JPH07117051B2 - Oil-cooled compressor - Google Patents

Oil-cooled compressor

Info

Publication number
JPH07117051B2
JPH07117051B2 JP25513091A JP25513091A JPH07117051B2 JP H07117051 B2 JPH07117051 B2 JP H07117051B2 JP 25513091 A JP25513091 A JP 25513091A JP 25513091 A JP25513091 A JP 25513091A JP H07117051 B2 JPH07117051 B2 JP H07117051B2
Authority
JP
Japan
Prior art keywords
oil
pressure
compressor
recovery device
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25513091A
Other languages
Japanese (ja)
Other versions
JPH05141383A (en
Inventor
昇 壷井
新村  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25513091A priority Critical patent/JPH07117051B2/en
Publication of JPH05141383A publication Critical patent/JPH05141383A/en
Publication of JPH07117051B2 publication Critical patent/JPH07117051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吐出ガスから発生する
ドレン水の処理対策を施した油冷式圧縮機に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil-cooled compressor provided with a measure for treating drain water generated from discharge gas.

【0002】[0002]

【従来の技術】従来、圧縮ガスの冷却、ガス圧縮空間の
シール、この空間部でのロータ、ケーシング内各部の潤
滑のために圧縮ガス中に潤滑油を注入するようにした油
冷式圧縮機、例えば油冷式スクリュ圧縮機は広く用いら
れている。そして、この種の圧縮機において、メンテナ
ンス上、手間を要し、最も問題になっているのが、圧縮
機本体の吐出側に設けられる油分離回収器内に蓄積して
いくドレン水の抜き取り作業であり、その改善が強く求
められているのが現状である。このため、この油分離回
収器内で発生するドレン水の処理対策を施した油冷式圧
縮機が、特公昭63−29117号公報、同64−40
78号公報、実公平2−1516号公報に開示されてい
る。これらの各公報に開示の圧縮機は、油の温度を可及
的速やかに上昇させてドレンの発生を防止しようとした
ものである。
2. Description of the Related Art Conventionally, an oil-cooled compressor in which lubricating oil is injected into a compressed gas for cooling the compressed gas, sealing a gas compression space, and lubricating the rotor and various parts in the casing in this space. For example, oil-cooled screw compressors are widely used. And in this type of compressor, maintenance is time-consuming and the most problematic is the drain water draining work that accumulates in the oil separation and recovery unit provided on the discharge side of the compressor body. Therefore, there is a strong demand for improvement. For this reason, an oil-cooled compressor provided with measures against the treatment of drain water generated in this oil separation and recovery device is disclosed in Japanese Examined Patent Publication No. 63-29117 and 64-40.
No. 78 and Japanese Utility Model Publication No. 2-1516. The compressors disclosed in these publications are intended to raise the temperature of oil as quickly as possible to prevent the occurrence of drainage.

【0003】[0003]

【発明が解決しようとする課題】上記各公報に開示の圧
縮機では、長時間連続運転する場合には油の温度を上昇
させ得ても、間欠運転の場合に問題が生じる。図3は、
間欠運転をした場合における油分離回収器内の油温の変
化を示したもので(横軸:時間,縦軸:油温)、縦軸の
目盛りT1はドレン水が発生する上限温度で、T2は連
続的に全負荷運転をした場合における油温で、例えば、
運転時間が2分間で、停止時間が2時間とする。このよ
うに停止時間に比して運転時間が非常に短い間欠運転
は、例えばクリーニング業や歯科治療機器用に用いられ
る場合に現実にあり得る。上記のような間欠運転の場
合、運転時間が非常に短いため、圧縮機を運転させても
油温が温度T1に達する前に停止状態になって、油温が
低下してしまい、温度T1より低い温度領域で上昇、降
下を繰り返すことになり、ドレン水の発生を防止するこ
とができない。この結果、運転を繰り返す内に油分離回
収器内にドレン水が溜まるという問題が生じる。
In the compressor disclosed in each of the above publications, even if the temperature of oil can be increased during continuous operation for a long time, a problem occurs during intermittent operation. Figure 3
It shows changes in the oil temperature in the oil separation and recovery unit when the intermittent operation is performed (horizontal axis: time, vertical axis: oil temperature), and the scale T1 on the vertical axis is the upper limit temperature at which drain water is generated, T2 Is the oil temperature during continuous full load operation, for example,
The operating time is 2 minutes and the stop time is 2 hours. Thus, the intermittent operation in which the operation time is extremely short compared to the stop time can be actually used when it is used, for example, in the cleaning industry or dental treatment equipment. In the case of the intermittent operation as described above, since the operation time is extremely short, even if the compressor is operated, the oil temperature is stopped before the oil temperature reaches the temperature T1, and the oil temperature lowers. The rise and fall are repeated in the low temperature region, and it is impossible to prevent the generation of drain water. As a result, a problem arises in that drain water collects in the oil separation / recovery device while the operation is repeated.

