JPH07116540B2 - Mold material for plastic molding - Google Patents

Mold material for plastic molding

Info

Publication number
JPH07116540B2
JPH07116540B2 JP2206063A JP20606390A JPH07116540B2 JP H07116540 B2 JPH07116540 B2 JP H07116540B2 JP 2206063 A JP2206063 A JP 2206063A JP 20606390 A JP20606390 A JP 20606390A JP H07116540 B2 JPH07116540 B2 JP H07116540B2
Authority
JP
Japan
Prior art keywords
thermal conductivity
plastic molding
plastic
weight percentage
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2206063A
Other languages
Japanese (ja)
Other versions
JPH0499140A (en
Inventor
養藏 熊谷
正▲吉▼ 海沼
茂夫 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2206063A priority Critical patent/JPH07116540B2/en
Publication of JPH0499140A publication Critical patent/JPH0499140A/en
Publication of JPH07116540B2 publication Critical patent/JPH07116540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラスチック製品を成形する際に使用する金型
の材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a material for a mold used for molding a plastic product.

〔従来の技術〕[Conventional technology]

従来プラスチック製品を成形する際に使用する金型の材
料としてFe系の材料がある。しかし、Fe系の材料は熱伝
導率が小さくプラスチック製品を成形する成形サイクル
を短縮し生産性を向上させる為に、熱伝導率の高い材料
が望まれており、熱伝導率の高い材料としてCu系の材料
が特開昭62−174341号公報に提案されている。
Fe-based materials have been used as materials for molds that have been conventionally used for molding plastic products. However, Fe-based materials have low thermal conductivity, and in order to shorten the molding cycle for molding plastic products and improve productivity, materials with high thermal conductivity are desired. A system material is proposed in Japanese Patent Laid-Open No. 174341/1987.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術のFe系の材料は、熱伝導率が小さく金型の
昇温・冷却に時間がかかりプラスチック製品を成形する
成形サイクルの短縮に限界があった。また金型の肉厚変
動部におけるプラスチックの凝固収縮孔(引け巣)の発
生を防止する為にFe系の材料より熱伝導率の高い材料を
肉厚変動部に使用し強制冷却を図る必要がある。したが
って、Fe系の材料より熱伝導率が高く、強度及び硬度が
Fe系の材料例えばS55Cと同等で、金型の加工を行なう放
電加工が実用上可能であることが望まれている。
The above-mentioned Fe-based materials of the prior art have small thermal conductivity, and it takes time to heat up and cool down the mold, and there is a limit in shortening the molding cycle for molding plastic products. Also, in order to prevent the occurrence of solidification shrinkage holes (shrinkage cavities) of the plastic in the thickness variation part of the mold, it is necessary to use a material with a higher thermal conductivity than the Fe-based material in the thickness variation part for forced cooling. is there. Therefore, it has higher thermal conductivity, strength and hardness than Fe-based materials.
It is desired that electric discharge machining, which is equivalent to Fe-based material such as S55C, for machining a die is practically possible.

上記特開昭62−174341号公報に提案されているCu系の材
料は、合金成分としてCrとCoを含んでおり、Crの添加量
0.6〜1.3wt%の範囲では強度は向上するが、上記公報に
記載された0.1〜0.5wt%の範囲では熱伝導率を低下させ
更に溶解中の選択酸化により鋳造欠陥の発生が多く熱間
加工性を低下させる。Coは結晶の微細化について効果が
あるものの熱伝導率の低下が著しい。
The Cu-based material proposed in the above-mentioned JP-A-62-174341 contains Cr and Co as alloy components, and the addition amount of Cr is
Although the strength is improved in the range of 0.6 to 1.3 wt%, the thermal conductivity is lowered in the range of 0.1 to 0.5 wt% described in the above publication, and moreover, casting defects often occur due to selective oxidation during melting. Reduce sex. Co has an effect on the refinement of crystals, but the thermal conductivity is remarkably reduced.

そのように従来技術は、熱伝導率について配慮がされて
おらず、プラスチック成形用金型材料としては問題があ
る。
As such, the prior art does not consider the thermal conductivity, and has a problem as a plastic molding die material.

