第1発明と同様に行うこと
ができる。
The molten metal 3 in the tundish 26 may be cast by the twin rolls 28 through the weir 27 to produce the strip 4 as in the first invention, and may be poured into the cooling mold 32 as shown in FIG. To make thin slab 7 and in-line mill 3
The strip 4 may be manufactured by rolling at 3. The strip 4 can be rolled in the same manner as in the first invention.

【0017】本発明法により製造することのできる材料
は、通常の商用純チタンのほか、各種チタン合金があ
る。前述のように、従来は成分偏析等により溶解が困難
であったFe,Cr,Mnなど分配係数の小さな元素を
添加した原料も、本発明によれば、連続的に溶解するの
で、均一な成分のものが安定して溶解できる。また、溶
湯から直接ストリップを製造するか、あるいは薄肉スラ
ブを鋳造した後、インラインミルで圧延してストリップ
を製造するので、熱間加工性の問題も生じない。したが
って、本発明によると、従来は鋳造性あるいは熱間加工
性が劣悪なため製造することが極めて困難であったつぎ
のようなチタン合金の圧延材が、製造歩留りよく、安定
して製造できる。 (1) Ti−5Nb−5Fe−3Al (2) Ti−6Al−2Sn−2Cr−2Fe−1M
o (3) Ti−10V−2Fe−3Al (4) Ti−8Al−1Nb−1Mo−1V (5) Ti−20Al−5Nb−5V−1Fe このようなストリップを圧延して得られた製品は、幅方
向および長さ方向の成分および材質が均質である。ま
た、製造工程においては、スケールロスや先後端のクロ
ップが少なく製造歩留りが高い。
The materials that can be produced by the method of the present invention include various commercial titanium alloys in addition to ordinary commercial pure titanium. As described above, according to the present invention, a raw material to which an element having a small distribution coefficient such as Fe, Cr, and Mn, which has been difficult to dissolve due to segregation of components, is dissolved continuously according to the present invention. Can be dissolved stably. Further, since the strip is manufactured directly from the molten metal or the thin slab is cast and then rolled by an in-line mill to manufacture the strip, there is no problem of hot workability. Therefore, according to the present invention, the following rolled titanium alloy material, which has been extremely difficult to manufacture due to poor castability or hot workability, can be manufactured stably with good manufacturing yield. (1) Ti-5Nb-5Fe-3Al (2) Ti-6Al-2Sn-2Cr-2Fe-1M
o (3) Ti-10V-2Fe-3Al (4) Ti-8Al-1Nb-1Mo-1V (5) Ti-20Al-5Nb-5V-1Fe The product obtained by rolling such a strip has a width The direction and length components and materials are homogeneous. Further, in the manufacturing process, there is little scale loss and front and rear end crops, and the manufacturing yield is high.

【0018】[0018]

【実施例】【Example】

(本発明例1) Ti−5Fe−5Nb−3Alの組成
(重量%)を目標として配合した粉末原料を、冷間静水
圧プレスして電極棒を作成し、アルゴンガス雰囲気のハ
ース炉で溶解し、直径50mmの棒材を鋳造した。図1に
示すような装置において、この棒材を電極棒1としてア
ルゴンガス雰囲気でプラズマ溶解し、双ロール法でスト
リップを製造した。プラズマトーチ24および25は、
ともに270kWのものを使用し、タンディッシュ26
内の温度を1510℃に保持した。双ロール28は銅製
で内部を水冷とし、鋳造速度0.5m/分で、板厚3m
m、板幅600mmのストリップ4を鋳造した。
(Invention Example 1) A powder raw material having a composition of Ti-5Fe-5Nb-3Al (weight%) as a target was cold isostatically pressed to prepare an electrode rod, which was melted in a hearth furnace in an argon gas atmosphere. A bar material having a diameter of 50 mm was cast. In the apparatus as shown in FIG. 1, this rod was used as the electrode rod 1 and plasma-melted in an argon gas atmosphere to produce a strip by the twin roll method. Plasma torches 24 and 25
Both used 270 kW, tundish 26
The internal temperature was maintained at 1510 ° C. The twin roll 28 is made of copper, the inside is water-cooled, the casting speed is 0.5 m / min, and the plate thickness is 3 m.
A strip 4 having m and a plate width of 600 mm was cast.