【0004】本発明は、斯る従来の問題点を課題として
なされたもので、油分離回収器にドレン水抜き取り専用
の配管を施すことなく、油分離回収器内にドレン水が溜
まるのを防止し、ドレン水抜き取り作業を不要にするこ
とを可能とした油冷式圧縮機を提供しようとするもので
ある。
The present invention has been made to solve the above-mentioned conventional problems, and prevents drain water from accumulating in the oil separation / collection device without providing a dedicated pipe for drain water removal to the oil separation / recovery device. However, it is an object of the present invention to provide an oil-cooled compressor that makes it unnecessary to drain water.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、第一発明は、圧縮機本体と、吐出圧力が設定圧力よ
りも高くなると吸込流路を閉じる吸気調節弁と、上記圧
縮機本体の吐出口に連通させて設けた油分離回収器とを
備えた油冷式圧縮機において、油分離回収器の下部か
ら、この油分離回収器内の圧力よりも低い上記圧縮機本
体内のロータ室に至る油兼ドレン水戻し用第一流路と、
上記油分離回収器の出口部を形成するヘッダー部の下部
からこの油分離回収器内の圧力よりも低い上記圧縮機本
体内のロータ室に至る油兼ドレン水戻し用第二流路と、
上記油分離回収器に接続した吐出流路に圧力検出可能に
設け、検出圧力が設定圧力よりも高い場合には、上記圧
縮機本体の駆動部を停止させるためのオフ信号を出力す
る圧力スイッチと、この圧力スイッチと駆動部との間に
介在し、上記オフ信号を受けてから設定時間経過後に上
記駆動部に対して上記オフ信号を出力するタイマとを設
けて形成した。
In order to solve the above-mentioned problems, a first aspect of the present invention is directed to a compressor body, an intake control valve that closes a suction passage when a discharge pressure becomes higher than a set pressure, and the compressor body. An oil-cooled compressor provided with an oil separation / recovery device provided in communication with the discharge port of the rotor in the compressor body from a lower portion of the oil separation / recovery device, the pressure being lower than the pressure in the oil separation / recovery device. First channel for returning oil and drain water to the chamber,
A second flow path for returning oil and drain water from the lower part of the header part forming the outlet part of the oil separation and recovery device to the rotor chamber in the compressor body lower than the pressure in the oil separation and recovery device,
A pressure switch is provided in the discharge flow path connected to the oil separation and recovery device so that pressure can be detected, and when the detected pressure is higher than a set pressure, a pressure switch that outputs an off signal for stopping the drive unit of the compressor body. And a timer which is interposed between the pressure switch and the drive unit and which outputs the off signal to the drive unit after a set time has elapsed after receiving the off signal.

【0006】また、第二発明は、上記ヘッダー部の外側
を断熱材で覆って形成した。
According to a second aspect of the invention, the outer side of the header portion is covered with a heat insulating material.

【0007】さらに、第三発明は、上記吐出流路に設け
た逆止弁の出側にて、この吐出流路から分岐し、かつオ
リフィス、およびその出側に上記タイマの作動中開状態
にする開閉弁を有する放気流路を設けて形成した。
Further, in the third aspect of the present invention, the check valve provided in the discharge flow path is branched from the discharge flow path on the outlet side, and the orifice and the outlet side are opened during the operation of the timer. It was formed by providing a discharge passage having an opening / closing valve for

【0008】[0008]

【作用】上記第一発明のように構成することにより、圧
縮機の運転中に油中に溶け込んだ水分は、圧力スイッチ
よりオフ信号が出力された後、駆動部が停止するまでの
間に、油とともにロータ室内に戻され、圧縮により昇温
したガスに溶け込み、ガスとともに吐出流路に送り出さ
れるため、油分離回収器内からドレン水が効率良く除去
されるとともに、圧力スイッチからオフ信号が出力され
ても直ちに、駆動部を停止させないため、短時間の間に
圧力変動があっても駆動部の頻繁なオン,オフの繰返し
はなくなり、駆動部の過熱も防止されるようになる。
According to the first aspect of the present invention, the water dissolved in the oil during the operation of the compressor is protected by the pressure switch from the output of the off signal to the stop of the drive unit. It is returned to the rotor chamber together with the oil, melts into the gas heated by compression, and is sent out to the discharge flow path together with the gas, so drain water is efficiently removed from the oil separation and recovery device, and an off signal is output from the pressure switch. Even if the driving is performed, the driving unit is not immediately stopped. Therefore, even if the pressure fluctuates in a short time, the driving unit is not frequently turned on and off repeatedly, and the driving unit is prevented from being overheated.

【0009】また、第二発明のように構成することによ
り、第一発明における作用に加えて、ヘッダー部内での
ガスを高温状態に保って、ヘッダー部内でのドレン水の
析出量が減少するようになる。
In addition to the function of the first aspect of the invention, the configuration of the second aspect of the invention keeps the gas in the header at a high temperature and reduces the amount of drain water deposited in the header. become.

【0010】さらに、第三発明のように構成することに
より、第一発明、或は第二発明における作用に加えて以
下のような作用を生じる。例えば上記タイマが上記駆動
部に対してオフ信号を出力する前に、吸気調節弁が速く
全閉状態になるように形成されている場合において、吸
気調節弁の全閉状態になるのが速いために、上記圧力ス
イッチからオフ信号を出力した後、タイミングをずらせ
て上記駆動部に対してオフ信号を出力させるようにする
だけでは、圧縮機内の水分を含んだガスを完全に機外に
送出すことができない場合でも、上記タイマの作動中開
閉弁が開状態になっているので圧縮機内のガスは機外に
放出され、これとともに水分も機外に放出されるように
なる。また、放気流路にオリフィスを有しているので、
その絞り率を調節することにより油分離回収器内の圧力
降下の速度を調節することができ、これによって吸気調
節弁の開閉速度を調できるようになる。
Further, by the constitution as the third invention, the following action is brought about in addition to the action in the first invention or the second invention. For example, in the case where the intake control valve is formed so as to quickly become fully closed before the timer outputs the OFF signal to the drive unit, the intake control valve quickly becomes fully closed. In addition, by simply outputting the off signal from the pressure switch and then outputting the off signal to the drive section by shifting the timing, the gas containing water in the compressor is completely delivered to the outside of the machine. Even if it is not possible, since the on-off valve is open during the operation of the timer, the gas in the compressor is released to the outside of the machine and the moisture is also released to the outside of the machine. Also, because it has an orifice in the discharge channel,
By adjusting the throttling ratio, the speed of the pressure drop in the oil separation / recovery device can be adjusted, whereby the opening / closing speed of the intake control valve can be adjusted.

