JPH07114902B2 - Filter for removing combustible particles and nitrogen oxides - Google Patents

Filter for removing combustible particles and nitrogen oxides

Info

Publication number
JPH07114902B2
JPH07114902B2 JP32482487A JP32482487A JPH07114902B2 JP H07114902 B2 JPH07114902 B2 JP H07114902B2 JP 32482487 A JP32482487 A JP 32482487A JP 32482487 A JP32482487 A JP 32482487A JP H07114902 B2 JPH07114902 B2 JP H07114902B2
Authority
JP
Japan
Prior art keywords
filter
passage
exhaust gas
wall
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32482487A
Other languages
Japanese (ja)
Other versions
JPH01168311A (en
Inventor
秀昭 村木
四郎 近藤
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP32482487A priority Critical patent/JPH07114902B2/en
Publication of JPH01168311A publication Critical patent/JPH01168311A/en
Publication of JPH07114902B2 publication Critical patent/JPH07114902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関,特に自動車の排気ガス中に含まれる
カーボン等の可燃性微粒子並びに窒素酸化物を同時に除
去するためのフィルターに関する。
Description: TECHNICAL FIELD The present invention relates to a filter for simultaneously removing combustible fine particles such as carbon and nitrogen oxides contained in exhaust gas of an internal combustion engine, especially an automobile.

〔従来技術〕[Prior art]

ディーゼルエンジンの排気ガス中に含まれるカーボン等
の可燃性微粒子を除去するために,排気系にフィルター
を用いることは公知である。しかし,このフィルターに
は,長時間の使用により可燃性微粒子が堆積し目詰まり
を起こし,圧力損失を生ずる。
It is known to use a filter in an exhaust system in order to remove combustible fine particles such as carbon contained in the exhaust gas of a diesel engine. However, when used for a long time, combustible fine particles are deposited on the filter, which causes clogging and pressure loss.

そこで,従来はこの欠点を解消するものとして,フィル
ターの微粒子補足部位にニクロム線ヒータ或いは発熱金
属層を組み合わせて通電加熱するように構成したフィル
ターが提案されている(特開昭58-74121)。また,上記
補足部位に燃料を噴射して燃料の燃焼熱により可燃性微
粒子を加熱したり,高圧電極を設けて火花放電により加
熱する提案もなされている。これらは,上記加熱により
可燃性微粒子を焼却し,目詰まりを防ぐものである。ま
た,バナジン酸銀触媒を担持したフィルター(特開昭58
-84042),更には酸化リチウム,塩化銅,アルカリ金属
を有する五酸化バナジウム,リチウム,ナトリウム,カ
リウムまたはセリウムのバナジン酸塩,またはカリウム
または銀の過レニウム酸塩から選んだ1種または2種以
上を担持したフィルター(特開昭59-49825)が提案され
ている。
Therefore, in order to solve this drawback, there has been proposed a filter constituted by combining a nichrome wire heater or a heat-generating metal layer in the fine particle capturing portion of the filter for heating by energization (Japanese Patent Laid-Open No. 58-74121). In addition, it has been proposed to inject fuel into the supplementary portion to heat combustible fine particles by the combustion heat of the fuel, or to provide a high-voltage electrode to heat by spark discharge. These are for burning inflammable fine particles by the above heating to prevent clogging. In addition, a filter carrying a silver vanadate catalyst (Japanese Patent Laid-Open No. 58-86
-84042), and one or more selected from lithium oxide, copper chloride, vanadium pentoxide having an alkali metal, vanadate of lithium, sodium, potassium or cerium, or perrhenate of potassium or silver. A filter that carries (Japanese Patent Laid-Open No. 59-49825) has been proposed.

一方,上記排気ガス中には上記可燃性微粒子の外に窒素
酸化物(NOx)も含有されており,該窒素酸化物を除去
するための努力もなされている。
On the other hand, the exhaust gas contains nitrogen oxides (NOx) in addition to the combustible fine particles, and efforts are being made to remove the nitrogen oxides.

〔解決すべき問題点〕[Problems to be solved]

しかしながら,これら従来技術はいずれも,可燃性微粒
子又は窒素酸化物をそれぞれ単独に除去することについ
ては,その効果を発揮するが,可燃性微粒子と窒素酸化
物の両者を同時に除去することができない。
However, all of these conventional techniques are effective in removing the combustible particles or the nitrogen oxides individually, but cannot remove both the combustible particles and the nitrogen oxides at the same time.

また,可燃性微粒子除去用のフィルターと,窒素酸化物
除去用の触媒コンバーターとを用い,これらに排気ガス
を順次送入して可燃性微粒子と窒素酸化物とをそれぞれ
除去することも提案されている(特公昭62-41054)。
It has also been proposed to use a filter for removing combustible particles and a catalytic converter for removing nitrogen oxides, and to sequentially send exhaust gas to these to remove combustible particles and nitrogen oxides, respectively. Yes (Japanese public Sho 62-41054).