【0019】冷却ガスノズル30からアルゴンガスを吹
き付け、コイラー31による巻取り温度を650℃に制
御した。プラズマ切断機からなるカッター34でストリ
ップ4を切断し、ストリップコイル5を置換室11を経
てアルゴンガス雰囲気の保定炉13に装入した。装入温
度は750℃であり、保定炉13からの抽出温度800
℃まで20分保定し、この間の加熱はしなかった。抽出
後、直ちに大気中にて、板厚1.5mmまで熱間圧延して
圧延材を製造した。圧延材の分析結果は表1のとおりで
あり、トップ(T)、ミドル(M)、ボトム(B)各片
とも偏析のない均一な組成からなる目標成分の材料が得
られた。また、熱間圧延後、放冷した材料、および放冷
後850℃で1時間加熱の溶体化後、水冷し、550℃
で8時間の時効処理をした材料の機械的性質は、表2に
示すとおりであり、溶体化および時効処理により高強度
材が得られた。なお、表中のσは引張強さ、σ0.2
0.2%耐力、εlは伸びを示す。
Argon gas was blown from the cooling gas nozzle 30 and the coiling temperature by the coiler 31 was controlled to 650 ° C. The strip 4 was cut by a cutter 34 composed of a plasma cutting machine, and the strip coil 5 was loaded into the retaining furnace 13 in an argon gas atmosphere through the displacement chamber 11. The charging temperature is 750 ° C, and the extraction temperature from the retention furnace 13 is 800
The temperature was kept at 20 ° C. for 20 minutes, and heating was not performed during this period. Immediately after the extraction, the rolled material was manufactured by hot rolling in the air to a plate thickness of 1.5 mm. The results of analysis of the rolled material are shown in Table 1, and a target component material having a uniform composition without segregation was obtained in each of the top (T), middle (M), and bottom (B) pieces. In addition, after hot rolling, the material is allowed to cool, and after being left to cool, it is heated at 850 ° C. for 1 hour to be a solution, and then cooled with water to 550 ° C.
The mechanical properties of the material that had been aged for 8 hours were as shown in Table 2, and a high strength material was obtained by solution treatment and aging treatment. In the table, σ B is tensile strength, σ 0.2 is 0.2% proof stress, and εl is elongation.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】(本発明例2) Ti−10V−2Fe−
3Alの組成(重量%)を持つ板の端材(スクラップ)
を、図3に示す真空中の高周波誘導加熱によるスカル炉
中で溶解し、双ロール法を用いてストリップを製造し
た。双ロール28は銅製の内部を水冷とし、鋳造速度
0.5m/分で、板厚3mm、板幅600mmのストリップ
4を鋳造した。冷却ガスノズル30から、アルゴンガス
を吹き付け、コイラー31による巻取温度を700℃に
制御した。
(Invention Example 2) Ti-10V-2Fe-
Plate scraps (scrap) with a composition of 3Al (wt%)
Was melted in a skull furnace by high-frequency induction heating in vacuum shown in FIG. 3, and a strip was manufactured using a twin roll method. The twin roll 28 was made of copper and was water-cooled inside, and the strip 4 having a plate thickness of 3 mm and a plate width of 600 mm was cast at a casting speed of 0.5 m / min. Argon gas was blown from the cooling gas nozzle 30 to control the coiling temperature by the coiler 31 at 700 ° C.

【0023】プラズマ切断機からなるカッター34でス
トリップ4を切断し、ストリップコイル5を、置換室1
1を経てアルゴンガス雰囲気の保定炉13に装入した。
装入温度は750℃であり、保定炉13からの抽出温度
800℃まで20分間保定した。抽出後、直ちに大気中
にて1.5mmまで熱間圧延し圧延材を製造した。圧延材
の分析結果は、表3のとおりで、トップ(T)、ミドル
(M)、ボトム(B)各片とも偏析のない均一組成から
なる材料が得られた。
The strip 4 is cut by the cutter 34, which is a plasma cutting machine, and the strip coil 5 is replaced with the replacement chamber 1.
It was charged into the retaining furnace 13 in an argon gas atmosphere through 1.
The charging temperature was 750 ° C. and the extraction temperature from the retaining furnace 13 was maintained at 800 ° C. for 20 minutes. Immediately after extraction, the material was hot-rolled to 1.5 mm in the atmosphere to produce a rolled material. The results of analysis of the rolled material are shown in Table 3, and a material having a uniform composition without segregation was obtained in each of the top (T), middle (M), and bottom (B) pieces.