本発明の目的は、優れた熱伝導性を保ちつつ放電加工性
を向上させ、プラスチック製品の肉厚変動部位における
凝固収縮孔の発生を防止するプラスチック成形用金型材
料を提供することにある。
An object of the present invention is to provide a metal mold material for plastic molding which improves electric discharge machinability while maintaining excellent thermal conductivity, and prevents solidification shrinkage holes from being generated in a wall thickness varying portion of a plastic product.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的は、重量百分率で、Ni3.0〜6.0、Si0.6〜1.5、
Al0.5〜2.0と、Zr0.03〜0.5、Ti0.1〜0.5とを含有し、
残りが実質的にCuからなるプラスチック成形用金型材料
を提供することにより達成される。
The above purpose is, in weight percentage, Ni3.0 to 6.0, Si0.6 to 1.5,
Contains Al0.5-2.0, Zr0.03-0.5, Ti0.1-0.5,
This is accomplished by providing a plastic molding die material, the remainder consisting essentially of Cu.

上記目的は、重量百分率で、Ni3.0〜6.0、Si0.6〜1.5、
Al0.5〜2.0、Zr0.03〜0.5を含有し、残りが実質的にCu
からなるプラスチック成形用金型材料を提供することに
より達成される。
The above purpose is, in weight percentage, Ni3.0 to 6.0, Si0.6 to 1.5,
Contains Al0.5-2.0, Zr0.03-0.5, the rest is substantially Cu
It is achieved by providing a plastic molding die material consisting of

上記目的は、重量百分率で、Ni3.0〜6.0、Si0.6〜1.5、
Al0.5〜2.0、Ti0.1〜0.5を含有し、残りが実質的にCuか
らなるプラスチック成形用金型材料を提供することによ
り達成される。
The above purpose is, in weight percentage, Ni3.0 to 6.0, Si0.6 to 1.5,
This is achieved by providing a plastic molding die material containing Al0.5 to 2.0, Ti0.1 to 0.5, and the rest substantially consisting of Cu.

〔作 用〕[Work]

先ず成分の添加理由を記述する。 First, the reason for adding the components will be described.

(1) Ni NiはSiと金属間化合物Ni2Siを形成し、固溶体化処理に
よって過飽和にCuの中に約8%のNi2Siを固溶させ強化
させることができる。その為、3.0%以上の含有が必要
であるが、6%を越えてもそれ以上のより高い効果が期
待できないので、6.0%以下とする。
(1) Ni Ni forms an intermetallic compound Ni 2 Si with Si, and by solid solution treatment, it is possible to supersaturate about 8% of Ni 2 Si in Cu for solid solution to strengthen it. Therefore, it is necessary to contain 3.0% or more, but even if it exceeds 6%, a higher effect cannot be expected, so 6.0% or less.

(2) Si SiはNiとNi2Siを形成し強度向上に重要である。残留Si
は地の強化を図る上で不可欠な元素であり、0.6%以上
必要であるが、1.5%を越える延性が低下するので、1.5
%以下とする。
(2) Si Si forms Ni and Ni 2 Si and is important for improving strength. Residual Si
Is an indispensable element for strengthening the ground, and it is required to be 0.6% or more, but the ductility exceeding 1.5% decreases, so 1.5
% Or less.

(3) Al Alは地の強化と耐酸化性、鏡面性を得るために不可欠な
元素であり、0.5%以上必要であるが、2.0%を越えても
より高い効果が得られないので、2.0%以下とする。
(3) Al Al is an indispensable element for strengthening the soil, oxidation resistance, and mirror surface property. It is necessary to be 0.5% or more, but even if it exceeds 2.0%, a higher effect cannot be obtained, so 2.0 % Or less.

(4) Zr Zrの添加によって再結晶温度を560℃迄上昇させること
ができ、繰返し熱疲労強度を向上させるのに不可欠な成
分であり、0.03%以上必要であるが0.5%を越えると鋳
造性の悪化が著しくなるので、0.5%以下とする。
(4) Addition of Zr and Zr can raise the recrystallization temperature to 560 ° C, which is an essential component for improving cyclic thermal fatigue strength. It is necessary to add 0.03% or more, but if it exceeds 0.5%, the castability is increased. However, it will be 0.5% or less.

