JPH07118086B2 - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH07118086B2
JPH07118086B2 JP61293280A JP29328086A JPH07118086B2 JP H07118086 B2 JPH07118086 B2 JP H07118086B2 JP 61293280 A JP61293280 A JP 61293280A JP 29328086 A JP29328086 A JP 29328086A JP H07118086 B2 JPH07118086 B2 JP H07118086B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser device
light
prism
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61293280A
Other languages
Japanese (ja)
Other versions
JPS63146241A (en
Inventor
英廣 久米
芳幸 松本
洋 吉利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61293280A priority Critical patent/JPH07118086B2/en
Publication of JPS63146241A publication Critical patent/JPS63146241A/en
Publication of JPH07118086B2 publication Critical patent/JPH07118086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学ヘッド装置に係り、特に利得ガイド型半導
体レーザ素子の非点隔差補正が施された光学ヘッドの改
良に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head device, and more particularly to improvement of an optical head in which an astigmatic difference correction of a gain guide type semiconductor laser device is performed.

〔発明の概要〕[Outline of Invention]

本発明の光学ヘッド装置は光検出手段が形成された半導
体基板と、上記光検出手段の受光面に接して配され傾斜
した半透過反射面を有する光路設定用プリズムと、上記
プリズムの上記傾斜した半透過反射面に入射するレーザ
光の光軸を半導体基板上で所定角度だけ傾けて配設した
半導体レーザ素子とを具備し、上記半導体レーザ素子の
活性層の面に対して垂直な面内に上記プリズムの傾斜し
た半透過反射面で反射される角度でレーザ光が出射され
る半導体レーザ装置と、上記半導体レーザ装置を内部に
収容するパッケージと、上記パッケージに形成され、上
記半導体レーザ装置の上記半導体レーザ素子から出射し
たレーザ光を通過させると共に、上記パッケージのシー
ル窓とし、かつ上記半導体レーザ素子の非点隔差を補正
させる平面透明板とを具備したものである。
The optical head device of the present invention includes a semiconductor substrate on which light detecting means is formed, an optical path setting prism having a semi-transmissive reflecting surface that is arranged in contact with the light receiving surface of the light detecting means, and the tilted prism. A semiconductor laser device in which the optical axis of the laser light incident on the semi-transmissive reflection surface is inclined on the semiconductor substrate by a predetermined angle, and the semiconductor laser device is provided in a plane perpendicular to the surface of the active layer of the semiconductor laser device. A semiconductor laser device that emits laser light at an angle that is reflected by an inclined semi-transmissive reflective surface of the prism, a package that houses the semiconductor laser device therein, and a package formed in the package. A flat transparent plate that allows the laser light emitted from the semiconductor laser element to pass therethrough, serves as a seal window for the package, and corrects the astigmatic difference of the semiconductor laser element. It is those provided with the.

〔従来の技術〕[Conventional technology]

従来から光ディスクに形成した記録情報ビットを光学的
に検出するための光学ヘッド装置では、光ディスクに光
学ヘッド装置からレーザ光を照射し、その反射光から記
録情報ビットを読み出すようにしている。
Conventionally, in an optical head device for optically detecting a recording information bit formed on an optical disc, the optical head device irradiates the optical disc with a laser beam and reads the recording information bit from the reflected light.

この様なレーザ光をディスクに照射するためのレーザ源
としては半導体レーザ素子が用いられている。この半導
体レーザ素子は発振スペクトルがマルチモードである利
得ガイド型と、シングルモードである屈折率ガイド型と
がある。利得ガイド型半導体レーザ素子はS/N、安定性
がよい反面、遠視野像が双峰性を示し、非点収差が大き
い欠点を有している。一方屈折率ガイド型半導体レーザ
素子は、遠視野像が単峰性で非点収差が小さい特長を有
する反面、モードホッピングノイズが多い欠点を有して
いる。
A semiconductor laser device is used as a laser source for irradiating the disk with such laser light. This semiconductor laser device is classified into a gain guide type having an oscillation spectrum of multiple modes and a refractive index guide type having a single mode of oscillation. The gain guide type semiconductor laser device has good S / N and stability, but has a drawback that the far-field image exhibits bimodal characteristics and large astigmatism. On the other hand, the refractive index guide type semiconductor laser device has the feature that the far-field image is unimodal and the astigmatism is small, but on the other hand, it has the drawback that the mode hopping noise is large.