【0024】熱間圧延後、780℃で1時間加熱溶体化
し、空冷し、520℃で8時間の時効処理を施した材料
の機械的性質は、表4に示すとおりであり、溶体化およ
び時効処理により高強度・高靭性材が得られた。
After hot rolling, the solution was heated to a solution at 780 ° C. for 1 hour, air-cooled, and aged for 8 hours at 520 ° C. The mechanical properties of the material are shown in Table 4. A high strength and high toughness material was obtained by the treatment.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】(本発明例3) 本発明例2と同様の方法
により、 Ti−6Al−2Sn−2Cr−2Fe−1Mo Ti−8Al−1Nb−1Mo−1V Ti−20Al−5Nb−5V−1Fe の、3種類のチタン合金をスカル溶解し、双ロール法を
用いてストリップを製造した。板厚3mm、板幅600mm
のストリップ材を鋳造後、プラズマ切断機からなるカッ
ター34でストリップ4を切断し、ストリップコイル5
を、置換室11を経てアルゴンガス雰囲気の保定炉13
に装入した。装入温度は750℃であり、保定炉13か
らの抽出温度800℃まで20分間保定した。抽出後、
直ちに大気中にて1.5mmまで熱間圧延し圧延材を製造
した。圧延材の分析結果は表5〜表7のとおりで、トッ
プ(T)、ミドル(M)、ボトム(B)各片とも偏析の
ない均一組成からなる材料が得られた。また、熱間圧延
後放冷した材料および各種熱処理を行った材料の機械的
性質は、表8〜表10に示すように、優れたものであっ
た。
(Invention Example 3) Ti-6Al-2Sn-2Cr-2Fe-1Mo Ti-8Al-1Nb-1Mo-1V Ti-20Al-5Nb-5V-1Fe was prepared by the same method as in Invention Example 2. Three types of titanium alloys were skull-melted and a strip was manufactured using a twin roll method. Board thickness 3 mm, board width 600 mm
After casting the strip material, the strip 4 is cut by the cutter 34 composed of a plasma cutting machine, and the strip coil 5 is cut.
Through the substitution chamber 11 and a holding furnace 13 in an argon gas atmosphere.
Charged into. The charging temperature was 750 ° C. and the extraction temperature from the retaining furnace 13 was maintained at 800 ° C. for 20 minutes. After extraction,
Immediately, hot rolling was performed to 1.5 mm in the atmosphere to produce a rolled material. The analysis results of the rolled material are shown in Tables 5 to 7, and the top (T), middle (M), and bottom (B) pieces each had a material having a uniform composition without segregation. Further, as shown in Tables 8 to 10, the mechanical properties of the material that was allowed to cool after hot rolling and the material that was subjected to various heat treatments were excellent.

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】[0030]

【表7】 [Table 7]

【0031】[0031]

【表8】 [Table 8]

【0032】[0032]

【表9】 [Table 9]

【0033】[0033]

【表10】 [Table 10]

【0034】(本発明例4) 純チタン板のスクラップ
を用い、アルゴンガス雰囲気中でのプラズマトーチを用
いたハース炉で溶解し、直径50mmの棒材とした。図1
に示すような装置において、この棒材を電極棒として、
再度プラズマ溶解し、双ロール法でストリップを製造し
た。プラズマトーチ24および25はともに270kW
のものを用い、タンディッシュ26内の温度を1700
℃に保持した。双ロール28は銅製で内部を水冷とし、
鋳造速度0.6m/分で板厚4mm、板幅600mmのスト
リップ4を鋳造した。
(Inventive Example 4) Using a scrap of pure titanium plate, it was melted in a hearth furnace using a plasma torch in an argon gas atmosphere to obtain a bar material having a diameter of 50 mm. Figure 1
In the device as shown in, this rod is used as an electrode rod,
Plasma melting was performed again, and a strip was manufactured by the twin roll method. Plasma torches 24 and 25 are both 270 kW
The temperature in the tundish 26 is set to 1700
Hold at ℃. The twin roll 28 is made of copper and the inside is water-cooled,
A strip 4 having a plate thickness of 4 mm and a plate width of 600 mm was cast at a casting speed of 0.6 m / min.