(5) Ti Tiは結晶の微細化を図り、さらに熱間加工性を向上させ
るのに不可欠な元素であり、0.1%以上必要であるが、
0.5%を越えてもそれ以上の効果が得られないので、0.5
%以下とする。
(5) Ti Ti is an element indispensable for refining crystals and improving hot workability, and 0.1% or more is necessary,
Even if it exceeds 0.5%, no further effect can be obtained, so 0.5
% Or less.

〔実施例〕〔Example〕

実施例1 表1は組成を特定範囲内で種々変えた例である。本実施
例は溶製した各インゴットに対して760℃〜890℃で鍛錬
比4の熱間鋳造を施した後900℃で保持後5℃/secの冷
却速度で、溶体化処理し、450℃で時効処理を行ったも
のである。
Example 1 Table 1 is an example in which the composition was variously changed within a specific range. In this example, each molten ingot was subjected to hot casting at a forging ratio of 4 at 760 ° C. to 890 ° C., then held at 900 ° C., and solution treated at a cooling rate of 5 ° C./sec to 450 ° C. It has been subjected to aging treatment in.

実施例2 表2は実施例1の元素Zrに代えてTiを含み、組成を特定
範囲内で種々変えた例である。本実施例は溶製した各イ
ンゴットに対して760℃〜950℃の温度に加熱後鍛錬比4
の熱間鋳造を施した後900℃で保持後5℃/secの冷却速
度で、溶体化処理し、450℃で時効処理を行ったもので
ある。
Example 2 Table 2 is an example in which the element Zr of Example 1 was replaced with Ti and the composition was variously changed within a specific range. In this example, for each molten ingot, the wrought ratio was 4 after heating to a temperature of 760 ° C to 950 ° C.
After hot casting, it was held at 900 ° C., solution-treated at a cooling rate of 5 ° C./sec, and then aged at 450 ° C.

なおZrとTiを同時に添加すると、繰返し熱疲労強度が向
上し、結晶が微細化しさらに熱間加工性が向上する。
When Zr and Ti are added at the same time, the cyclic thermal fatigue strength is improved, the crystal is made finer, and the hot workability is further improved.

実施例3 第1図は表3に示した組成を有する合金を実施例1と同
じ条件で製造し、放電加工速度試験結果を示したもので
ある。
Example 3 FIG. 1 shows the results of electrical discharge machining rate tests, in which alloys having the compositions shown in Table 3 were manufactured under the same conditions as in Example 1.

図中の点線は放電加工時の負荷電流が28Aの場合で、実
線は12Aの場合である。図に示すように、本発明合金は
比較例に比べ約2倍の加工速度を有することが分る。
The dotted line in the figure shows the case where the load current during electric discharge machining is 28 A, and the solid line shows the case where it is 12 A. As shown in the figure, it can be seen that the alloy of the present invention has a processing speed about twice that of the comparative example.

なお、放電加工の加工条件は下記のとおりである。 The machining conditions for electric discharge machining are as follows.

放電加工機:日立精工社のH−3Q型 放電電極:純銅 加工電圧:約60V 噴流圧力:0.2Kgf/cm2 第2図は第1図と同じ加工条件における電極消耗率試験
結果である。以上の結果から明らかなように本実施例の
合金は加工速度が大きく電極消耗率も比較例に比べ著し
く小さい。
EDM: Hitachiseiko's H-3Q type discharge electrodes: pure copper machining voltage: about 60V Jet pressure: 0.2 kgf / cm 2 Fig. 2 is an electrode wear rate test results at the same processing conditions as the first FIG. As is clear from the above results, the alloy of this example has a high processing speed and the electrode wear rate is significantly smaller than that of the comparative example.