【0011】[0011]

【実施例】次に、本発明の一実施例を図面にしたがって
説明する。図1の実線(細線も含む)および一点鎖線に
て表された構成は、第一発明に係る油冷式圧縮機の一例
である油冷式スクリュ圧縮機を示し、互いに噛み合う雌
雄一対のスクリュロータ(図面上は一方のスクリュロー
タのみが表れている)1をロータ室2内に回転可能に収
納した圧縮機本体3の吸込口4に続く吸込流路5に、こ
の開度を調節する吸気調節弁6を設ける一方、圧縮機本
体3の吐出口7に連通させて油分離回収器8が設けてあ
る。この油分離回収器8は、下部に油溜まり部9を、上
部に油分離エレメント10を備えるとともに、油分離回
収器8の出口部であって、この油分離エレメント10を
出た箇所にヘッダー部11を備え、このヘッダー部11
に、保圧弁12,逆止弁13を設けた吐出流路14が接
続してある。一方、油溜まり部9の下部からは、温度調
節弁15、油クーラ16を経て、或は温度調節弁15、
バイパス流路17を経て、油分離回収器8内の圧力より
も低い圧縮機本体3内のロータ室2に至る油兼ドレン水
戻し用第一流路18と、ヘッダー部11の下部から出て
第一流路18の内の油クーラ16の下流側の部分にて合
流する油兼ドレン水戻し用第二流路19とが設けてあ
る。
An embodiment of the present invention will be described below with reference to the drawings. A configuration represented by a solid line (including a thin line) and a one-dot chain line in FIG. 1 shows an oil-cooled screw compressor which is an example of the oil-cooled compressor according to the first invention, and a pair of male and female screw rotors meshing with each other. (Only one of the screw rotors is shown in the drawing) 1 is installed in a rotor chamber 2 in a rotatable manner. While the valve 6 is provided, an oil separation / recovery device 8 is provided in communication with the discharge port 7 of the compressor body 3. The oil separation / recovery device 8 is provided with an oil sump portion 9 at a lower portion and an oil separation element 10 at an upper portion, and is an outlet portion of the oil separation / recovery device 8 and a header portion at a position where the oil separation element 10 is discharged. 11 includes the header portion 11
A discharge flow path 14 provided with a pressure holding valve 12 and a check valve 13 is connected to. On the other hand, from the lower part of the oil sump portion 9 through the temperature control valve 15, the oil cooler 16, or the temperature control valve 15,
The first flow path 18 for returning oil / drain water to the rotor chamber 2 in the compressor body 3 which is lower than the pressure in the oil separation / recovery device 8 via the bypass flow path 17, and the first flow path 18 from the lower part of the header portion 11 An oil / drain water return second flow passage 19 that joins at a portion of one flow passage 18 on the downstream side of the oil cooler 16 is provided.

【0012】そして、スクリュロータ1の回転ととも
に、吸気調節弁6から吸込流路5,吸込口4を経て、ロ
ータ室2内に吸込んだガスを、第一流路18および第二
流路19を経て、ロータ室2内に注入される油でロータ
間のシールと潤滑作用をさせながら圧縮して、吐出口7
より油分離回収器8に吐出して、油分離エレメント10
により圧縮ガスと油とを分離し、圧縮ガスはヘッダー部
11より吐出流路14に送り出し、分離された油は下方
の油溜まり部9に一旦溜めるようになっている。この油
溜まり部9の油は第一流路18を経てロータ室2内に再
度注入され、圧縮ガスとともに吐出口7より油分離回収
器8に吐出され、以後上記同様に循環使用される。さら
に詳説すれば、温度調節弁15によって油温が検出さ
れ、この検出温度が設定値よりも高い場合には、温度調
節弁15はa,bポートが連通状態となって、油溜まり
部9からの油は油クーラ16を経て冷却された後、ロー
タ室2内に注入される。
With the rotation of the screw rotor 1, the gas sucked into the rotor chamber 2 from the intake control valve 6 through the suction passage 5 and the suction port 4 passes through the first passage 18 and the second passage 19. , The oil injected into the rotor chamber 2 is compressed while performing a sealing action between the rotors and the lubricating action, and the discharge port 7
More discharged to the oil separating and collecting device 8, and the oil separating element 10
The compressed gas and the oil are separated by the above, the compressed gas is sent out from the header portion 11 to the discharge flow path 14, and the separated oil is temporarily stored in the oil sump portion 9 below. The oil in the oil sump 9 is reinjected into the rotor chamber 2 through the first flow path 18, is discharged together with the compressed gas from the discharge port 7 to the oil separation / collector 8, and is thereafter circulated and used in the same manner as described above. More specifically, the temperature of the oil is detected by the temperature control valve 15, and when the detected temperature is higher than the set value, the temperature control valve 15 has the ports a and b in communication with each other, and the oil sump 9 is removed from the oil sump 9. The oil is cooled through the oil cooler 16 and then injected into the rotor chamber 2.