【0035】冷却ガスノズル30からアルゴンガスを吹
き付け、コイラー31による巻取温度を600℃に制御
した。プラズマ切断機からなるカッター34でストリッ
プ4を切断し、ストリップコイル5を置換室11を経て
アルゴンガス雰囲気の保定炉13に装入した。装入温度
は700℃であり、保定炉からの抽出温度は800℃
で、抽出後、直ちに大気中にて1.5mmまで熱間圧延し
圧延材を製造した。圧延後、650℃で30分間焼鈍し
た。この圧延材の分析結果は表11のとおりであり、含
有元素の鋳造長さ方向でのバラツキが非常に少ないこと
がわかる。なお成分分析の試料は、図4に示す鋳片位置
から採取したものである。
Argon gas was blown from the cooling gas nozzle 30 to control the coiling temperature of the coiler 31 at 600 ° C. The strip 4 was cut by a cutter 34 composed of a plasma cutting machine, and the strip coil 5 was loaded into the retaining furnace 13 in an argon gas atmosphere through the displacement chamber 11. The charging temperature is 700 ° C, and the extraction temperature from the retaining furnace is 800 ° C.
Then, immediately after extraction, hot rolling was performed to 1.5 mm in the atmosphere to produce a rolled material. After rolling, it was annealed at 650 ° C. for 30 minutes. The results of analysis of this rolled material are shown in Table 11, and it can be seen that there is very little variation in the contained elements in the casting length direction. The sample for the component analysis was taken from the slab position shown in FIG.

【0036】板厚1.5mmの圧延−焼鈍板を酸洗後、タ
ンデム圧延機を用いて、圧下率50%の冷間圧延を行
い、0.7mmの板を製造した。この冷延板を650℃で
30分間焼鈍して、機械的性質を調べた結果を表12に
示す。従来工程材は、真空アーク溶解−鋳造(円柱ビレ
ット)−分塊−熱延−冷延を経て製造したものであり、
本発明工程材は、同様の成分系の従来工程材の機械的性
質とほとんど同じ水準を示すものであった。
A rolled-annealed plate having a plate thickness of 1.5 mm was pickled, and then cold-rolled at a rolling reduction of 50% using a tandem rolling machine to manufacture a 0.7 mm plate. The cold rolled sheet is annealed at 650 ° C. for 30 minutes and the mechanical properties are examined. The results are shown in Table 12. Conventional process material is manufactured through vacuum arc melting-casting (cylindrical billet) -lumping-hot rolling-cold rolling,
The process material of the present invention showed almost the same level as the mechanical properties of the conventional process material having the same component system.

【0037】[0037]

【表11】 [Table 11]

【0038】[0038]

【表12】 [Table 12]

【0039】[0039]

【発明の効果】本発明によれば、チタンまたはチタン合
金圧延材の製造において、不純物元素および合金元素の
偏析が軽減され、熱間加工性の問題も解決されるので、
従来は鋳造性あるいは熱間加工性が劣悪なため製造する
ことが極めて困難であった成分系のストリップが、製造
歩留りよく、安定して製造できる。これを圧延して得ら
れた製品は、幅方向および長さ方向の成分および材質が
均質である。また、製造工程においては、スケールロス
や先後端のクロップが少なく製造歩留りが高い。さらに
工程管理の簡易化、省エネ等が達成される。
EFFECTS OF THE INVENTION According to the present invention, segregation of impurity elements and alloy elements is reduced in the production of rolled titanium or titanium alloy, and the problem of hot workability is solved.
The component-based strip, which has been extremely difficult to manufacture due to poor castability or hot workability in the past, can be manufactured stably with good manufacturing yield. The product obtained by rolling this is homogeneous in the components and materials in the width direction and the length direction. Further, in the manufacturing process, there is little scale loss and front and rear end crops, and the manufacturing yield is high. Furthermore, simplification of process control and energy saving are achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1発明を実施する装置の例を示す図
である。
FIG. 1 is a diagram showing an example of an apparatus for carrying out a first invention of the present invention.