第3図は熱伝導率と放電加工深さの関係を示す図表で熱
伝導率が低くなると放電加工深さは大きくなる。むやみ
に熱伝導率を高めることは金型の加工性を低下させるの
で本発明では0.25Cal/cm・sec℃を目標としている。特
に、0.1〜0.25Cal/cm・sec℃が好ましい。
FIG. 3 is a graph showing the relationship between the thermal conductivity and the electric discharge machining depth. The lower the thermal conductivity, the greater the electric discharge machining depth. Since increasing the thermal conductivity unnecessarily reduces the workability of the mold, the present invention aims at 0.25 Cal / cm · sec ° C. Particularly, 0.1 to 0.25 Cal / cm · sec ° C. is preferable.

第4図はCu−Ni2Si凝二元系状態図でCu中の残留Ni2Siと
温度の関係を示す。
Figure 4 is a Cu-Ni 2 Si ternary phase diagram showing the relationship between residual Ni 2 Si in Cu and temperature.

実施例4 組成が重量百分率で、Ni4、Al1、Zr0.1を含有し残りがC
uからなる場合に、添加するSiの量が0.5%以上になると
第5図に示すように熱伝導度が0.22Cal/cm・sec℃とな
る。
Example 4 The composition is a weight percentage and contains Ni4, Al1 and Zr0.1 with the balance being C
When the amount of Si added is 0.5% or more in the case of U, the thermal conductivity becomes 0.22 Cal / cm · sec ° C as shown in Fig. 5.

実施例5 組成が重量百分率で、Ni4、Si1、Zr0.1を含有し残りがC
uからなる場合に、添加するAlの量が4.0%以上になると
第6図に示すように熱伝導度が0.2Cal/sec・cm℃とな
る。
Example 5 The composition is a weight percentage and contains Ni4, Si1 and Zr0.1, and the rest is C.
When the amount of Al added is 4.0% or more in the case of U, the thermal conductivity becomes 0.2 Cal / sec · cm ° C as shown in Fig. 6.

実施例6 組成が重量百分率で、Ni4.2、Si1、Al0.7を含有し残り
がCuからなる場合に、添加するTiの量が0.1%以上にな
ると第7図に示すように結晶粒度が微細になる。
Example 6 When the composition is a weight percentage and Ni4.2, Si1 and Al0.7 are contained and the balance is Cu, when the amount of Ti added is 0.1% or more, the grain size is as shown in FIG. It becomes fine.

実施例7 表4はZr、Tiを含む組成を特定範囲内で種々変えた例で
ある。溶製した各インゴットを鋳造後皮剥きし、760〜9
50℃の温度に加熱して鍛錬比4で鋳造加工し、900℃に
保持後5℃/Secの冷却速度で溶体化処理し、その後450
℃で時効処理を行ったものである。
Example 7 Table 4 is an example in which the composition containing Zr and Ti was variously changed within a specific range. After casting each molten ingot, peel it off,
It is heated to a temperature of 50 ° C, cast at a forging ratio of 4, held at 900 ° C, solution-treated at a cooling rate of 5 ° C / Sec, and then 450
It is aged at ℃.

実施例7によるプラスチック成形用金型材料はZrを含む
ことにより繰返し熱疲労強度が向上し、Tiを含むことに
より結晶が微細化する。
The plastic molding die material of Example 7 contains Zr to improve the repeated thermal fatigue strength, and contains Ti to refine the crystal.

本実施例によれば、強度が従来使用されている鋼系材料
とほぼ同等であるのに対し、熱伝導率が約3倍であるた
め、プラスチック成形のタクトアップに大きな効果があ
る。
According to the present embodiment, the strength is almost the same as that of the steel-based material used conventionally, but the thermal conductivity is about 3 times, so that there is a great effect in improving the tact time of plastic molding.

また、肉厚変動の大きいプラスチック製品の金型で、製
品肉厚の大きい部位に入れ子材として、使用し強制冷却
することによって肉厚変動差を緩和できるので有効であ
る。
In addition, it is effective in a mold of a plastic product having a large variation in wall thickness because it can be used as a nesting material in a portion having a large product thickness and forcibly cooled to reduce the difference in wall thickness variation.