しかし,かかる手段は,フィルターと触媒コンバータの
2つの装置を必要とし,コンパクト化,軽量化を進めて
いる自動車技術にとっては好ましいことではない。
However, such means requires two devices, a filter and a catalytic converter, and is not preferable for the automobile technology that is progressing to be compact and lightweight.

本発明は,かかる問題に鑑みてなされたもので,排気ガ
ス中の可燃性微粒子及び窒素酸化物を同時に除去するこ
とができるフィルターを提供しようとするものである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a filter that can simultaneously remove combustible fine particles and nitrogen oxides in exhaust gas.

〔問題点の解決手段〕[Means for solving problems]

本発明は,排気ガスの流入側から流出側に向かって濾過
壁により区切られた多数の通路を有すると共に,該通路
はその流出側を閉塞した送入通路とその流入側を閉塞し
た排出通路とからなり,送入通路は少なくとも1つの排
出通路と上記濾過壁を共有し,かつ該濾過壁は送入通路
から排出通路に排気ガスが通過する通孔を有してなり,
また上記送入通路側の濾過壁には銅とアルミナからなる
触媒部分を,一方上記排出通路側のアルミナ濾過壁には
銅とゼオライトとからなる触媒成分をそれぞれ担持して
なることを特徴とする可燃性微粒子並びに窒素酸化物を
除去するためのフィルターにある。
The present invention has a large number of passages divided by a filter wall from the inflow side of exhaust gas toward the outflow side, and the passages include an inflow passage closed on the outflow side and an exhaust passage closed on the inflow side. The inlet passage shares the filter wall with at least one outlet passage, and the inlet wall has a through hole through which exhaust gas passes from the inlet passage to the outlet passage.
Further, the catalyst wall composed of copper and alumina is carried on the filtration wall on the side of the inlet passage, while the catalyst component composed of copper and zeolite is carried on the alumina filter wall on the side of the discharge passage. It is a filter for removing combustible particles and nitrogen oxides.

本発明にかかるフィルターは,まず送入通路と排出通路
とが排気ガスの流入側から流出側に向かって設けた多数
の濾過壁によって区画されている。即ち,このフィルタ
ーはその軸方向に沿った多数の通路を有する筒状体であ
る。そして,送入通路は少なくとも1つの排出通路と上
記濾過壁を共有している。つまり,送入通路に入った排
気ガスが必ず濾過壁を通って排出通路に出る構造となっ
ている。そのため,この濾過壁は,排気ガスが通過する
通孔を有している。なお,該通孔には,可燃性微粒子が
補足されることもある。
In the filter according to the present invention, first, the inlet passage and the outlet passage are divided by a large number of filtration walls provided from the exhaust gas inflow side toward the outflow side. That is, this filter is a cylindrical body having a large number of passages along its axial direction. The inlet passage shares the filter wall with at least one outlet passage. In other words, the structure is such that the exhaust gas that enters the inlet passage always goes out to the exhaust passage through the filter wall. Therefore, this filter wall has a through hole through which exhaust gas passes. The through holes may be supplemented with combustible fine particles.

しかして,上記送入通路と排出通路との形成は,実施例
の第1〜第3図に示すごとく,まず多数の通路を有する
筒状体を作り,その通路の一方側を,例えばいわゆる市
松模様となるように1個置きに閉塞する。次いで,他側
において,上記閉塞をしなかった通路を閉塞する。これ
により,一方側において閉塞しなかった通路が送入通路
となり,他方側において閉塞しなかった通路が排出通路
となる。
Therefore, as shown in FIGS. 1 to 3 of the embodiment, first, a tubular body having a large number of passages is formed, and one side of the passage is formed, for example, in a so-called checkered pattern. Close every other so that it becomes a pattern. Then, on the other side, the passage that was not closed is closed. As a result, the passage that is not blocked on one side becomes the feed passage, and the passage that is not blocked on the other side becomes the discharge passage.

また,上記濾過壁は本発明のフィルターの骨格とも言う
べきもので,コーディエライト,アルミナ,アルミナ・
シリカ等のセラミックス粉末焼結体などにより構成す
る。しかして,かかる濾過壁は小さい通孔を有してお
り,後述するごとく送入通路側の触媒成分でまだ除去さ
れていない可燃性微粒子の多くを補足し,該触媒成分に
よって若干の時間を要して除去される。上記通孔として
は,0,1〜50μmとすることが好ましい。0.1μm未満で
は,可燃性微粒子による目詰まりが大きく,また50μm
を越えると可燃性微粒子を補足し難く,また窒素酸化物
の除去(浄化)効果も低下する。
Further, the above-mentioned filter wall should be called the skeleton of the filter of the present invention, and it is made of cordierite, alumina, alumina.
It is composed of a ceramic powder sintered body such as silica. However, such a filtration wall has small through holes, and as described later, it supplements most of the combustible fine particles that have not yet been removed by the catalyst component on the inlet passage side, and it takes some time depending on the catalyst component. Then removed. The through holes are preferably 0.1 to 50 μm. If it is less than 0.1 μm, it will be clogged with combustible particles and is 50 μm.
If it exceeds the range, it becomes difficult to capture combustible particles, and the effect of removing (purifying) nitrogen oxides also decreases.