戻り光や温度変化に対するS/Nの安定性を考慮すると、
マルチモード発振である利得ガイド型半導体レーザ素子
を用いることが有利であるが、遠視野像が双峰性で非点
収差が大きい欠点を改善する必要がある。今、マルチモ
ード型のレーザが非点収差を持つ理由を第5図で説明す
る。発振スペクトルがマルチモードの利得ガイド型半導
体レーザ素子(1)では、発光層である活性層(4)と
同一平面(XY平面)での発光点(9)の発光角θ と活
性層(4)と垂直な平面(ZY平面)での発光点(10)の
発光角θは互に大きく異なる。即ち、発光角θの発
光点(10)は半導体レーザ素子の壁開面である端面にあ
るが、発光角θ の発光点(9)はこの端面よりLだけ
隔たった奥にあり、この非点隔差はシングルモード発振
ではこのLの値はL=5〜6μmであるのに対しマルチ
モード発振の利得ガイド型半導体レーザ素子ではL=20
〜30μmと大きい。利得ガイド型半導体レーザ素子
(1)は、第5図に示すように、例えばn型GaAsよりな
る半導体の基板(2)上にn型AlxGa1-xAsよりなるクラ
ッド層(3)とP型AlxGa1-xAsよりなるクラッド層
(5)でp型のAly Ga1-yAsからなる活性層(4)を挟
み込み、クラッド層(5)上のP型のGaAsより成るキャ
ップ層(6)及び絶縁層(7)にストライプ状のキャビ
ティ部を形成し、このキャビティ部にテーパストライプ
電極(8)を形成する構成とされ、これにより低雑音の
マルチモード発振を維持させつつ、単峰性の遠視野像を
得、閾値電流密度を低減するようにしていた。
Considering the stability of S / N against return light and temperature change,
Gain-guided semiconductor laser device with multimode oscillation
Is advantageous, but the far-field image is bimodal and astigmatic.
There is a need to remedy the drawback of large aberrations. Now multi-mode
The reason why the cord-type laser has astigmatism is explained in FIG.
It Gain-guided semiconductor with multimode oscillation spectrum
In the body laser device (1), the active layer (4), which is a light emitting layer,
Light emission angle θ of light emitting point (9) on the same plane (XY plane) And live
Of the emission point (10) in the plane (ZY plane) perpendicular to the functional layer (4)
Emission angle θAre very different from each other. That is, the emission angle θFrom
The light spot (10) is on the end face, which is an open surface of the semiconductor laser device.
However, the emission angle θ The light emitting point (9) of is only L from this end face
Located as far away as possible, this astigmatic difference is single mode oscillation
Then, the value of L is L = 5-6 μm, whereas
L = 20 for a mode-guided gain-guided semiconductor laser device
It is as large as ~ 30μm. Gain-guided semiconductor laser device
(1) is, for example, made of n-type GaAs, as shown in FIG.
N-type Al on the semiconductor substrate (2)xGa1-xClass consisting of As
Dead layer (3) and P-type AlxGa1-xClad layer made of As
(5) p-type Aly Ga1-yThe active layer (4) made of As is sandwiched between
A cap made of P-type GaAs on the cladding layer (5).
Stripe-shaped cabinets on the top layer (6) and the insulating layer (7)
A tee is formed and a taper stripe is formed in this cavity.
The electrode (8) is formed so that low noise
A single-peaked far-field image while maintaining multi-mode oscillation
Then, the threshold current density was reduced.

次に、斜めガラスキャップを用いて非点隔差を補正する
ようにした従来の半導体レーザ装置について、第6図を
参照して説明する。(1)は利得ガイド型半導体レーザ
素子で、これからのレーザ光はキャップ(15)の閉蓋部
(20)に小窓を穿ち、例えば、平面状のガラス板からな
る斜め透明板(18)を小窓に覆った部分から、ディスク
の記録情報ピット上へ照射する。(14)はモニタ用受光
素子で、これは半導体レーザ素子(1)のディスクへの
照射面とは反対側の面から放出されるレーザ光を受けて
発振出力のモニタが成されている。ステム(11)は略円
板状のステムベース(13)とリング状部(19)からな
る。そのステムベース(13)には入出力ピン(12)が貫
通され、この入出力ピン(12)はこのステムベース(1
3)上に配設されたモニタ用の受光素子(14)の出力の
取り出し及び素子用ベース(17)に配設した半導体レー
ザ素子(1)への入力信号供給端子として利用される。
Next, a conventional semiconductor laser device in which an astigmatic difference is corrected by using an oblique glass cap will be described with reference to FIG. (1) is a gain guide type semiconductor laser device, and a laser beam from this is formed by forming a small window in the lid (20) of the cap (15) and, for example, an oblique transparent plate (18) made of a flat glass plate. The recorded information pits on the disc are irradiated from the portion covered by the small window. Reference numeral (14) is a light receiving element for monitoring, which monitors the oscillation output by receiving laser light emitted from the surface of the semiconductor laser element (1) opposite to the surface irradiated with the disk. The stem (11) comprises a substantially disc-shaped stem base (13) and a ring-shaped portion (19). The stem base (13) is penetrated by the input / output pin (12), and the input / output pin (12) is connected to the stem base (1).
3) The output of the monitor light receiving element (14) arranged above is taken out and used as an input signal supply terminal to the semiconductor laser element (1) arranged on the element base (17).