〔発明の効果〕〔The invention's effect〕

本願発明によればプラスチック成形用金型材料におい
て、Cr及びCoを排除した特定の材料にZr、Tiを添加する
ことで、優れた熱伝導性を保ちつつ放電加工性を向上さ
せる効果が得られる。
According to the present invention, in a plastic molding die material, by adding Zr and Ti to a specific material excluding Cr and Co, an effect of improving electrical discharge machinability while maintaining excellent thermal conductivity can be obtained. .

また、熱伝導性の向上により、プラスチック製品の肉厚
変動部位に生じやすい凝固収縮孔の発生を防止する効果
が得られる。
Further, the improvement of the thermal conductivity has an effect of preventing the formation of solidification shrinkage holes which are likely to occur in the wall thickness varying portion of the plastic product.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係るCu系の材料を放電加工す
る時のパルスオンタイムと加工速度の関係を示した図
表、第2図は本発明の実施例に係るCu系の材料を放電加
工する時のパルスオンタイムと電極消耗率の関係を示し
た図表、第3図は熱伝導率と放電加工深さの関係を示し
た図表、第4図は本発明の実施例に係るCu−NiSi凝二元
状態図、第5図は本発明の実施例に係るCu系の材料に添
加したSiと熱伝導率の関係を示した図表、第6図は本発
明の実施例に係るCu系の材料に添加したAlと熱伝導率の
関係を示した図表、第7図は本発明の実施例に係るCu系
の材料に添加したTiと結晶粒相対値の関係を示した図表
である。
FIG. 1 is a table showing the relationship between the pulse on-time and the machining speed during electric discharge machining of Cu-based materials according to the embodiments of the present invention, and FIG. 2 shows the Cu-based materials according to the embodiments of the present invention. A chart showing the relationship between the pulse on-time and the electrode wear rate during electric discharge machining, FIG. 3 is a chart showing the relationship between thermal conductivity and electric discharge machining depth, and FIG. 4 is Cu according to an embodiment of the present invention. -NiSi solid phase diagram, Fig. 5 is a diagram showing the relationship between Si added to the Cu-based material according to the embodiment of the present invention and the thermal conductivity, and Fig. 6 is Cu according to the embodiment of the present invention. FIG. 7 is a chart showing the relationship between Al added to the system materials and the thermal conductivity, and FIG. 7 is a chart showing the relationship between Ti added to the Cu materials and the relative values of the crystal grains according to the embodiment of the present invention. .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−179839(JP,A) 特開 昭63−266033(JP,A) 特開 昭59−133357(JP,A) 特開 昭62−174341(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-179839 (JP, A) JP-A-63-266033 (JP, A) JP-A-59-133357 (JP, A) JP-A-62- 174341 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量百分率で、Ni3.0〜6.0、Si0.6〜1.5、
Al0.5〜2.0と、Zr0.03〜0.5、Ti0.1〜0.5とを含有し、
残りが実質的にCuからなることを特徴とするプラスチッ
ク成形用金型材料。
1. A weight percentage of Ni3.0-6.0, Si0.6-1.5,
Contains Al0.5-2.0, Zr0.03-0.5, Ti0.1-0.5,
A plastic molding die material, wherein the remainder is substantially made of Cu.
【請求項2】重量百分率で、Ni3.0〜6.0、Si0.6〜1.5、
Al0.5〜2.0と、Zr0.03〜0.5を含有し、残りが実質的にC
uからなることを特徴とするプラスチック成形用金型材
料。
2. By weight percentage, Ni3.0-6.0, Si0.6-1.5,
Contains Al0.5-2.0 and Zr0.03-0.5, the rest is substantially C
A plastic molding die material characterized by comprising u.
【請求項3】重量百分率で、Ni3.0〜6.0、Si0.6〜1.5、
Al0.5〜2.0、Ti0.1〜0.5を含有し、残りが実質的にCuか
らなることを特徴とするプラスチック成形用金型材料。
3. By weight percentage, Ni3.0-6.0, Si0.6-1.5,
A plastic molding die material containing Al0.5 to 2.0 and Ti0.1 to 0.5, and the rest substantially consisting of Cu.
JP2206063A 1990-08-03 1990-08-03 Mold material for plastic molding Expired - Lifetime JPH07116540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2206063A JPH07116540B2 (en) 1990-08-03 1990-08-03 Mold material for plastic molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2206063A JPH07116540B2 (en) 1990-08-03 1990-08-03 Mold material for plastic molding