次に,上記送入通路側の濾過壁には銅とアルミナからな
る触媒成分を担持する。ここにアルミナは,粉末状態の
ものを用い,これを上記濾過壁に付着させる。そして,
該アルミナ粉末の層に上記銅(Cu)を含浸させることに
より,銅とアルミナからなる触媒成分を担持させる。上
記アルミナ粉末の平均粒径は4〜10μmとすることが好
ましい。また,このCuとアルミナからなる触媒成分の担
持はフィルター1に対して1〜50g/lとすることが好
ましい。Cuの含浸は,後述する銅−ゼオライト触媒成分
の担持におけるCuの含浸と同時に行うことができる。ま
た,上記銅は,金属銅又は酸化銅(CuO)の状態いずれ
でも良い。
Next, a catalyst component composed of copper and alumina is carried on the filtration wall on the side of the inlet passage. The alumina used here is in the form of powder and is attached to the filtration wall. And
By impregnating the layer of alumina powder with the above-mentioned copper (Cu), a catalyst component composed of copper and alumina is supported. The average particle size of the alumina powder is preferably 4 to 10 μm. Further, it is preferable that the catalyst component composed of Cu and alumina is loaded on the filter 1 at 1 to 50 g / l. The impregnation of Cu can be performed at the same time as the impregnation of Cu in supporting the copper-zeolite catalyst component described later. The copper may be in the state of metallic copper or copper oxide (CuO).

また,上記濾過壁において,その排出通路側にはCuとゼ
オライトとからなる触媒成分を担持する。このCuは,上
記と同様である。該触媒成分の構成は,Cuをゼオライト
にイオン交換担持すること等により行う。また,このCu
とゼオライトとからなる触媒成分の担持は,上記濾過壁
によって構成されるフィルター1に対して5〜300g/l
とすることが好ましい。
In addition, a catalyst component composed of Cu and zeolite is carried on the exhaust passage side of the filtration wall. This Cu is the same as above. The catalyst component is constituted by, for example, supporting Cu on the zeolite by ion exchange. Also, this Cu
The catalyst component composed of zeolite and zeolite is loaded in an amount of 5 to 300 g / l with respect to the filter 1 constituted by the filtration wall.
It is preferable that

また,Cuと共に用いるゼオライトは,沸石とも呼ばれ,
化学組成は長石類または准長石類に類似し,一般式Wm Z
n O2n・s H2O〔ここに,WはNa,Ca,K,Ba又はSr,ZはSi+Al
(Si:Al>1),sは一定しない〕で示される含水珪酸塩
である。
Zeolites used with Cu are also called zeolites,
The chemical composition is similar to that of feldspars or sub-feldspars and has the general formula Wm Z
n O 2 n ・ s H 2 O [W is Na, Ca, K, Ba or Sr, Z is Si + Al
(Si: Al> 1), s is not constant].

しかして,該触媒成分は,ゼオライトとCuとを混合する
こと或いはゼオライトにCuをイオン交換担持すること等
により調製する。このイオン交換担持は,実施例にも示
すごとく,酢酸銅,硝酸銅等の銅水溶液中にゼオライト
層を漬浸、乾燥することなどにより行う。これにより,
ゼオライト中のNa或いはアルカリなどの元素がCuとイオ
ン交換する。また,このときのイオン交換率は50ないし
100%とすることが好ましい。50%未満では,本発明の
効果が得られ難いからである。ここに,Cuのイオン交換
率とは,一価のCuがゼオライト中のNa或いはアルカリ等
の元素と交換した量をいう。
Therefore, the catalyst component is prepared by mixing zeolite and Cu, or by carrying out ion exchange loading of Cu on the zeolite. This ion-exchange loading is carried out by dipping the zeolite layer in an aqueous copper solution such as copper acetate or copper nitrate and drying, as shown in the examples. By this,
Elements such as Na or alkali in zeolite undergo ion exchange with Cu. The ion exchange rate at this time is 50 or
It is preferably 100%. If it is less than 50%, it is difficult to obtain the effect of the present invention. Here, the ion exchange rate of Cu means the amount of monovalent Cu exchanged with elements such as Na or alkali in the zeolite.