【0013】これに対して、上記検出温度が設定値以下
の場合には、温度調節弁15はa,cポートが連通状態
となって油溜まり部9からの油は、油クーラ16を通る
ことなく、バイパス流路17を経て冷却されずにロータ
室2内に注入されるようになっている。そして、このよ
うにしてロータ室2内への注入油温度を一定範囲内に保
つことによって、油温が過度に上昇して、劣化を速める
のを防止しつつ、油分離回収器8内の温度をドレン水が
発生しない程度の適度な高温状態に保つようにしてあ
る。一方、吸気調節弁6は吸気流路5を形成する空間と
はダイヤフラム21によって隔離された加圧室22を備
え、この吸込流路5を形成する空間には、吸気調節弁6
の入口部のガス流路断面積を調節する弁体23、および
弁体23とダイヤフラム21との間に位置させたばね2
4とが設けてある。また、ヘッダー部11内の圧力を適
宜減圧可能に加圧室22内に導くように、ヘッダー部1
1から圧力調節弁25を介して加圧室22にガス流路2
6が設けてある。
On the other hand, when the detected temperature is equal to or lower than the set value, the temperature control valve 15 has the ports a and c in communication with each other, and the oil from the oil sump 9 passes through the oil cooler 16. Instead, it is injected into the rotor chamber 2 without being cooled through the bypass passage 17. Then, by keeping the temperature of the oil injected into the rotor chamber 2 within a certain range in this way, it is possible to prevent the temperature of the oil in the oil separation / recoverer 8 from increasing while preventing the oil temperature from rising excessively and accelerating the deterioration. Is maintained at an appropriate high temperature state where drain water is not generated. On the other hand, the intake control valve 6 is provided with a pressurizing chamber 22 which is separated from the space forming the intake flow path 5 by a diaphragm 21, and the intake control valve 6 is provided in the space forming the intake flow path 5.
Body 23 for adjusting the gas flow passage cross-sectional area of the inlet of the valve, and the spring 2 positioned between the valve body 23 and the diaphragm 21.
4 and are provided. In addition, the header portion 1 is arranged so that the pressure in the header portion 11 can be appropriately reduced so as to be introduced into the pressurizing chamber 22.
1 through the pressure regulating valve 25 to the pressurizing chamber 22
6 is provided.

【0014】そして、図2の上段に示すように、ヘッダ
ー部11内の圧力が設定圧力P1より高くなるにしたが
って、加圧室22内の圧力も高くなり、ダイヤフラム2
1が図1において左方に押されて湾曲し、弁体23を左
方に移動させ、この結果弁体23が吸気調節弁6の入口
部のガス流路断面積を徐々に小さくして、最終的には、
即ち図2では圧力P2(P2>P1)でこの入口部を完
全に閉じ、圧縮機を無負荷(アンロード)運転状態へと
移行させるようになっている。また、吐出流路14に
は、圧力検出可能に圧力スイッチ27が設けてあり、図
2の中段に示すように、その検出圧力が設定値、例えば
本実施例では圧力P1よりも高い場合には、圧力スイッ
チ27がオン状態になって、ここからスクリュロータ1
の駆動部であるモータ28を停止させるためのオフ信号
を出力させるようにしてある。このオフ信号は、圧力ス
イッチ27とモータ28との間に介在させたタイマ29
に入力され、図2の下段に示すように、上記オフ信号を
受けてから設定時間t経過後にタイマ29よりモータ
28に対して上記オフ信号を出力するようにしてある。
ここで、圧力P1に達した時点を基準(t=0)として
横軸を示してある。なお、図2では吸気調節弁6の全開
状態から全閉状態への移行開始の設定圧力と圧力スイッ
チ27のオン,オフ切換えの設定圧力とを同じにしたも
のを示したが、両設定圧力は必ずしも同じである必要は
ない。
Then, as shown in the upper part of FIG. 2, as the pressure in the header portion 11 becomes higher than the set pressure P1, the pressure in the pressurizing chamber 22 also becomes high and the diaphragm 2
1 is pushed to the left in FIG. 1 and bent, moving the valve body 23 to the left, and as a result, the valve body 23 gradually reduces the gas flow passage cross-sectional area of the inlet portion of the intake control valve 6, Eventually,
That is, in FIG. 2, the pressure P2 (P2> P1) completely closes this inlet portion, and the compressor is brought into a no-load (unloading) operation state. A pressure switch 27 is provided in the discharge flow passage 14 so as to detect pressure. As shown in the middle part of FIG. 2, when the detected pressure is higher than a set value, for example, pressure P1 in this embodiment. , The pressure switch 27 is turned on, and from here the screw rotor 1
An off signal for stopping the motor 28, which is the drive unit of the above, is output. This off signal is generated by the timer 29 interposed between the pressure switch 27 and the motor 28.
2, the timer 29 outputs the off signal to the motor 28 after a lapse of a set time t 0 after receiving the off signal.
Here, the horizontal axis is shown with reference to the time point when the pressure P1 is reached (t = 0). In FIG. 2, the set pressure for starting the transition of the intake control valve 6 from the fully open state to the fully closed state and the set pressure for switching the pressure switch 27 on and off are the same. It does not necessarily have to be the same.

【0015】このように圧力スイッチ27とモータ28
との間にタイマ29を介在させてあるため、吐出圧力が
設定値よりも高くなっても、モータ28は直ちに停止せ
ずに、まず吸気調節弁6の開度が徐々に小さくなり、吸
込ガス量が減少して無負荷運転に近付き、油分離回収器
8内のガス中に新たに溶け込む水分が減少しつつある状
態の下で、圧縮機を設定時間だけ作動させて、その後停
止させることになる。そして、この設定時間の運転中、
油分離回収器8内にて析出したドレン水は油溜まり部9
の下部から油とともにロータ室2内に戻され、圧縮によ
り昇温したガスと混合し、ガスとともに吐出流路14に
送り出されるため、油分離回収器8内からドレン水が効
率良く除去される。なお、ヘッダー部11内の温度は、
油分離回収器8内の油分離エレメント10より吐出口側
空間部の温度に比して低いため、このヘッダー部11内
でドレン水が析出し易いが、ここで析出したドレン水は
油分離エレメント10から飛散してきた油とともに第二
流路19を経てロータ室2内に戻され、このドレン水に
ついても上記同様に圧縮ガスと混合して吐出流路14に
送り出される。
Thus, the pressure switch 27 and the motor 28 are
Since the timer 29 is interposed between the intake valve and the intake valve, even if the discharge pressure becomes higher than the set value, the motor 28 does not stop immediately, and the opening degree of the intake control valve 6 gradually decreases and the intake gas Under the condition that the amount decreases and approaches the no-load operation, and the water that newly dissolves in the gas in the oil separation and recovery unit 8 is decreasing, the compressor is operated for the set time and then stopped. Become. And while driving for this set time,
The drain water deposited in the oil separating and collecting unit 8 is stored in the oil sump 9
The oil is returned to the rotor chamber 2 together with the oil from the lower part, mixed with the gas whose temperature is raised by compression, and sent out to the discharge flow path 14 together with the gas. Therefore, the drain water is efficiently removed from the oil separation and recovery device 8. The temperature inside the header 11 is
Since the temperature of the discharge port side space is lower than the temperature of the oil separation element 10 in the oil separation / recovery device 8, the drain water is easily deposited in the header portion 11. However, the drain water deposited here is the oil separation element. The oil scattered from 10 is returned to the inside of the rotor chamber 2 through the second flow path 19, and this drain water is also mixed with the compressed gas and sent out to the discharge flow path 14.