この様にディスクへ出射するレーザ光路上に、斜め透明
板(18)を配置することで発光角θの発光点(9)を
Lだけ前方に持って来る様にする。一般には平行平板ガ
ラスに点光源から放出された光速が斜めに入射すればXY
平面内の光とYZ平面内の光とではガラス通過後の発光点
が異なり、非点収差を生じることが知られている。この
原理を用いて斜め透明板で非点隔差をなくしている。
In this way, by disposing the oblique transparent plate (18) on the laser optical path emitted to the disc, the light emitting point (9) having the light emitting angle θ is brought forward by L. Generally, if the speed of light emitted from a point light source enters the parallel plate glass at an angle, then XY
It is known that the light in the plane and the light in the YZ plane have different emission points after passing through the glass, resulting in astigmatism. Using this principle, the oblique transparent plate eliminates the astigmatic difference.

第6図に示すモニタ用受光素子(14)及び利得ガイド型
半導体レーザ素子(1)、第6図には示されていないデ
ィスクからの戻り光を検出するための受光素子を半導体
基板上に1体に組み込んで、半導体レーザ装置を小型化
すると共に製造、調整作業の煩雑性を除去するようにし
た半導体レーザ装置(特願昭61−38576号)(本出願前
未公知)を本出願人は先に提案した。
A light receiving element for monitoring (14) and a gain guide type semiconductor laser element (1) shown in FIG. 6 and a light receiving element for detecting return light from a disk not shown in FIG. The applicant of the present invention has developed a semiconductor laser device (Japanese Patent Application No. 61-38576) (unknown prior to the present application) that is incorporated in the body to reduce the size of the semiconductor laser device and eliminate the complexity of manufacturing and adjustment work. I proposed earlier.

第7図はこの半導体レーザ装置の概要を示す斜視図で、
シリコン(Si)等からなる半導体基板(22)上にモニタ
用受光素子(14)と、ディスクからの戻りレーザ光を検
出する3分割された2組みの第1及び第2の受光素子群
(23),(24)を半導体製造技術で形成する。この複数
の3分割された受光素子群(23),(24)はトラッキン
グエラー、フォーカスエラー、RF信号を検出するために
利用される。
FIG. 7 is a perspective view showing the outline of this semiconductor laser device.
A monitor light receiving element (14) on a semiconductor substrate (22) made of silicon (Si) or the like, and two sets of first and second light receiving element groups (23) divided into three for detecting return laser light from a disk. ) And (24) are formed by semiconductor manufacturing technology. The plurality of light receiving element groups (23) and (24) divided into three are used to detect a tracking error, a focus error, and an RF signal.

これらモニタ受光素子(14)と複数の第1及び第2の受
光素子群(23,(24)間の基板(22)上に上述した利得
ガイド型の半導体レーザ素子(1)が配設され、更に受
光素子(23),(24)を覆う様に断面台形状の半透明反
射面(27)を有するプリズム(26)が基板(22)上に配
設されている。
The above-mentioned gain guide type semiconductor laser device (1) is arranged on the substrate (22) between the monitor light receiving device (14) and the plurality of first and second light receiving device groups (23, (24), Further, a prism (26) having a semitransparent reflecting surface (27) having a trapezoidal cross section is disposed on the substrate (22) so as to cover the light receiving elements (23) and (24).

第7図に示した半導体レーザ装置では、第8図の側面図
に示す様に半導体レーザ素子(1)から出射したレーザ
光(29)は、先づプリズム(26)の半透明反射面(27)
によって矢印で示すZ軸方向に反射される。この反射レ
ーザ光(30a)はディスク(28)面に集束され、ディス
クの記録情報ピット又はランドで反射された戻りレーザ
光(30b)は矢印に示す様に再びプリズム(26)の半透
明反射面(27)に入射し、プリズム(26)内を透過した
戻りレーザ光(31a)は第1の受光素子群(23)に入射
し、その一部はプリズム底面に形成した半透過反射膜及
び上面のミラー面によって反射され、プリズム内の戻り
レーザ光(31b)(31c)の如く、第2の受光素子群(2
4)に入射される。又、モニタ用受光素子(14)は半導
体レーザ素子(1)の反対面から出射されたレーザ光
(32)を受けて半導体レーザ素子(1)の発振状態など
のモニタがなされる。
In the semiconductor laser device shown in FIG. 7, the laser light (29) emitted from the semiconductor laser element (1) is, as shown in the side view of FIG. 8, the semitransparent reflection surface (27) of the prism (26). )
Is reflected in the Z-axis direction indicated by the arrow. The reflected laser light (30a) is focused on the surface of the disc (28), and the return laser light (30b) reflected by the recording information pits or lands of the disc is again a semi-transparent reflection surface of the prism (26) as shown by the arrow. The return laser light (31a) incident on (27) and transmitted through the prism (26) is incident on the first light receiving element group (23), and a part of the return laser light (31a) is formed on the bottom surface of the prism and the upper surface of the semi-transmissive reflective film. Of the second light receiving element group (2
It is incident on 4). The monitor light receiving element (14) receives the laser beam (32) emitted from the opposite surface of the semiconductor laser element (1) to monitor the oscillation state of the semiconductor laser element (1).