【図2】本発明の第1発明を実施する装置の別の例を示
す図である。
FIG. 2 is a diagram showing another example of an apparatus for carrying out the first invention of the present invention.

【図3】本発明の第2発明を実施する装置の例を示す図
である。
FIG. 3 is a diagram showing an example of an apparatus for carrying out a second invention of the present invention.

【図4】本発明の実施例における成分分析用試料の採取
位置を示す図である。
FIG. 4 is a diagram showing a sampling position of a sample for component analysis in an example of the present invention.

【符号の説明】[Explanation of symbols]

1,2:電極棒 3:溶湯 4:ストリップ 5:ストリップコイル 6:原料 7:薄肉スラブ 8:溶解室 9:鋳造室 10,11,12:置換室 13:保定炉 14〜21:扉 22:搬送ローラー 23:溶接トーチ 24,25:プラズマトーチ 26:タンディッシュ 27:堰 28:双ロール 29:ピンチローラー 30:冷却ガスノズル 31:コイラー 32:冷却鋳型 33:インラインミル 34:カッター 35:ホッパー 36:原料装入管 37:銅鋳型ルツボ 38:誘導加熱コイル 39:チタンルツボ 1,2: Electrode rod 3: Molten metal 4: Strip 5: Strip coil 6: Raw material 7: Thin slab 8: Melting chamber 9: Casting chamber 10, 11, 12: Replacement chamber 13: Restoration furnace 14-21: Door 22: Conveyor roller 23: Welding torch 24, 25: Plasma torch 26: Tundish 27: Weir 28: Twin roll 29: Pinch roller 30: Cooling gas nozzle 31: Coiler 32: Cooling mold 33: In-line mill 34: Cutter 35: Hopper 36: Raw material charging pipe 37: Copper mold crucible 38: Induction heating coil 39: Titanium crucible

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22D 11/12 A 7362−4E C22B 9/22 C22C 14/00 Z C22F 1/18 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B22D 11/12 A 7362-4E C22B 9/22 C22C 14/00 Z C22F 1/18 H

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 チタンまたはチタン合金を不活性ガス雰
囲気中でプラズマ溶解し、引続き不活性ガス雰囲気中に
て連続鋳造によりストリップを製造し、ついで該ストリ
ップを圧延することを特徴とするチタンまたはチタン合
金圧延材の製造方法。
1. Titanium or titanium, characterized in that titanium or a titanium alloy is plasma-melted in an inert gas atmosphere, a strip is subsequently produced by continuous casting in an inert gas atmosphere, and then the strip is rolled. Manufacturing method of rolled alloy material.
【請求項2】 チタンまたはチタン合金を真空中で高周
波誘導加熱を熱源とするスカルメルト法により溶解し、
引続き不活性ガス雰囲気中にて連続鋳造によりストリッ
プを製造し、ついで該ストリップを圧延することを特徴
とするチタンまたはチタン合金圧延材の製造方法。
2. Titanium or a titanium alloy is melted in a vacuum by a skull melt method using high frequency induction heating as a heat source,
A method for producing a titanium or titanium alloy rolled material, which comprises continuously producing a strip by continuous casting in an inert gas atmosphere, and then rolling the strip.
【請求項3】 双ロール鋳造法により厚さ1〜5mmのス
トリップを製造することを特徴とする請求項1または請
求項2記載のチタンまたはチタン合金圧延材の製造方
法。
3. The method for producing a rolled titanium or titanium alloy material according to claim 1, wherein a strip having a thickness of 1 to 5 mm is produced by a twin roll casting method.
【請求項4】 鋳造したストリップの顕熱を保持して熱
間圧延することを特徴とする請求項3記載のチタンまた
はチタン合金圧延材の製造方法。
4. The method for producing a rolled titanium or titanium alloy material according to claim 3, wherein the sensible heat of the cast strip is retained and hot-rolled.
【請求項5】 鋳造したストリップを冷間圧延すること
を特徴とする請求項3記載のチタンまたはチタン合金圧
延材の製造方法。
5. The method for producing a titanium or titanium alloy rolled material according to claim 3, wherein the cast strip is cold-rolled.
JP5263789A 1993-10-21 1993-10-21 Production of ti or ti alloy rolled stock Pending JPH07118773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5263789A JPH07118773A (en) 1993-10-21 1993-10-21 Production of ti or ti alloy rolled stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5263789A JPH07118773A (en) 1993-10-21 1993-10-21 Production of ti or ti alloy rolled stock