【0016】したがって、上記設定時間は、逆に言え
ば、油分離回収器8内に析出したドレン水を完全に吐出
流路14に送り出すのに十分な時間ということであり、
この時間は、例えば圧縮機を作動させて、実際に油分離
回収器8内の油を観察することにより容易に定めること
ができる。即ち、圧縮機の作動中、油内にドレン水が析
出しているときには、油は白く濁っており、逆にドレン
水が存在しないときには、油は透明な状態となる故、圧
力スイッチ27からオフ信号が出力された後、油分離回
収器8内の油が透明になる迄にどれだけ時間が経過した
かを実際に測定して上記設定時間を定めればよい。
Therefore, conversely, the above-mentioned set time is a time sufficient to completely discharge the drain water deposited in the oil separation / recovery device 8 to the discharge passage 14,
This time can be easily determined, for example, by operating the compressor and actually observing the oil in the oil separation and recovery unit 8. That is, when the drain water is deposited in the oil during the operation of the compressor, the oil is white and turbid, and conversely, when the drain water is not present, the oil is in a transparent state. Therefore, the pressure switch 27 is turned off. After the signal is output, the set time may be determined by actually measuring how much time has elapsed until the oil in the oil separation / recovery device 8 becomes transparent.

【0017】そして、上記スクリュ圧縮機においては上
記のように形成することにより、油分離回収器8からド
レン水抜き取り専用の配管を何ら施すことなく、したが
って、配管に伴う弁類も必要とすることなく、簡易な構
造でドレン水抜き取りのためのメンテナンス作業が全く
不用となっている。また、圧力スイッチ27からオフ信
号が出力されても直ちに、モータ28を停止させないた
め、短時間の間に圧力変動があってもモータ28の頻繁
なオン,オフの繰返しはなくなり、モータ28の過熱防
止も可能になる。図1の実線(細線も含む),一点鎖線
および二点鎖線によって表された構成は、第二発明に係
る油冷式スクリュ圧縮機を示し、第一発明に係る上記油
冷式スクリュ圧縮機のヘッダー部11の外側を断熱材3
1で覆ったものである。そして、このように形成するこ
とによりヘッダー部11内でのガスを高温状態に保っ
て、ヘッダー部11内でのドレン水の析出量を最小限度
に止めるようにしてある。この結果、上記同様に、油分
離回収器8からドレン水抜き取り専用の配管を何ら施す
ことなく、ドレン水抜き取りのためのメンテナンス作業
が全く不用になるとともに、油分離回収器8内で析出す
るドレン水の量が減少することになり、上記設定時間を
短縮することが可能になる。
By forming the screw compressor as described above, there is no need to provide any dedicated pipe for drainage water removal from the oil separation / recovery device 8 and, therefore, valves associated with the pipe are also required. Without a simple structure, maintenance work for drain drainage is completely unnecessary. Further, even if the off signal is output from the pressure switch 27, the motor 28 is not stopped immediately, so that even if the pressure fluctuates in a short time, the motor 28 is not repeatedly turned on and off repeatedly, and the motor 28 is overheated. Prevention is also possible. The configuration represented by the solid line (including a thin line), the one-dot chain line and the two-dot chain line in FIG. 1 shows the oil-cooled screw compressor according to the second invention, and the configuration of the oil-cooled screw compressor according to the first invention is as follows. The outside of the header portion 11 is the heat insulating material 3
It is covered with 1. By forming in this way, the gas in the header portion 11 is kept at a high temperature, and the amount of drain water deposited in the header portion 11 is minimized. As a result, similarly to the above, the maintenance work for drain drainage is completely unnecessary without providing any dedicated drain water drainage pipe from the oil separator / collector 8, and the drain deposits in the oil separator / collector 8 are eliminated. Since the amount of water is reduced, the set time can be shortened.

【0018】図3は、第3発明に係る油冷式スクリュ圧
縮機を示し、図1に示す圧縮機とは、新たに放気流路4
1を設けた点を除き、他は実質的に同一であり、互いに
対応する部分には同一番号を付して説明を省略する。こ
の放気流路41は、逆止弁13の出側にて、吐出流路1
4から分岐するとともに、オリフィス42、およびその
出側にタイマ29の作動中、即ちタイマ29が圧力スイ
ッチ27からオフ信号を受信した後モータ28に対して
オフ信号を出力するまでの間、開状態となる電磁式開閉
弁43を有している。
FIG. 3 shows an oil-cooled screw compressor according to a third aspect of the present invention, which is different from the compressor shown in FIG.
Other than the point that 1 is provided, the other parts are substantially the same, and the portions corresponding to each other are denoted by the same reference numerals and the description thereof will be omitted. The discharge flow passage 41 is provided on the outlet side of the check valve 13 at the discharge flow passage 1
4, while the timer 29 is operating on the orifice 42 and the outlet side thereof, that is, until the timer 29 outputs the off signal to the motor 28 after receiving the off signal from the pressure switch 27. The electromagnetic on-off valve 43 is provided.