かかる第7図及び第8図に示した従来の半導体レーザ装
置(21)によると、半導体レーザ素子(1)から出射し
たレーザ光(29)の一部が半透過反射面(27)を通じて
破線で示す迷光(33)の様に直接プリズム(26)内に入
射して、直流オフセット信号がRF信号に重畳されて受光
素子(23),(24)の検出感度が低下すると共に検出誤
差が増大する。
According to the conventional semiconductor laser device (21) shown in FIG. 7 and FIG. 8, a part of the laser light (29) emitted from the semiconductor laser element (1) is broken line through the semi-transmissive reflection surface (27). Like the stray light (33) shown, it directly enters the prism (26), the DC offset signal is superimposed on the RF signal, and the detection sensitivity of the light receiving elements (23) and (24) decreases and the detection error increases. .

更に、第9図に示す様に、第7図及び第8図の半導体レ
ーザ装置(21)をステム(11)上に配設し、斜め透明板
(18)を設けたキャップ(15)でシールし、これをスペ
ーサ(37)等を介して、基台(36)に配設し、半導体レ
ーザ装置(21)から出射したレーザ光によって生ずる非
点隔差は斜め透明板(18)で補正後に折り返しミラー
(34)と対物レンズ(35)を介してディスク(28)のピ
ット上に焦点を結ばせる様にしている。
Further, as shown in FIG. 9, the semiconductor laser device (21) shown in FIGS. 7 and 8 is arranged on the stem (11) and sealed with a cap (15) provided with an oblique transparent plate (18). Then, this is arranged on the base (36) via the spacer (37), etc., and the astigmatic difference caused by the laser beam emitted from the semiconductor laser device (21) is corrected by the oblique transparent plate (18) and then folded back. The mirror (34) and the objective lens (35) are used to focus on the pit of the disc (28).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

第9図の従来の光学ヘッド装置は、キャップ(15)に斜
め透明板(18)を設けパッケージ内に半導体レーザ装置
(21)をシールするために、空間的に多くのスペースを
とり、半導体レーザ装置を小型化する場合の隘路となっ
ていた。
The conventional optical head device of FIG. 9 has a semiconductor laser device (21) provided with an oblique transparent plate (18) on the cap (15) to seal the semiconductor laser device (21) in the package, and thus a large space is provided. It was a bottleneck for downsizing the device.

本発明は叙上の欠点に鑑みなされたもので、その目的と
するところは小型化が可能なフラットパッケージ内に半
導体レーザ装置を収納し、フラットパッケージに設けた
平板ガラス、即ち平面透明板で非点隔差補正を行なうこ
との出来る光学ヘッド装置を得んとするものである。
The present invention has been made in view of the above drawbacks, and an object of the present invention is to store a semiconductor laser device in a flat package that can be miniaturized, and use a flat glass plate provided in the flat package, that is, a flat transparent plate. It is intended to obtain an optical head device capable of performing point difference correction.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は第1図及び第4図にその例が示されているよう
に光検出手段(14a)(23)(24)が形成された半導体
基板(22)と、この光学検出手段(14a)(23)(24)
の受光面に接して配され傾斜した半透過反射面(27)を
有する光路設定用プリズム(26)と、このプリズム(2
6)の傾斜した半透過反射面(27)に入射するレーザ光
(29)の光軸を半導体基板(22)上で所定角度だけ傾け
て配設した半導体レーザ素子(1)とを具備し、この半
導体レーザ素子(1)の活性層(4)の面に対して垂直
な面内にプリズム(26)の傾斜した半透過反射面(27)
で反射される角度でレーザ光(29)が出射される半導体
レーザ装置(21)と、この半導体レーザ装置(21)を内
部に収容するパッケージ(39)と、このパッケージ(3
9)に形成され、半導体レーザ装置(21)の半導体レー
ザ素子(1)から出射したレーザ光(29)を通過させる
と共にパッケージ(39)のシール窓とし、かつ半導体レ
ーザ素子(1)の非点隔差を補正させる平面透明板(4
0)とを具備したことを特徴とする光学ヘッド装置であ
る。
The present invention relates to a semiconductor substrate (22) on which photodetecting means (14a) (23) (24) are formed as shown in FIGS. 1 and 4 and its optical detecting means (14a). (23) (24)
An optical path setting prism (26) having an inclined semi-transmissive reflection surface (27) arranged in contact with the light receiving surface of the
And a semiconductor laser element (1) in which the optical axis of the laser beam (29) incident on the inclined semi-transmissive reflection surface (27) of 6) is inclined on the semiconductor substrate (22) by a predetermined angle. The semi-transmissive reflective surface (27) of the prism (26) inclined in a plane perpendicular to the surface of the active layer (4) of the semiconductor laser device (1).
A semiconductor laser device (21) that emits a laser beam (29) at an angle reflected by the semiconductor laser device, a package (39) that houses the semiconductor laser device (21) therein, and a package (3).
9) which allows the laser light (29) emitted from the semiconductor laser device (1) of the semiconductor laser device (21) to pass therethrough and also serves as a seal window of the package (39) and which is an astigmatism of the semiconductor laser device (1). Flat transparent plate (4
0) and the optical head device.