更に,濾過壁上に該触媒成分を担持する方法としては,
例えばまず濾過壁上にゼオライト粉末の多孔質体層をコ
ーティングし,その後,これらを上記のごとく酢酸銅等
の銅水溶液中に漬浸しCuをイオン交換担持することなど
により行う。
Further, as a method of supporting the catalyst component on the filtration wall,
For example, the filtration wall is first coated with a porous layer of zeolite powder, and then these are immersed in a copper aqueous solution such as copper acetate as described above to carry out ion exchange loading of Cu.

なお,本発明のフィルターは200〜800℃において用いる
ことが好ましい。また,フィルターへ導入する排気ガス
の空間速度としては,GHSV0〜10万/時とすることが好ま
しい。
The filter of the present invention is preferably used at 200 to 800 ° C. Further, the space velocity of the exhaust gas introduced into the filter is preferably GHSV 0 to 100,000 / hour.

また,本発明のフィルターにおいては,可燃性微粒子の
燃焼除去は,主としてCuとアルミナとの存在により低温
で行うことができるので,フィルターの周囲などに特に
燃焼加熱用の加熱器を設ける必要はない。しかし,必要
に応じて,かかる加熱器を設けることもできる。
Further, in the filter of the present invention, combustion removal of combustible fine particles can be carried out at a low temperature mainly due to the presence of Cu and alumina. Therefore, it is not necessary to provide a heater for combustion heating especially around the filter. . However, such a heater can be provided if desired.

〔作用及び効果〕[Action and effect]

発明においては,触媒成分として送入通路側に銅(Cu)
とアルミナを,排出通路側にCuとゼオライトとを設けて
いるので,排気ガス中の可燃性微粒子を低温において燃
焼除去することができると共に,上記触媒成分により排
気ガス中の窒素酸化物(NOx)を高能率で除去すること
ができる。
In the present invention, copper (Cu) is added as a catalyst component to the inlet passage side.
And alumina and Cu and zeolite are provided on the exhaust passage side, combustible particles in exhaust gas can be burned and removed at low temperature, and nitrogen oxides (NOx) in exhaust gas can be removed by the above catalyst components. Can be removed with high efficiency.

即ち,上記可燃性微粒子の除去は,排気ガスの熱と排気
ガス中の酸素とによる自然発火により,燃焼することに
より行う。そして,このときの燃焼温度は350℃程度の
低温においても行うことができる。これは上記のごと
く,主としてCuとアルミナとからなる触媒成分によって
促進される。
That is, the above-mentioned combustible particles are removed by burning by the spontaneous ignition of the heat of the exhaust gas and the oxygen in the exhaust gas. The combustion temperature at this time can be performed even at a low temperature of about 350 ° C. As described above, this is promoted by the catalyst component mainly composed of Cu and alumina.

またNOxの除去は,主として排気ガス中の炭化水素とNOx
とを反応させて,N2,CO2,H2O等の成分に分解すること
により行われる。しかして,このNOx除去反応は主とし
てCuとゼオライトとからなる触媒成分によって促進され
る。
In addition, the removal of NOx mainly involves the hydrocarbons and NOx in the exhaust gas.
It is carried out by reacting with and decomposing into components such as N 2 , CO 2 , H 2 O and the like. Thus, this NOx removal reaction is promoted mainly by the catalyst component consisting of Cu and zeolite.

しかして,上記2種類の同時除去は,排気ガスが先ず送
入通路の濾過壁においてCuとアルミナとの触媒成分と接
触することにより可燃性微粒子を,そして排気ガスが濾
過壁を通過して排出通路側の濾過壁におけるCuとゼオラ
イトとの触媒成分と接触することによりNOxを除去する
ことにより行われる。
Therefore, in the two types of simultaneous removal described above, exhaust gas first discharges combustible particles by contact with catalytic components of Cu and alumina on the filter wall of the inlet passage, and exhaust gas passes through the filter wall and is discharged. It is carried out by removing NOx by contacting the catalyst components of Cu and zeolite on the filter wall on the passage side.

したがって,本発明によれば,排気ガス中の可燃性微粒
子及び窒素酸化物を同時に除去することができる。ま
た,その除去は350℃程度という低温において可能であ
る。また,そのために,従来のごとく可燃性微粒子及び
窒素酸化物をそれぞれ除去するための2個の除去装置を
必要とせず,装置がコンパクト,軽量となる。
Therefore, according to the present invention, the combustible fine particles and the nitrogen oxides in the exhaust gas can be simultaneously removed. The removal is possible at a low temperature of about 350 ℃. Further, for that reason, it is not necessary to use two removing devices for respectively removing the combustible fine particles and the nitrogen oxide as in the conventional case, and the device becomes compact and lightweight.