【0019】上記第一発明、第二発明において、モータ
28がオフになるタイミングと吸気調節弁6が全閉状態
になるタイミングの前後は何ら限定するものではない
が、吸気調節弁6の開閉速度を調節することにより、図
2において圧力スイッチ27がオンの状態になってオフ
信号を出力した後、モータ28がオフの状態、即ち停止
状態になる迄の時間t0(例えば5分)より短時間で吸
気調節弁6を全閉状態にする場合も考えられる。この場
合、吸気調節弁6が全閉状態になった後は、圧縮機内の
ガスは機外に送出されないため、例えば吸込ガスの含有
水分が多い場合には、圧縮機内のガス中に水分が残る可
能性がある。そこで、第三発明では、タイマ29の作動
中は、開閉弁43を開状態に保つことにより、上記のよ
うにたとえ吸気調節弁6が速く全閉状態になる場合であ
っても、放気流路41により圧縮機から水分とともにガ
スを機外に逃がして、吸気調節弁6の開閉速度如何に拘
わらず圧縮機内に水分を残さず、ドレン水が発生しない
ようになっている。
In the above first invention and second invention, before and after the timing when the motor 28 is turned off and the timing when the intake control valve 6 is fully closed, the opening / closing speed of the intake control valve 6 is not limited at all. 2, the pressure switch 27 is turned on in FIG. 2 to output an off signal, and the motor 28 is turned off, that is, shorter than the time t 0 (for example, 5 minutes) until the motor 28 is stopped. There may be a case where the intake control valve 6 is fully closed depending on time. In this case, after the intake control valve 6 is fully closed, the gas in the compressor is not delivered to the outside of the machine. For example, when the suction gas contains a large amount of water, water remains in the gas in the compressor. there is a possibility. Therefore, in the third invention, by keeping the open / close valve 43 in the open state during the operation of the timer 29, even if the intake control valve 6 quickly becomes the fully closed state as described above, the discharge passage By 41, gas is released from the compressor together with water to the outside of the machine, no water remains in the compressor regardless of the opening / closing speed of the intake control valve 6, and drain water is not generated.

【0020】図4は、図2に対応する図であって、第三
発明における吸気調節弁6の開閉状態と、圧力スイッチ
27、モータ28の各々のオン,オフ状態の相互の関係
を示している。第三発明では、放気流路41にオリフィ
ス42を有しており、その絞り率を調節することにより
油分離回収器8内の圧力降下の速度を調節することがで
き、これによって吸気調節弁6の開閉速度を調節でき
る。具体的には、図4中上段のX,Y,Zの折れ曲がり
線は、この順番で絞り率を大きくした例を示し、Xが一
番絞り率を小さくした場合である。この絞り率を大きく
する程圧縮機からの水分放出速度は小さくなる。
FIG. 4 is a view corresponding to FIG. 2 and shows the mutual relationship between the open / closed state of the intake control valve 6 and the ON / OFF states of the pressure switch 27 and the motor 28 in the third invention. There is. In the third aspect of the invention, the discharge passage 41 has the orifice 42, and the speed of the pressure drop in the oil separation / recovery device 8 can be adjusted by adjusting the throttling ratio thereof. You can adjust the opening and closing speed of. Specifically, the X, Y, and Z bent lines in the upper part of FIG. 4 show an example in which the draw ratio is increased in this order, and X is the case where the draw ratio is the smallest. As the squeezing ratio increases, the water release rate from the compressor decreases.

【0021】[0021]

【発明の効果】以上の説明より明らかなように、第一発
明によれば、圧縮機本体と、吐出圧力が設定圧力よりも
高くなると吸込流路を閉じる吸気調節弁と、上記圧縮機
本体の吐出口に連通させて設けた油分離回収器とを備え
た油冷式圧縮機において、油分離回収器の下部から、こ
の油分離回収器内の圧力よりも低い上記圧縮機本体内の
ロータ室に至る油兼ドレン水戻し用第一流路と、上記油
分離回収器の出口部を形成するヘッダー部の下部からこ
の油分離回収器内の圧力よりも低い上記圧縮機本体内の
ロータ室に至る油兼ドレン水戻し用第二流路と、上記油
分離回収器に接続した吐出流路に圧力検出可能に設け、
検出圧力が設定圧力よりも高い場合には、上記圧縮機本
体の駆動部を停止させるためのオフ信号を出力する圧力
スイッチと、この圧力スイッチと駆動部との間に介在
し、上記オフ信号を受けてから設定時間経過後に上記駆
動部に対して上記オフ信号を出力するタイマとを設けて
形成してある。このため、圧縮機の運転中に油中に溶け
込んだ水分は、圧力スイッチよりオフ信号が出力された
後、駆動部が停止するまでの間に、油とともにロータ室
内に戻され、圧縮により昇温したガスに溶け込み、ガス
とともに吐出流路に送り出されるため、油分離回収器内
からドレン水が効率良く除去されるようになり、この結
果、油分離回収器からドレン水抜き取り専用の配管を何
ら施すことなく、したがって、配管に伴う弁類も必要と
することなく、簡易な構造でドレン水抜き取りのための
メンテナンス作業が全く不用になるとともに、圧力スイ
ッチからオフ信号が出力されても直ちに、駆動部を停止
させないため、短時間の間に圧力変動があっても駆動部
の頻繁なオン,オフの繰返しはなくなり、駆動部の過熱
防止も可能になるという効果を奏する。
As is apparent from the above description, according to the first aspect of the present invention, the compressor main body, the intake control valve that closes the suction passage when the discharge pressure becomes higher than the set pressure, and the compressor main body In an oil-cooled compressor equipped with an oil separation / recovery device provided in communication with a discharge port, from the lower part of the oil separation / recovery device, the rotor chamber in the compressor body lower than the pressure in the oil separation / recovery device To the rotor chamber in the compressor body, which is lower than the pressure in the oil separation and recovery unit, from the first flow path for returning oil and drain water to the A second flow path for returning oil / drain water and a discharge flow path connected to the oil separation and recovery device are provided so that pressure can be detected.
When the detected pressure is higher than the set pressure, a pressure switch that outputs an OFF signal for stopping the drive unit of the compressor body is interposed between the pressure switch and the drive unit, and the OFF signal is output. A timer for outputting the off signal to the drive unit after a set time has elapsed after receiving the timer is provided. Therefore, the water dissolved in the oil during operation of the compressor is returned to the rotor chamber together with the oil until the drive unit stops after the OFF signal is output from the pressure switch, and the temperature rises due to compression. Since it dissolves in the generated gas and is sent out to the discharge flow path together with the gas, the drain water can be efficiently removed from the inside of the oil separation and recovery device. Therefore, without the need for valves associated with piping, maintenance work for drain water draining is completely unnecessary with a simple structure, and even if an off signal is output from the pressure switch, the drive unit is immediately released. Since it does not stop, even if the pressure fluctuates in a short time, the drive is not frequently turned on and off repeatedly, and it is possible to prevent overheating of the drive. That.