〔作用〕[Action]

かかる本発明によれば、半導体レーザ素子(1)から発
射されたレーザ光は、プリズム(26)の半透過反射面
(27)で反射して、半導体レーザ素子(1)の活性層
(4)に対して垂直な面内に向かい、半導体基板(22)
に対し平行に設けられた平面状透明板(40)を斜めに通
過することによって、半導体レーザ素子(1)から発射
されたレーザ光の非点隔差が補正される。
According to the present invention, the laser light emitted from the semiconductor laser device (1) is reflected by the semi-transmissive reflecting surface (27) of the prism (26) and the active layer (4) of the semiconductor laser device (1) is reflected. Semiconductor substrate (22) facing in a plane perpendicular to
By obliquely passing through the flat transparent plate (40) provided in parallel with, the astigmatic difference of the laser light emitted from the semiconductor laser element (1) is corrected.

〔実施例〕〔Example〕

以下、本発明の光学ヘッド装置の一実施例を第1図乃至
第4図について詳記する。
An embodiment of the optical head device of the present invention will be described below in detail with reference to FIGS.

第1図は本発明による光学ヘッド装置の半導体レーザ装
置の一例を示す斜視図、第2図は第1図の平面を示す光
路の模式図、第3図、A,B,Cはレーザ光の反射角を説明
するための半導体基板の平面図及び右側面図並に正面
図、第4図は本発明の光学ヘッド装置の再生/記録光路
を示す模式図である。
FIG. 1 is a perspective view showing an example of a semiconductor laser device of an optical head device according to the present invention, FIG. 2 is a schematic view of an optical path showing a plane of FIG. 1, and FIGS. 3, A, B and C show laser light. A plan view and a right side view of the semiconductor substrate for explaining the reflection angle, as well as a front view, and FIG. 4 are schematic views showing a reproducing / recording optical path of the optical head device of the present invention.

本発明による光学ヘッド装置は第1図及び第2図に示す
様に、シリコン等の半導体基板(22)にモニタ用受光素
子(14)とトラッキングサーボ又はフォーカスサーボ或
はRF信号を検出するためのPINダイオード等の第1及び
第2の受光素子群(23),(24)がIC製造技術で形成さ
れるが、第7図に示した従来技術とはそのパターン配置
位置が異なっている。即ち、半導体基板(22)の中心線
(41)に沿って受光素子(14a),(23),(24)が配
されるのではなく、受光素子(23),(24)配列方向と
モニタ用受光素子(14)の配列方向とが互に交叉する様
にパターニングされる。即ち、利得ガイド型半導体レー
ザ素子(1)の活性層(4)から放射されるレーザ光の
光軸と半導体基板(22)の中心線(41)とのなす角が所
定角度α°となる様に傾けて配置され、モニタ用受光素
子(14a)は傾けて配置した半導体レーザ素子(1)の
レーザ光の光軸上に配置される。又、プリズム(26)は
第7図で述べたと略同様のもので、その厚みは略0.3mm
程度で、その半透過反射面(27)は半導体基板(22)に
対しβ=45°の傾斜角を設けるを可とする。尚このプリ
ズム(26)の底面に形成される半透過反射面の形成パタ
ーンは第7図に示すものとは、受光素子(23)(24)と
モニタ用受光素子(14)部分の半透過反射面を除去した
部分のパターン位置が異なっている。第1及び第2の受
光素子群(23),(24)及びモニタ用受光素子(14a)
上にプリズム(26)を接着剤等で固定し、半導体レーザ
素子(1)からプリズム(26)の半透過反射面(27)に
レーザ光(29)を照射すると、その一部は反射レーザ光
(30a′)として反射されて、ディスク上に集束され
る。この反射レーザ光(30a′)は半導体基板(22)に
対し、上記角度α°と同じ傾きをもって出射する。ディ
スクに焦点が合された戻りレーザ光(30b′)はα°傾
いた位置からプリズム(26)の半透明反射面(27)に帰
って来るために、ここでプリズム(26)内に透過する戻
りレーザ光(31a′),(31b′),(31c′)の入射方
向は半導体レーザ素子(1)のレーザ光(29)の放射方
向と交叉する様な異なる方向となる。尚第2図で半導体
レーザ素子(1)からプリズム(26)の半透過反射面
(27)に照射したレーザ光(29)が半透過反射面(27)
を透過した迷光(33)は従来の第8図に示したものと異
なり直接受光素子(23),(24)に入射されないので直
流ドリフトを生じない、即ち本発明では迷光(33)の入
射方向に受光素子(23),(24)がないため、直流ドリ
フトの影響を避けることが出来る。又、半透過反射面を
透過した迷光(33)をモニタ用受光素子(14a)に与え
れば半導体レーザ素子(1)の発振状態をモニタするこ
とが可能である。この構成とすれば半導体基板(22)の
延在方向を短く出来る。又、第7図と同様に半導体レー
ザ素子(1)の後部に第2図の1点鎖線で示す様にモニ
タ用受光素子(14)を設けてもよい。
As shown in FIGS. 1 and 2, the optical head device according to the present invention is for detecting a monitor light receiving element (14) and a tracking servo or focus servo or RF signal on a semiconductor substrate (22) such as silicon. The first and second light receiving element groups (23) and (24) such as PIN diodes are formed by the IC manufacturing technique, but the pattern arrangement position is different from that of the conventional technique shown in FIG. That is, the light receiving elements (14a), (23), (24) are not arranged along the center line (41) of the semiconductor substrate (22), but the arrangement direction of the light receiving elements (23), (24) and the monitor. The light receiving elements (14) are patterned so as to intersect with each other. That is, the angle formed by the optical axis of the laser light emitted from the active layer (4) of the gain guide type semiconductor laser device (1) and the center line (41) of the semiconductor substrate (22) is a predetermined angle α °. The monitor light-receiving element (14a) is arranged on the optical axis of the laser light of the semiconductor laser element (1), which is arranged on a tilt. Further, the prism (26) is substantially the same as that described in FIG. 7, and its thickness is approximately 0.3 mm.
The semi-transmissive reflective surface (27) can be provided with an inclination angle of β = 45 ° with respect to the semiconductor substrate (22). The pattern of the semi-transmissive reflection surface formed on the bottom surface of the prism (26) is the same as that shown in FIG. 7 in that the semi-transmissive reflection of the light-receiving elements (23) (24) and the monitor light-receiving element (14). The pattern position of the part where the surface is removed is different. First and second light receiving element groups (23), (24) and monitor light receiving element (14a)
When the prism (26) is fixed on the top with an adhesive or the like, and the semiconductor laser element (1) irradiates the semi-transmissive reflective surface (27) of the prism (26) with laser light (29), part of it is reflected laser light. It is reflected as (30a ') and focused on the disc. The reflected laser light (30a ') is emitted to the semiconductor substrate (22) with the same inclination as the angle α °. The returning laser light (30b ') focused on the disk returns to the semitransparent reflecting surface (27) of the prism (26) from the position inclined by α °, and is transmitted there through the prism (26). The incident directions of the return laser beams (31a '), (31b') and (31c ') are different from each other so as to intersect with the emission direction of the laser beam (29) of the semiconductor laser device (1). In FIG. 2, the laser light (29) emitted from the semiconductor laser device (1) to the semi-transmissive reflective surface (27) of the prism (26) is the semi-transmissive reflective surface (27).
Unlike the conventional one shown in FIG. 8, the stray light (33) that has passed through is not directly incident on the light receiving elements (23) and (24), so no DC drift occurs, that is, in the present invention, the stray light (33) incident direction Since the light receiving elements (23) and (24) are not provided in, it is possible to avoid the influence of DC drift. If the stray light (33) transmitted through the semi-transmissive reflection surface is applied to the monitor light receiving element (14a), the oscillation state of the semiconductor laser element (1) can be monitored. With this configuration, the extending direction of the semiconductor substrate (22) can be shortened. Further, as in FIG. 7, a monitor light receiving element (14) may be provided at the rear of the semiconductor laser element (1) as shown by the alternate long and short dash line in FIG.