また,可燃性微粒子の除去は前記のごとく排気ガス中の
酸素と反応(燃焼)させることにより行うものであるた
め,その反応雰囲気は酸化過剰下である。一方,窒素酸
化物の除去は,周知のごとく還元反応であるため,かか
る酸素過剰下では充分に行われないのが普通である。し
かるに,本発明は酸素過剰下における可燃性微粒子と窒
素酸化物の同時除去を達成するものであり,注目すべき
ものである。
Further, since the combustible fine particles are removed by reacting (combusting) with oxygen in the exhaust gas as described above, the reaction atmosphere is under excessive oxidation. On the other hand, since the removal of nitrogen oxides is a reduction reaction as is well known, it is usually not sufficiently performed under such excess oxygen. However, the present invention achieves simultaneous removal of combustible fine particles and nitrogen oxides in the presence of excess oxygen, and is remarkable.

〔実施例〕〔Example〕

コーディエライト製フィルター担体の濾過壁に,その送
入通路側にCuとアルミナの触媒成分を,その排出通路側
にCuとゼオライトの触媒成分を担持したフィルターを作
製し,次いで該フィルターにディーゼルエンジンの排気
ガスを送入して,可燃性微粒子及び窒素酸化物の除去テ
ストを行った。また,比較フィルターについても同様の
テストを行った。
The filter wall of the cordierite filter carrier was provided with a catalyst component of Cu and alumina on the side of its inlet passage and a catalyst component of Cu and zeolite on its side of its outlet passage. Exhaust gas was sent in to test the removal of combustible particles and nitrogen oxides. Also, the same test was performed for the comparison filter.

即ち,まず上記フィルターの構造について説明すれば,
第1図ないし第3図に示すごとく,上記フィルター1は
軸方向に沿って多数の送入通路2と排出通路3とを交互
に有するものである。該フィルター1は,軸方向に沿う
多数の濾過壁10によって多数の通路を設け,その通路の
排気ガス流入側Aにおいて,第1図に示すごとく,市松
模様にその通路の入口を一個置きに壁31により閉塞す
る。また,フィルターの排気ガス流出側Bにおいて,上
記流入側Aにおいて閉塞しなかった通路の出口を壁22に
より閉塞する。これにより,流出側Bを閉塞した通路が
送入通路2を形成し,流入側Aを閉塞した通路が排出通
路3を形成する。したがって,送入通路2は流入側Aに
送入口21を有し,流出側Bには壁22を有する通路とな
る。一方,排出通路3は流入側Aには壁31を有し,流出
側Bには排出口32を有する。そして,上記フィルター1
はその濾過壁10において,その送入通路2側においては
Cuとアルミナからなる触媒成分5を,また排出通路3側
においてはCuとゼオライトからなる触媒成分6を担持し
てなる。
That is, first, the structure of the above filter will be explained.
As shown in FIGS. 1 to 3, the filter 1 has a large number of feed passages 2 and discharge passages 3 alternately along the axial direction. The filter 1 has a large number of passages provided by a large number of filter walls 10 along the axial direction, and on the exhaust gas inflow side A of the passages, as shown in FIG. Blocked by 31. Further, on the exhaust gas outflow side B of the filter, the outlet of the passage which is not closed on the inflow side A is closed by the wall 22. Thus, the passage blocking the outflow side B forms the inlet passage 2, and the passage blocking the inflow side A forms the discharge passage 3. Therefore, the inlet passage 2 has an inlet 21 on the inflow side A and a wall 22 on the outflow side B. On the other hand, the discharge passage 3 has a wall 31 on the inflow side A and a discharge port 32 on the outflow side B. And the above filter 1
At the filter wall 10 and at the inlet passage 2 side
The catalyst component 5 composed of Cu and alumina is supported, and the catalyst component 6 composed of Cu and zeolite is supported on the discharge passage 3 side.

しかして,流入側Aよりフィルター1に送られる排気ガ
ス4は,送入口21よりフィルター1の送入通路2内に入
り,濾過壁10を通過して排出通路3内に送出され,排出
口32より浄化ガス41として排出される。排気ガス40の可
燃性微粒子は,送入通路2側の触媒成分5により,また
窒素酸化物は排出通路3側の触媒成分6により,それぞ
れ前記のごとく除去される。
Then, the exhaust gas 4 sent from the inflow side A to the filter 1 enters the inflow passage 2 of the filter 1 from the inflow port 21, passes through the filter wall 10 and is delivered into the exhaust passage 3, and the exhaust port 32. More purified gas 41 is discharged. The combustible fine particles of the exhaust gas 40 are removed by the catalyst component 5 on the inlet passage 2 side, and the nitrogen oxides are removed by the catalyst component 6 on the exhaust passage 3 side as described above.