【0022】また、第二発明によれば、上記ヘッダー部
の外側を断熱材で覆って形成してある。このため、第一
発明における効果に加えて、ヘッダー部内でのガスを高
温状態に保って、ヘッダー部内でのドレン水の析出量が
減少することになり、オフ信号を受けてからのタイマの
設定時間を短縮できるという効果を奏する。
According to the second aspect of the invention, the outer side of the header portion is covered with a heat insulating material. Therefore, in addition to the effect of the first invention, the amount of drain water deposited in the header portion is reduced by keeping the gas in the header portion at a high temperature, and the timer setting after receiving the OFF signal The effect is that the time can be shortened.

【0023】さらに、第三発明によれば、上記吐出流路
に設けた逆止弁の出側にて、この吐出流路から分岐し、
かつオリフィス、およびその出側に上記タイマの作動中
開状態にする開閉弁を有する放気流路を設けて形成てあ
る。このため、例えば上記タイマが上記駆動部に対して
オフ信号を出力する前に、吸気調節弁が速く全閉状態に
なるように形成されている場合であって、ガス中に水分
を多く含む場合において、吸気調節弁の全閉状態になる
のが速いために、上記圧力スイッチからオフ信号を出力
した後、タイミングをずらせて上記駆動部に対してオフ
信号を出力させるようにするだけでは、圧縮機内の水分
を含んだガスを完全に機外に送出すことができない場合
でも、上記タイマの作動中開閉弁が開状態になっている
ので圧縮機内のガスは放気流路から機外に放出され、こ
れとともに水分も機外に放出されるようになる。即ち、
吸気調節弁の開閉速度如何に拘わらず圧縮機内に水分を
残さず、ドレン水の発生を防止できる。また、放気流路
にオリフィスを有しているので、その絞り率を調節する
ことにより油分離回収器内の圧力降下の速度を調節する
ことができ、これによって吸気調節弁の開閉速度を調節
することが可能になり、圧縮機からの水分放出速度でき
るという効果を奏する。
Further, according to the third aspect of the present invention, at the outlet side of the check valve provided in the discharge passage, the discharge valve branches off from the discharge passage,
In addition, an orifice and an air discharge passage having an opening / closing valve for opening the orifice during operation of the timer are formed on the outlet side of the orifice. Therefore, for example, when the intake control valve is formed so as to be in a fully closed state quickly before the timer outputs an off signal to the drive unit, and when the gas contains a large amount of water. In the above, since it is quick for the intake control valve to be fully closed, it is possible to output the OFF signal from the pressure switch and then to output the OFF signal to the drive unit at a different timing. Even if the gas containing water inside the machine cannot be completely sent out of the machine, the gas inside the compressor is released to the outside of the machine from the discharge passage because the on-off valve is open during the operation of the timer. At the same time, moisture is also released outside the aircraft. That is,
Water is not left in the compressor regardless of the opening / closing speed of the intake control valve, and the generation of drain water can be prevented. In addition, since the discharge passage has an orifice, the rate of pressure drop in the oil separation / collector can be adjusted by adjusting the throttling ratio, and thus the opening / closing speed of the intake control valve can be adjusted. This makes it possible to increase the water release rate from the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第一,第二発明に係る油冷式スクリュ圧縮機
の全体構成図である。
FIG. 1 is an overall configuration diagram of an oil-cooled screw compressor according to first and second inventions.

【図2】 第一,第二発明における、吸気調節弁、圧力
スイッチ、モータの作動の相互関係を示す図である。
FIG. 2 is a diagram showing the interrelationship of the operation of the intake control valve, the pressure switch, and the motor in the first and second inventions.

【図3】 第三発明に係る油冷式スクリュ圧縮機の全体
構成図である。
FIG. 3 is an overall configuration diagram of an oil-cooled screw compressor according to a third invention.

【図4】 第三発明における吸気調節弁、圧力スイッ
チ、モータの作動の相互関係を示す図である。
FIG. 4 is a diagram showing the interrelationship of the operation of the intake control valve, the pressure switch, and the motor in the third invention.

【図5】 従来の油冷式圧縮機における油温の変動を示
す図である。
FIG. 5 is a diagram showing changes in oil temperature in a conventional oil-cooled compressor.

【符号の説明】[Explanation of symbols]

3 圧縮機本体 5 吸込流路 6 吸気調節弁 7 吐出口 18 第一流路 19 第二流路 27 圧力スイッチ 28 モータ 29 タイマ 31 断熱材 41 放気流路 42 オリフィス 43 開閉弁 3 Compressor Main Body 5 Suction Flow Path 6 Intake Control Valve 7 Discharge Port 18 First Flow Path 19 Second Flow Path 27 Pressure Switch 28 Motor 29 Timer 31 Heat Insulation Material 41 Exhaust Flow Path 42 Orifice 43 Open / Close Valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機本体と、吐出圧力が設定圧力より
も高くなると吸込流路を閉じる吸気調節弁と、上記圧縮
機本体の吐出口に連通させて設けた油分離回収器とを備
えた油冷式圧縮機において、油分離回収器の下部から、
この油分離回収器内の圧力よりも低い上記圧縮機本体内
のロータ室に至る油兼ドレン水戻し用第一流路と、上記
油分離回収器の出口部を形成するヘッダー部の下部から
この油分離回収器内の圧力よりも低い上記圧縮機本体内
のロータ室に至る油兼ドレン水戻し用第二流路と、上記
油分離回収器に接続した吐出流路に圧力検出可能に設
け、検出圧力が設定圧力よりも高い場合には、上記圧縮
機本体の駆動部を停止させるためのオフ信号を出力する
圧力スイッチと、この圧力スイッチと駆動部との間に介
在し、上記オフ信号を受けてから設定時間経過後に上記
駆動部に対して上記オフ信号を出力するタイマとを設け
て形成したことを特徴とする油冷式圧縮機。
1. A compressor main body, an intake control valve that closes a suction flow passage when the discharge pressure becomes higher than a set pressure, and an oil separation / collector provided in communication with the discharge port of the compressor main body. In the oil-cooled compressor, from the bottom of the oil separator
The oil / drain water return first flow path to the rotor chamber in the compressor body, which is lower than the pressure in the oil separation / recovery device, and the lower part of the header part forming the outlet of the oil separation / recovery device Pressure detection is provided in the second flow path for returning oil / drain water to the rotor chamber in the compressor body, which is lower than the pressure in the separation / recovery device, and the discharge flow path connected to the oil separation / recovery device. When the pressure is higher than the set pressure, a pressure switch that outputs an OFF signal for stopping the drive unit of the compressor body is interposed between the pressure switch and the drive unit to receive the OFF signal. The oil-cooled compressor is characterized in that it is provided with a timer that outputs the off signal to the drive unit after a set time has elapsed.
【請求項2】 上記ヘッダー部の外側を断熱材で覆った
ことを特徴とする請求項1に記載の油冷式圧縮機。
2. The oil-cooled compressor according to claim 1, wherein an outer surface of the header portion is covered with a heat insulating material.
【請求項3】 上記吐出流路に設けた逆止弁の出側に
て、この吐出流路から分岐し、かつオリフィス、および
その出側に上記タイマの作動中開状態にする開閉弁を有
する放気流路を設けたことを特徴とする請求項1または
2に記載の油冷式圧縮機。
3. An outlet side of a check valve provided in the discharge passage, and an orifice and an opening / closing valve for branching from the discharge passage and for opening the orifice during operation of the timer. The oil-cooled compressor according to claim 1 or 2, wherein an air discharge passage is provided.
JP25513091A 1991-09-26 1991-10-02 Oil-cooled compressor Expired - Lifetime JPH07117051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25513091A JPH07117051B2 (en) 1991-09-26 1991-10-02 Oil-cooled compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24744591 1991-09-26
JP3-247445 1991-09-26
JP25513091A JPH07117051B2 (en) 1991-09-26 1991-10-02 Oil-cooled compressor

Publications (2)

Publication Number Publication Date
JPH05141383A JPH05141383A (en) 1993-06-08
JPH07117051B2 true JPH07117051B2 (en) 1995-12-18

Family

ID=26538271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25513091A Expired - Lifetime JPH07117051B2 (en) 1991-09-26 1991-10-02 Oil-cooled compressor

Country Status (1)

Country Link
JP (1) JPH07117051B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7165949B2 (en) * 2004-06-03 2007-01-23 Hamilton Sundstrand Corporation Cavitation noise reduction system for a rotary screw vacuum pump
JP6126512B2 (en) * 2013-10-15 2017-05-10 株式会社神戸製鋼所 Compressor
CN113027766B (en) * 2021-03-10 2023-05-26 重庆奇螺流体设备有限公司 Oil gas cooler of variable-frequency oil injection screw air compressor and system thereof

Also Published As

Publication number Publication date
JPH05141383A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
JP6713439B2 (en) Refueling air compressor
US5165248A (en) Oil reclaim in a centrifugal chiller system
JP2530765B2 (en) Operating method of oil-cooled compressor
JPS6365835B2 (en)
JP6412992B2 (en) Oil-cooled air compressor
JP3262011B2 (en) Operating method of screw compressor and screw compressor
US5182919A (en) Oil recovery system for closed type centrifugal refrigerating machine
JP2006283649A (en) Compressor and its operation control method
JP5506830B2 (en) Screw compressor
US20040112679A1 (en) System and method for lubricant flow control in a variable speed compressor package
JP3384225B2 (en) Oil-cooled screw compressor and operating method thereof
JP4792383B2 (en) Operation method of screw compressor
JPH07117051B2 (en) Oil-cooled compressor
JP4214013B2 (en) Oil-cooled air compressor
TWI671467B (en) Liquid supply gas compressor
JP3914713B2 (en) Screw compressor operating method and screw compressor
JP5980754B2 (en) Oil-cooled air compressor and control method thereof
US11371534B2 (en) Compressor and method of operating same
WO2020235338A1 (en) Oil-cooled screw compressor
JPH05113191A (en) Compressor
JPH06300369A (en) Oil returning device for refrigerator with liquid-filled cooler
JPH0968183A (en) Oil-cooled positive-displacement compressor
JP3661003B2 (en) Refrigeration equipment
JPH0735067A (en) Oil-cooled screw compressor
JP2857780B2 (en) Oil recovery device for hermetic turbo chiller