次に第3図と第4図を用いて、平行な平面透明板(40)
で非点隔差が補正出来る理由を説明する。第3図A,Bで
半導体基板(22)上に配設したプリズム(26)と半導体
レーザ素子(1)の中心が第7図と同じ様に半導体基板
(22)の中心線(41)に一致する様に配置されている場
合に半導体レーザ素子(1)から照射されるレーザ光
(29)の光路は中心線(41)に一致する。レーザ光(2
9)が半透過反射面(27)に入射される点(42)を中心
に中心線(41)と直角に交る1次元平内の線をY,−Y軸
とし、中心線(41)の点(42)を通る線をX,−X軸と
し、このY,−Y軸とX,−X軸の交点を通る垂直線方向を
Z軸とすると、本発明では半導体レーザ素子(1)のレ
ーザ光(29)の光路をY,X又は−X,−Y平面内に所定角
度α°だけ傾けて配置する。この角度α°は使用する利
得ガイド型半導体レーザ素子(1)の非点隔差と、後述
する平面透明板、即ち、板ガラス等の厚みによって変っ
て来る。
Next, referring to FIG. 3 and FIG. 4, parallel plane transparent plates (40)
The reason why the astigmatic difference can be corrected will be explained. In FIGS. 3A and 3B, the center of the prism (26) and the semiconductor laser element (1) arranged on the semiconductor substrate (22) is aligned with the center line (41) of the semiconductor substrate (22) as in FIG. When they are arranged so as to coincide with each other, the optical path of the laser light (29) emitted from the semiconductor laser element (1) coincides with the center line (41). Laser light (2
The line in the one-dimensional Hirauchi that intersects the center line (41) at a right angle with the point (42) incident on the semi-transmissive reflection surface (27) as the Y, -Y axis is defined as the center line (41). Assuming that the line passing through the point (42) is the X, -X axis and the vertical line direction passing through the intersection of the Y, -Y axis and the X, -X axis is the Z axis, the semiconductor laser device (1) according to the present invention. The optical path of the laser beam (29) is arranged in the Y, X or -X, -Y plane inclined by a predetermined angle α °. This angle α ° varies depending on the astigmatic difference of the gain guide type semiconductor laser device (1) used and the thickness of a flat transparent plate, that is, plate glass, which will be described later.