また,前記フィルター担体はコーディエライト粉末を成
形,焼結することにより作製した一体型基材(担体)
で,その軸方向に直角方向の断面における断面積1in2
り,約200の通路を有する。また,該フィルター担体の
濾過壁の通孔は平均孔径30μmである。また,該フィル
ター担体は直径110mmで,その体積は1.3lである。
Further, the filter carrier is an integral type base material (carrier) produced by molding and sintering cordierite powder.
Thus, there are about 200 passages per 1 in 2 cross-sectional area in the cross section perpendicular to the axial direction. The through holes of the filter wall of the filter carrier have an average pore diameter of 30 μm. The filter carrier has a diameter of 110 mm and a volume of 1.3 l.

次に,上記フィルター担体上に触媒成分を担持する方法
につき説明する。即ち,まず平均粒径10μmのゼオライ
ト粉末100部とシリカゾル80部とを水及び硝酸と共にボ
ールミリングし,ウォッシュコートスラリーを生成させ
た。そして,このスラリーを上記排出通路のみに投入
し,投入側から出口側に遠心力がかかるよう遠心力をか
けた。次いで,乾燥して遊離の水を除去し,その後500
℃で1時間焼成し,フィルター担体の排出通路側の濾過
壁上に厚み約50μmのゼオライト多孔質層をコーティン
グした。
Next, a method for supporting the catalyst component on the filter carrier will be described. That is, first, 100 parts of zeolite powder having an average particle size of 10 μm and 80 parts of silica sol were ball milled together with water and nitric acid to form a washcoat slurry. Then, this slurry was charged only in the discharge passage, and centrifugal force was applied so that centrifugal force was applied from the charging side to the outlet side. It is then dried to remove free water, then 500
The mixture was calcined at 1 ° C. for 1 hour, and a zeolite porous layer having a thickness of about 50 μm was coated on the filter wall on the discharge passage side of the filter carrier.

また,平均粒径5μmのγアルミナ粉末を用い,これを
スラリー状にして,上記と同様にして送入通路側のみに
投入し,乾燥し,送入通路側の濾過壁上に厚み約50μm
のアルミナ多孔質層をコーティングした。
Also, using γ-alumina powder with an average particle size of 5 μm, make it into a slurry, and in the same manner as above, put it only in the inlet passage side and dry it, and then make a thickness of about 50 μm on the inlet passage side filtration wall
Was coated with a porous layer of alumina.

次に,上記フィルター担体を0.02mol/lの酢酸銅水溶液
に24時間漬浸し,乾燥後,500℃で1時間焼成して,ゼオ
ライトに対してCuをイオン交換担持した。その際のCuの
イオン交換率は89%であった。また,上記浸漬により送
入通路側のアルミナ層にもCuを担持した。ここに,Cuは
アルミナに対して5%(重量比)担持されていた。な
お,フィルター担体1に対するCuの担持量は20g/lで
あった。
Next, the filter carrier was immersed in a 0.02 mol / l copper acetate aqueous solution for 24 hours, dried, and then calcined at 500 ° C. for 1 hour to carry out ion exchange loading of Cu on the zeolite. The ion exchange rate of Cu at that time was 89%. In addition, Cu was also loaded on the alumina layer on the inlet passage side by the above immersion. Here, Cu was supported by 5% (weight ratio) with respect to alumina. The amount of Cu supported on the filter carrier 1 was 20 g / l.

この本発明にかかるフィルターを,試料No.1とする。This filter according to the present invention is referred to as Sample No. 1.

また,比較のために上記ゼオライトの代わりにγアルミ
ナをコートし,その他は上記と同様の,つまり送入通
路,排出通路の触媒成分が共にCuとアルミナとからなる
比較フィルター(資料No.C1)を作製した。また,上記
本発明にかかるフィルター(No.1)において濾過壁の両
面にγ−アルミナ粉末のみをコーティングしCuは担持し
ていない比較フィルター(資料No.C2)も作製した。
For comparison, γ-alumina is coated instead of the above zeolite, and the other is the same as the above, that is, a comparison filter in which the catalyst components in the inlet passage and the outlet passage are both Cu and alumina (Material No. C1). Was produced. Further, in the filter according to the present invention (No. 1), a comparative filter (Material No. C2) in which only both surfaces of the filter wall were coated with γ-alumina powder and Cu was not supported was also prepared.

次に,上記フィルターをディーゼルエンジンの排気ガス
気流中に取り付け,可燃性微粒子と窒素酸化物(NOx)
の除去効果につき試験した。なお,可燃性微粒子の燃焼
温度の低下効果は5時間後の圧力損失の増加率で評価し
た。すなわち,可燃性微粒子が低温度で燃焼しなければ
フィルターに堆積し,目詰まりを起こし,圧力損失が大
きくなるため,この評価法を用いた。
Next, the above filter was installed in the exhaust gas flow of a diesel engine, and combustible particles and nitrogen oxides (NOx) were added.
Was tested for its removal effect. The effect of lowering the combustion temperature of the combustible particles was evaluated by the rate of increase in pressure loss after 5 hours. That is, if the combustible particles do not burn at a low temperature, they are deposited on the filter, clogging occurs, and pressure loss increases, so this evaluation method was used.