Publications (2)

Publication Number Publication Date
JPH0499140A JPH0499140A (en) 1992-03-31
JPH07116540B2 true JPH07116540B2 (en) 1995-12-13

Family

ID=16517236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2206063A Expired - Lifetime JPH07116540B2 (en) 1990-08-03 1990-08-03 Mold material for plastic molding

Country Status (1)

Country Link
JP (1) JPH07116540B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764556B2 (en) * 2002-05-17 2004-07-20 Shinya Myojin Copper-nickel-silicon two phase quench substrate
US7291231B2 (en) 2002-05-17 2007-11-06 Metglas, Inc. Copper-nickel-silicon two phase quench substrate
US20130333812A1 (en) * 2010-12-13 2013-12-19 Tohoku Techno Arch Co., Ltd. Copper alloy and process for producing copper alloy
US9476474B2 (en) 2010-12-13 2016-10-25 Nippon Seisen Co., Ltd. Copper alloy wire and copper alloy spring

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133357A (en) * 1983-01-19 1984-07-31 Hitachi Metals Ltd Prehardened material for metallic mold for molding plastic
JPH0238653B2 (en) * 1986-01-27 1990-08-31 Kobe Steel Ltd PURASUCHITSUKUKANAGATAYODOGOKINOYOBISONOSEIZOHOHO
JPS63266033A (en) * 1987-04-23 1988-11-02 Mitsubishi Electric Corp Copper alloy
JPH02179839A (en) * 1988-12-29 1990-07-12 Kobe Steel Ltd High strength copper alloy having excellent impact resistance

Also Published As

Publication number Publication date
JPH0499140A (en) 1992-03-31

Similar Documents

Publication Publication Date Title
EP1778887B1 (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
JP4951343B2 (en) Sn-containing copper alloy and method for producing the same
KR100360131B1 (en) Method for improving the bendability of copper alloy and copper alloy manufactured therefrom
US6306342B2 (en) Aluminum casting alloy
EP3954798B1 (en) Die-cast aluminum alloy, preparation method therefor, and structural member for communication product
US20220090234A1 (en) Foundry Alloys for High-Pressure Vacuum Die Casting
JP4801386B2 (en) Aluminum alloy plastic processed product, manufacturing method thereof, automotive parts, aging furnace, and aluminum alloy plastic processed product manufacturing system
JP3764200B2 (en) Manufacturing method of high-strength die-cast products
US6309481B1 (en) Aluminum casting alloy
JP3808264B2 (en) Aluminum alloy casting processed plastically, manufacturing method of aluminum alloy casting, and fastening method using plastic deformation
RU2002131254A (en) DISPERSION-HARDING COPPER ALLOY AS A MATERIAL FOR PRODUCING CASTING FORMS
JP2001288517A (en) Cu-BASED ALLOY, CASTING HAVING HIGH STRENGTH AND HIGH THERMAL CONDUCTIVITY USING THE SAME AND METHOD FOR PRODUCING CASTING
JPH0440418B2 (en)
JP2011063885A (en) Method for producing plastic worked article made of aluminum alloy
JPH0718354A (en) Copper alloy for electronic appliance and its production
JPH07116540B2 (en) Mold material for plastic molding
US2157934A (en) Copper-magnesium alloys of improved properties
JPS6132386B2 (en)
JP3852915B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
US6565681B1 (en) Age-hardenable copper alloy casting molds
JP7438134B2 (en) Al-Mg-Si-Mn-Fe casting alloy
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
JP5688744B2 (en) High strength and high toughness copper alloy forging
EP3138933A1 (en) Heat radiator fin comprising aluminum alloy and method for manufacturing same
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 15