第3図A,Bで示す様に半導体レーザ素子(25)が実線で
示す様な従来構成位置にあれば、プリズム(26)のβ=
45°の場合は、レーザ光(29)はプリズム(26)の半透
過反射面(27)でZ軸方向に垂直出射される。今、第3
図A,B,Cに破線で示した位置迄レーザ光(29)の出射光
路をα°傾けると、第3図Bに示す様にZ軸からX,−Y
及び−X,−Y平面方向にα°傾いたZ軸方向に反射レー
ザ光(30a′)は反射して出射される。この結果、半導
体レーザ素子(1)の活性層(4)と平行な発光角θ
の発光点(9)はは半導体基板に対して角度αをとるこ
とになる。よって、第1図に示した様な半導体レーザ装
置(21)を第4図に示す様にフラットパッケージ(39)
に収納して植立ベース(38)に固定してボンディングパ
ッドの配線等を行ない、この植立ベースを基台(36)に
固定させる。フラットパッケージ(39)内には半導体レ
ーザ装置(21)の半導体基板(22)と平行に配された平
面透明板(40)がシールされていて、半導体レーザ素子
(1)からの反射レーザ光(30a′)は平行平面透明板
(40)で非点隔差補正が行なわれて、折り返しミラー
(34)と対物レンズ(35)を介してディスク(28)に集
束されることになる。この様に本発明の構成によれば平
面透明板(40)をフラットパッケージに傾けて配設しな
くても非点隔差補正が可能なので極めてコンパクトな光
学ヘッドが得られる。
As shown in Figs. 3A and 3B, the semiconductor laser device (25) is a solid line.
If it is in the conventional configuration position as shown, β of prism (26) =
In the case of 45 °, the laser beam (29) is semi-transparent to the prism (26).
The light is vertically emitted in the Z-axis direction on the hyper-reflection surface (27). Now the third
Emitted light of laser light (29) up to the positions indicated by broken lines in Figures A, B, and C
When the road is inclined by α °, as shown in Fig. 3B, X, -Y from the Z axis
And the reflection laser in the Z-axis direction, which is inclined by α ° in the -X and -Y plane directions.
The light (30a ') is reflected and emitted. As a result,
Emission angle θ parallel to the active layer (4) of the body laser device (1)
The light emitting point (9) of is at an angle α with respect to the semiconductor substrate.
Becomes Therefore, the semiconductor laser device as shown in FIG.
Flat package (39) as shown in FIG.
And place it in the planting base (38) to secure the bonding pad.
Do the wiring of the pad and use this planting base as the base (36)
Fix it. The semiconductor package is placed in the flat package (39).
Of the flat plate placed in parallel with the semiconductor substrate (22) of the laser device (21).
The surface transparent plate (40) is sealed, and the semiconductor laser device
The reflected laser light (30a ') from (1) is a plane-parallel transparent plate.
Astigmatism correction is performed at (40) and the folding mirror
Collect on disk (28) through (34) and objective lens (35)
Will be bundled. Thus, according to the configuration of the present invention,
Do not place the surface transparent plate (40) in a flat package by tilting it.
Astigmatism correction is possible even if the
The academic head is obtained.