上記ディーゼルエンジンとしては,4気筒の噴射型エンジ
ン,行程室容積1600cc,出力40kw,回転数2500rpm,負荷5k
gf・mのものを用いた。なお,試験時におけるフィルタ
ー内の温度は約300℃,また空間速度GHSVは3万/時で
あった。
The diesel engine is a 4-cylinder injection type engine, stroke chamber volume 1600cc, output 40kw, rotation speed 2500rpm, load 5k.
The one of gf · m was used. During the test, the temperature inside the filter was approximately 300 ° C, and the space velocity GHSV was 30,000 / hour.

測定の結果を第1表に示す。The measurement results are shown in Table 1.

第1表より明らかなように,圧力損失増加率に関して
は,本発明にかかるフィルター(No.1)は比較フィルタ
ーNo.C1よりは若干,またNo.2フィルターに比しては,
極めて低く,低温度において可燃性微粒子を効率よく燃
焼除去していることが分かる。また,NOxに関しても,本
発明のフィルター(No.1)は比較フィルター(No.C1,C
2)に比して決めて高い浄化率(除去率)を示している
ことが分かる。
As is clear from Table 1, regarding the pressure loss increase rate, the filter according to the present invention (No. 1) is slightly smaller than the comparative filter No. C1, and is more
It can be seen that combustible fine particles are efficiently burned and removed at extremely low and low temperatures. As for NOx, the filter (No. 1) of the present invention is a comparative filter (No. C1, C).
It can be seen that the purification rate (removal rate) is higher than that of 2).

上記のごとく本発明は,可燃性微粒子及びNOxの同時除
去に優れた効果を発揮することが分かる。
As described above, it can be seen that the present invention exerts an excellent effect on simultaneous removal of combustible fine particles and NOx.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第3図は,本発明の実施例にかかるフィル
ターを示し,第1図はその斜視図,第2図は要部断面
図,第3図は一部欠さい側面図である。 1……フィルター,10……濾過壁,2……送入通路,3……
排出通路,4……排気ガス,5……Cuとアルミナからなる触
媒成分,6……Cuとゼオライトからなる触媒成分,
1 to 3 show a filter according to an embodiment of the present invention, FIG. 1 is a perspective view thereof, FIG. 2 is a sectional view of an essential part, and FIG. 3 is a partially cutaway side view. 1 …… filter, 10 …… filtration wall, 2 …… inlet passage, 3 ……
Exhaust passage, 4 ... Exhaust gas, 5 ... Catalyst component consisting of Cu and alumina, 6 ... Catalyst component consisting of Cu and zeolite,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 35/04 301 E F01N 3/02 301 E (72)発明者 松本 伸一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (56)参考文献 特開 平1−151706(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location B01J 35/04 301 E F01N 3/02 301 E (72) Inventor Shinichi Matsumoto Toyota Town, Toyota City, Aichi Prefecture No. 1 in Toyota Motor Corporation (56) Reference JP-A-1-151706 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】排気ガスの流入側から流出側に向かって濾
過壁により区切られた多数の通路を有すると共に,該通
路はその流出側を閉塞した送入通路とその流入側を閉塞
した排出通路とからなり,送入通路は少なくとも1つの
排出通路と上記濾過壁を共有し,かつ該濾過壁は送入通
路から排出通路に排気ガスが通過する通孔を有してな
り,また上記送入通路側の濾過壁には銅とアルミナから
なる触媒成分を,一方上記排出通路側のアルミナ濾過壁
には銅とゼオライトとからなる触媒成分をそれぞれ担持
してなることを特徴とする可燃性微粒子並びに窒素酸化
物を除去するためのフィルター。
1. An exhaust gas passage having a plurality of passages divided by a filtering wall from an exhaust gas inflow side to an outflow side, the passage being closed at the outflow side and the discharge path being closed at the inflow side. The inlet passage shares at least one discharge passage with the filter wall, and the filter wall has a through hole through which exhaust gas passes from the inlet passage to the discharge passage. A combustible fine particle characterized in that a catalyst component composed of copper and alumina is supported on the filter wall on the passage side, while a catalyst component composed of copper and zeolite is supported on the alumina filter wall on the discharge passage side. A filter for removing nitrogen oxides.
【請求項2】銅は,ゼオライトにイオン交換担持されて
いることを特徴とする特許請求の範囲第1項に記載のフ
ィルター。
2. The filter according to claim 1, wherein copper is ion-exchanged and supported on zeolite.
【請求項3】銅のイオン交換率は50〜100%であること
を特徴とする特許請求の範囲第1項に記載のフィルタ
ー。
3. The filter according to claim 1, wherein the ion exchange rate of copper is 50 to 100%.
JP32482487A 1987-12-22 1987-12-22 Filter for removing combustible particles and nitrogen oxides Expired - Lifetime JPH07114902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32482487A JPH07114902B2 (en) 1987-12-22 1987-12-22 Filter for removing combustible particles and nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32482487A JPH07114902B2 (en) 1987-12-22 1987-12-22 Filter for removing combustible particles and nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH01168311A JPH01168311A (en) 1989-07-03
JPH07114902B2 true JPH07114902B2 (en) 1995-12-13

Family

ID=18170085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32482487A Expired - Lifetime JPH07114902B2 (en) 1987-12-22 1987-12-22 Filter for removing combustible particles and nitrogen oxides

Country Status (1)

Country Link
JP (1) JPH07114902B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329404A (en) * 2005-06-06 2005-12-02 Toyota Motor Corp Exhaust gas cleaning filter
JP2007130637A (en) * 2007-01-19 2007-05-31 Toyota Motor Corp Exhaust gas cleaning filter
JP2008188511A (en) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd Exhaust gas cleaning filter and its manufacturing method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2904815B2 (en) * 1989-07-14 1999-06-14 堺化学工業株式会社 Catalytic filter for particulate removal
CH676799A5 (en) * 1988-11-01 1991-03-15 Sulzer Ag
US5348922A (en) * 1990-05-02 1994-09-20 Kabushiki Kaisha Seibu Giken Gas adsorbing element and method for forming same
JPH0472413A (en) * 1990-07-10 1992-03-06 Hino Motors Ltd Backwash type particulate filter
JP3014733B2 (en) * 1990-09-28 2000-02-28 マツダ株式会社 Engine exhaust gas purification apparatus and method of manufacturing the same
JP4604374B2 (en) * 2001-03-15 2011-01-05 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2005334801A (en) 2004-05-28 2005-12-08 Cataler Corp Catalyst for purifying exhaust gas
WO2013145316A1 (en) * 2012-03-30 2013-10-03 イビデン株式会社 Honeycomb filter and production method for honeycomb filter
JPWO2013145316A1 (en) * 2012-03-30 2015-08-03 イビデン株式会社 Honeycomb filter and method for manufacturing honeycomb filter
US20160199822A1 (en) * 2013-08-30 2016-07-14 Otsuka Chemical Co., Ltd. Exhaust gas purification filter and exhaust gas purification apparatus
JP6315194B2 (en) * 2014-06-19 2018-04-25 株式会社豊田中央研究所 Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
WO2018181100A1 (en) * 2017-03-31 2018-10-04 大塚化学株式会社 Honeycomb structure and exhaust gas cleaning device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329404A (en) * 2005-06-06 2005-12-02 Toyota Motor Corp Exhaust gas cleaning filter
JP2007130637A (en) * 2007-01-19 2007-05-31 Toyota Motor Corp Exhaust gas cleaning filter
JP2008188511A (en) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd Exhaust gas cleaning filter and its manufacturing method

Also Published As

Publication number Publication date
JPH01168311A (en) 1989-07-03

Similar Documents

Publication Publication Date Title
JP6556771B2 (en) Stacked design catalyst-supporting soot filter
JP3113662B2 (en) Catalyst for exhaust gas purification of diesel engines
KR101257124B1 (en) Oxydation catalyst on a substrate utilized for the purification of exhaust gases
JPH01151706A (en) Catalyst and filter for removing combustible fine particles and nitrogen oxide
EP1368107B1 (en) A catalyzed diesel particulate matter exhaust filter
JP4144898B2 (en) Particulate combustion catalyst, particulate filter and exhaust gas purification device
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
US4515758A (en) Process and catalyst for the reduction of the ignition temperature of diesel soot filtered out of the exhaust gas of diesel engines
EP1679119B1 (en) Method of production of a filter catalyst for exhaust gas purification of a diesel engine
US5213781A (en) Method of cleaning nitrogen oxide containing exhaust gas
JPH07114902B2 (en) Filter for removing combustible particles and nitrogen oxides
JP2001327818A (en) Ceramic filter and filtration device
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3874246B2 (en) Filter type catalyst for diesel exhaust gas purification
JP4218559B2 (en) Diesel exhaust gas purification device
JP7088951B2 (en) Diesel oxidation catalyst containing manganese
JPH08150339A (en) Exhaust gas purification catalyst and its production
JP2577757B2 (en) Diesel exhaust gas purification catalyst
JPH0442063B2 (en)
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
US20110076202A1 (en) Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus
JPH04197422A (en) Filter for removing combustible fine particles and nitrogen oxide
JPH01254251A (en) Catalyst for purifying exhaust gas
JPS61146314A (en) Purifying filter for collecting fine particle