Publications (1)

Publication Number Publication Date
JPH07118773A true JPH07118773A (en) 1995-05-09

Family

ID=17394284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5263789A Pending JPH07118773A (en) 1993-10-21 1993-10-21 Production of ti or ti alloy rolled stock

Country Status (1)

Country Link
JP (1) JPH07118773A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158098A (en) * 1998-12-01 2000-06-13 Shin Etsu Chem Co Ltd Apparatus for producing hydrogen-storage alloy and production thereof
JP2002126858A (en) * 2000-10-23 2002-05-08 Ulvac Japan Ltd Cooling vessel for sheetlike cast piece
JP2004512953A (en) * 2000-09-19 2004-04-30 メイン・マネジメント・インスピレーション・アクチェンゲゼルシャフト Sheet metal casting machine for the production of sheet metal
KR100920638B1 (en) * 2002-12-23 2009-10-08 주식회사 포스코 Methods of manufacturing non-ferrous metal strip sheet with twin roll strip casting apparatus
JP2013052417A (en) * 2011-09-05 2013-03-21 Kobe Steel Ltd Casting mold for continuous casting of ingot of titanium or titanium alloy, and continuous casting apparatus with the same
WO2013151061A1 (en) 2012-04-02 2013-10-10 株式会社神戸製鋼所 Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same
JP2014172093A (en) * 2013-03-05 2014-09-22 Rti Internat Metals Inc Method of making long ingots by cutting in furnace
JP2014172092A (en) * 2013-03-05 2014-09-22 Rti Internat Metals Inc Continuous casting furnace for long ingot casting
CN110947764A (en) * 2019-12-03 2020-04-03 西安庄信新材料科技有限公司 Titanium strip coil slitting method
US20200376528A1 (en) * 2016-03-03 2020-12-03 Michael Thomas Stawovy Fabrication of metallic parts by additive manufacturing
CN112458322A (en) * 2020-10-27 2021-03-09 新疆湘润新材料科技有限公司 Preparation method for improving uniformity of oxygen elements of titanium and titanium alloy ingots
CN113210576A (en) * 2021-05-17 2021-08-06 上海大学 Method and device for producing metal thin strip
CN113272085A (en) * 2018-12-13 2021-08-17 赛峰飞机发动机公司 Semi-continuous casting of ingots by compressing the metal during solidification
CN114178456A (en) * 2021-11-26 2022-03-15 湖南金天钛业科技有限公司 Forging processing method for oversized titanium alloy forging stock

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158098A (en) * 1998-12-01 2000-06-13 Shin Etsu Chem Co Ltd Apparatus for producing hydrogen-storage alloy and production thereof
JP2004512953A (en) * 2000-09-19 2004-04-30 メイン・マネジメント・インスピレーション・アクチェンゲゼルシャフト Sheet metal casting machine for the production of sheet metal
JP2002126858A (en) * 2000-10-23 2002-05-08 Ulvac Japan Ltd Cooling vessel for sheetlike cast piece
JP4527868B2 (en) * 2000-10-23 2010-08-18 株式会社アルバック Slab cooling vessel
KR100920638B1 (en) * 2002-12-23 2009-10-08 주식회사 포스코 Methods of manufacturing non-ferrous metal strip sheet with twin roll strip casting apparatus
JP2013052417A (en) * 2011-09-05 2013-03-21 Kobe Steel Ltd Casting mold for continuous casting of ingot of titanium or titanium alloy, and continuous casting apparatus with the same
WO2013151061A1 (en) 2012-04-02 2013-10-10 株式会社神戸製鋼所 Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same
US9156081B2 (en) 2012-04-02 2015-10-13 Kobe Steel, Ltd. Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same
JP2014172092A (en) * 2013-03-05 2014-09-22 Rti Internat Metals Inc Continuous casting furnace for long ingot casting
JP2014172093A (en) * 2013-03-05 2014-09-22 Rti Internat Metals Inc Method of making long ingots by cutting in furnace
US20200376528A1 (en) * 2016-03-03 2020-12-03 Michael Thomas Stawovy Fabrication of metallic parts by additive manufacturing
US11554397B2 (en) * 2016-03-03 2023-01-17 H.C. Starck Solutions Coldwater LLC Fabrication of metallic parts by additive manufacturing
US11919070B2 (en) 2016-03-03 2024-03-05 H.C. Starck Solutions Coldwater, LLC Fabrication of metallic parts by additive manufacturing
CN113272085A (en) * 2018-12-13 2021-08-17 赛峰飞机发动机公司 Semi-continuous casting of ingots by compressing the metal during solidification
CN113272085B (en) * 2018-12-13 2023-11-24 赛峰飞机发动机公司 Semi-continuous casting of ingots by compression of metal during solidification
CN110947764A (en) * 2019-12-03 2020-04-03 西安庄信新材料科技有限公司 Titanium strip coil slitting method
CN112458322A (en) * 2020-10-27 2021-03-09 新疆湘润新材料科技有限公司 Preparation method for improving uniformity of oxygen elements of titanium and titanium alloy ingots
CN113210576A (en) * 2021-05-17 2021-08-06 上海大学 Method and device for producing metal thin strip
CN114178456A (en) * 2021-11-26 2022-03-15 湖南金天钛业科技有限公司 Forging processing method for oversized titanium alloy forging stock

Similar Documents

Publication Publication Date Title
US7478665B2 (en) Method of manufacturing magnesium alloy material
US6027585A (en) Titanium-tantalum alloys
JPH07118773A (en) Production of ti or ti alloy rolled stock
US5976279A (en) For heat treatable aluminum alloys and treatment process for making same
CN111411285A (en) Al and Ti microalloyed high-strength and high-toughness medium-entropy alloy and preparation method thereof
US5311655A (en) Method of manufacturing titanium-aluminum base alloys
JP2021520059A (en) Manufacturing method of 1XXX cathode foil for aluminum electrolytic capacitors
US5985058A (en) Heat treatment process for aluminum alloys
US6579387B1 (en) Continuous casting process for producing aluminum alloys having low earing
KR20030048072A (en) Method for producing a magnesium hot strip
KR20120079638A (en) Mg alloy and the manufacturing method of the same
CA2258542C (en) Process for producing aluminum alloy can body stock
CN115852267A (en) High-strength high-conductivity low-expansion iron-nickel-molybdenum alloy wire and production method thereof
KR900006690B1 (en) Method of producing thin sheet of high si-fe alloy
JP2007063621A (en) Sputtering target material, method for producing aluminum material for sputtering target material, and aluminum material for sputtering target material
US20200199711A1 (en) Processes for producing superalloys and superalloys obtained by the processes
JPH06287661A (en) Production of smelted material of refractory metal
KR20170045273A (en) Cast titanium slab for use in hot rolling and unlikely to exhibit surface defects, and method for producing same
CN114905010A (en) Nickel-based alloy wire and preparation method thereof
US20030173003A1 (en) Continuous casting process for producing aluminum alloys having low earing
JPH0995743A (en) Production of smelted metallic material, smelted metallic material and electron beam melting equipment
NO143866B (en) PROCEDURE FOR CONTINUOUS PREPARATION OF BODY MATERIAL OF AN ALUMINUM ALLOY
Hong et al. Hot deformation behaviour and ledeburite refinement mechanism for hypoeutectoid low alloy white cast irons
JPH0366387B2 (en)
RU2051985C1 (en) Method for manufacture of foil from aluminum-silicon alloys