〔発明の効果〕〔The invention's effect〕

本発明の光学ヘッド装置によれば、利得ガイド型半導体
レーザ素子で生ずる比較的大きな非点隔差を半導体基板
と平行に配設された平面透明板で補正が可能であり、光
学ヘッド装置の小型、軽量化が計れると共にRF信号検出
用の受光素子に迷光が入射することのない半導体レーザ
装置が得られる。
According to the optical head device of the present invention, the relatively large astigmatic difference generated in the gain guide type semiconductor laser device can be corrected by the flat transparent plate arranged in parallel with the semiconductor substrate, and the optical head device is small in size. It is possible to obtain a semiconductor laser device which can be reduced in weight and in which stray light does not enter the light receiving element for RF signal detection.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の半導体レーザ装置を示す斜
視図、第2図は第1図の光路を説明する模式的平面図、
第3図A,B,Cは本発明のレーザ光の反射角を説明する半
導体レーザ装置の平面図、及び右側面図並に正面図、第
4図は本発明の光学ヘッド装置の光路を示す模式図、第
5図は利得ガイド型半導体レーザ素子の非点隔差を説明
するための模式図、第6図は従来の斜めガラスを用いた
半導体レーザ装置の一部を断面とした斜視図、第7図は
従来の半導体レーザ装置の斜視図、第8図は従来の一体
型半導体レーザ装置の側面と光路を示す模式図、第9図
は従来の光学ヘッド装置の模式図である。 (22)は半導体基板、(21)は半導体レーザ装置、(2
6)はプリズム、(28)はディスク、(35)は対物レン
ズ、(38)は植立ベースである。
FIG. 1 is a perspective view showing a semiconductor laser device of one embodiment of the present invention, FIG. 2 is a schematic plan view for explaining the optical path of FIG. 1,
3A, 3B and 3C are a plan view of a semiconductor laser device for explaining the reflection angle of the laser light of the present invention, and a front view along with a right side view, and FIG. 4 shows an optical path of the optical head device of the present invention. FIG. 5 is a schematic view for explaining the astigmatic difference of the gain guide type semiconductor laser device, and FIG. 6 is a perspective view showing a cross section of a part of a conventional semiconductor laser device using oblique glass. FIG. 7 is a perspective view of a conventional semiconductor laser device, FIG. 8 is a schematic diagram showing a side surface and an optical path of a conventional integrated semiconductor laser device, and FIG. 9 is a schematic diagram of a conventional optical head device. (22) is a semiconductor substrate, (21) is a semiconductor laser device, (2)
6) is a prism, (28) is a disc, (35) is an objective lens, and (38) is a planting base.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光検出手段が形成された半導体基板と、 上記光検出手段の受光面に接して配され傾斜した半透過
反射面を有する光路設定用プリズムと、 上記プリズムの上記傾斜した半透過反射面に入射するレ
ーザ光の光軸を半導体基板上で所定角度だけ傾けて配設
した半導体レーザ素子とを具備し、 上記半導体レーザ素子の活性層の面に対して垂直な面内
に上記プリズムの傾斜した半透過反射面で反射される角
度でレーザ光が出射される半導体レーザ装置と、 上記半導体レーザ装置を内部に収容するパッケージと、 上記パッケージに形成され、上記半導体レーザ装置の上
記半導体レーザ素子から出射したレーザ光を通過させる
と共に、上記パッケージのシール窓とし、かつ上記半導
体レーザ素子の非点隔差を補正させる平面透明板とを具
備したことを特徴とする光学ヘッド装置。
1. A semiconductor substrate on which light detecting means is formed, an optical path setting prism having a semi-transmissive reflecting surface arranged in contact with a light receiving surface of the light detecting means, and the inclined semi-transmission of the prism. A semiconductor laser device in which the optical axis of the laser light incident on the reflecting surface is inclined on the semiconductor substrate by a predetermined angle, and the prism is provided in a plane perpendicular to the surface of the active layer of the semiconductor laser device. A semiconductor laser device that emits laser light at an angle that is reflected by an inclined semi-transmissive reflecting surface, a package that houses the semiconductor laser device therein, and a semiconductor laser of the semiconductor laser device formed in the package. A flat transparent plate that allows the laser light emitted from the device to pass through, serves as a seal window for the package, and corrects the astigmatic difference of the semiconductor laser device; An optical head and wherein the a.
JP61293280A 1986-12-09 1986-12-09 Optical head device Expired - Fee Related JPH07118086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61293280A JPH07118086B2 (en) 1986-12-09 1986-12-09 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61293280A JPH07118086B2 (en) 1986-12-09 1986-12-09 Optical head device

Publications (2)

Publication Number Publication Date
JPS63146241A JPS63146241A (en) 1988-06-18
JPH07118086B2 true JPH07118086B2 (en) 1995-12-18

Family

ID=17792784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61293280A Expired - Fee Related JPH07118086B2 (en) 1986-12-09 1986-12-09 Optical head device

Country Status (1)

Country Link
JP (1) JPH07118086B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874722A (en) 1994-07-19 1999-02-23 Spectra-Physics Scanning Systems, Inc. Compact scanner module mountable to pointing instrument

Also Published As

Publication number Publication date
JPS63146241A (en) 1988-06-18

Similar Documents

Publication Publication Date Title
US5679947A (en) Optical device having a light emitter and a photosensor on the same optical axis
US5233444A (en) Focus error detecting apparatus
KR950001875B1 (en) Semiconductor laser apparatus
JPH09180238A (en) Optical pickup system
US20070177488A1 (en) Optical module and optical recording and/or reproducing apparatus
US5715227A (en) Optical pickup device
JPH07118086B2 (en) Optical head device
JP2001217500A (en) Semiconductor device and light pickup device
KR940011266B1 (en) Semicondutor laser apparatus
JP3406974B2 (en) Semiconductor laser device
JPS63193336A (en) Optical head
JP3912017B2 (en) Light emitting device mounting body and optical system
JPH0728085B2 (en) Semiconductor laser device
JPH0766548B2 (en) Focus detection device
JPH064898A (en) Optical pickup
US20050162994A1 (en) Two-wavelength optical element
US6671236B2 (en) Light receiving and emitting compound element and optical pick-up device using the same
JPS6265247A (en) Optical pickup device
JP2571037B2 (en) Optical head
JPH0765399A (en) Light receiving and emitting device and optical pickup
JPH0644657B2 (en) Semiconductor laser device
JPS6284439A (en) Optical pickup device
JP2919512B2 (en) Optical pickup
JPH09321384A (en) Molded laser diode
JP2888317B2 (en) Optical pickup device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees