JPH07114205B2 - Method of forming solder bumps - Google Patents

Method of forming solder bumps

Info

Publication number
JPH07114205B2
JPH07114205B2 JP63160699A JP16069988A JPH07114205B2 JP H07114205 B2 JPH07114205 B2 JP H07114205B2 JP 63160699 A JP63160699 A JP 63160699A JP 16069988 A JP16069988 A JP 16069988A JP H07114205 B2 JPH07114205 B2 JP H07114205B2
Authority
JP
Japan
Prior art keywords
solder
inert solvent
layer
particles
adherend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63160699A
Other languages
Japanese (ja)
Other versions
JPH0212830A (en
Inventor
敦資 坂井田
雄介 渡辺
Original Assignee
日本電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電装株式会社 filed Critical 日本電装株式会社
Priority to JP63160699A priority Critical patent/JPH07114205B2/en
Publication of JPH0212830A publication Critical patent/JPH0212830A/en
Publication of JPH07114205B2 publication Critical patent/JPH07114205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3468Applying molten solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明ははんだ付け方法、特にフリツプチツプICの微細
電極のはんだバンプの形成方法に関する。
The present invention relates to a soldering method, and more particularly to a method for forming solder bumps of fine electrodes of flip-chip ICs.

[従来の技術] ハイブリツドICの多機能化は年々進む方向にあり、その
ために高密度実装が要求されている。フリツプチツプIC
の高密度実装を実現するためには第4図に示すように基
板100上の基板周縁に一列にはんだバンプ101を形成する
周辺配置方式〔第4図(a)参照〕から基板周縁に数列
交互にはんだバンプ101を形成する周辺千鳥配置方式
〔第4図(b)参照〕へと移行しつつある。そして、最
終的には第4図(c)(d)に示すように、はんだバン
プ101を交互に基板全面に形成する全面配置方式
〔(c)参照〕あるいははんだバンプ101を整列した状
態で基板全面に形成する全面配置方式〔(d)参照〕の
はんだバンプの形成状態になることが考えられる。
[Prior Art] Hybrid ICs are becoming multifunctional year by year, and therefore high-density packaging is required. Flip chip IC
In order to realize high-density mounting, the solder bumps 101 are formed in a line on the peripheral edge of the substrate 100 on the substrate 100 as shown in FIG. 4 [see FIG. 4 (a)]. A peripheral zigzag arrangement method of forming the solder bumps 101 on the solder bumps [see FIG. 4 (b)] is in progress. Finally, as shown in FIGS. 4 (c) and (d), the solder bumps 101 are alternately formed on the entire surface of the substrate (see (c)) or the solder bumps 101 are aligned in the substrate. It is conceivable that the solder bumps will be formed on the entire surface by the whole surface arrangement method [see (d)].

従来のはんだ付け方法として、はんだペースト印刷方式
と、超音波はんだ付け方法とがある。
As a conventional soldering method, there are a solder paste printing method and an ultrasonic soldering method.

前者は、第5図に示すようにウエハ102に電極103を配設
し、電極103上面にメタルマスク104を載置し、印刷メタ
ルマスク104上にスキージ刃105を摺動させることにより
はんだペースト106を供給してゆき、電極103上にはんだ
ペーストのバンプを形成してゆく方式である。この方式
により形成されるはんだバンプの高さは、90〜100μm
程度まで確保されているが、印刷メタルマスクの製造が
困難であるという問題がある。
As for the former, as shown in FIG. 5, the electrode 103 is arranged on the wafer 102, the metal mask 104 is placed on the upper surface of the electrode 103, and the squeegee blade 105 is slid on the printed metal mask 104 to make the solder paste 106. Is a method for forming bumps of solder paste on the electrodes 103. The height of solder bumps formed by this method is 90-100 μm.
Although it is secured to some extent, there is a problem that it is difficult to manufacture a printed metal mask.

また各電極103ごとにはんだバンプを形成しなければな
らないのであるが、電極ピツチが狭いと隣接する電極上
のペーストはんだ同志が連結し、ブリツジ107となつて
しまう〔第6図参照〕不都合があつた。さらに、ペース
トはんだはフラツクスを使用しているので、はんだ印刷
後のはんだバンプの洗浄が困難である等の問題があつ
た。そして、これ等の問題点や不都合な点を考慮してゆ
くと電極のピツチ間隔は350μmピツチが限界であつ
て、この方式による高密度実装の実現はむずかしかつ
た。
In addition, it is necessary to form solder bumps for each electrode 103, but if the electrode pitch is narrow, paste solders on adjacent electrodes will be connected and will form bridges 107 (see FIG. 6). It was Furthermore, since the paste solder uses a flux, there are problems such as difficulty in cleaning the solder bumps after solder printing. Considering these problems and inconveniences, the pitch interval of the electrodes is limited to 350 μm pitch, and it is difficult to realize high-density mounting by this method.

後者の方法は、第7図に示すように、はんだ槽108内に
溶融はんだ110を収容する還流路109を形成し、この溶融
はんだ110はモータ114で駆動される攪拌器111により還
流路109内を通つてはんだ液面より上に噴出する。この
噴出溶融はんだ中に絶縁膜から電極を露出したシリコン
ウエハ112を浸漬する。そして、このウエハ112近くの溶
融はんだ中に超音波電動子113の発信部を挿入して溶融
はんだに超音波を印加し、電極表面の自然酸化膜を破壊
するとともに、電極上にはんだを付着させ、はんだバン
プを電極上に直接形成する方法である。この方法は微細
電極のはんだ付けに適し、電極のピツチ間隔が約30μm
ピツチまでの微細電極のはんだ付けができるが、電極に
付着するはんだ量が少くはんだバンプの高さは、はんだ
印刷によるバンプの高さの1/6程の高さとなつてしま
う。フリツプチツプICにおいては、はんだ量が少くない
と接合部分のはんだが疲労しやすくクラツクが入りやす
いため寿命が低下するという問題が生じるし、また、超
音波印加により発生するキヤビテーシヨンによるパツシ
ベーシヨンクラツクやデバイスの電気特性の悪化等の問
題が生じた。
In the latter method, as shown in FIG. 7, a recirculation path 109 for accommodating the molten solder 110 is formed in a solder bath 108, and the molten solder 110 is recirculated in the recirculation path 109 by an agitator 111 driven by a motor 114. And jets above the solder liquid surface. The silicon wafer 112 whose electrodes are exposed from the insulating film is immersed in this jetted molten solder. Then, the transmitter of the ultrasonic armature 113 is inserted into the molten solder near the wafer 112 to apply ultrasonic waves to the molten solder to destroy the natural oxide film on the surface of the electrode and to attach the solder on the electrode. , A method of directly forming solder bumps on electrodes. This method is suitable for soldering fine electrodes, and the pitch between electrodes is about 30 μm.
Although fine electrodes can be soldered up to the pitch, the amount of solder that adheres to the electrodes is small, and the height of the solder bumps is about 1/6 of the bump height obtained by solder printing. In a flip-chip IC, if the amount of solder is not too small, the solder at the joint will be easily fatigued and cracks will easily occur, resulting in a problem that the service life will be shortened.In addition, the passivation crack and Problems such as deterioration of electrical characteristics of the device occurred.

〔目的〕〔Purpose〕

本発明は、フリツプチツプICの高密度実装を実現させる
ため、電極を微細化させ電極間ピツチが微細化してもは
んだがブリツジせずに微細電極のはんだ付けが可能であ
り、かつ、適量のはんだ量の確保ができるはんだバンプ
の形成方法を提供するものである。
The present invention realizes high-density mounting of flip-chip ICs, so that even if the electrodes are miniaturized and the pitch between electrodes is miniaturized, the solder can be soldered to fine electrodes without bridging, and an appropriate amount of solder can be used. It is intended to provide a method for forming a solder bump capable of ensuring the above.

〔構成〕〔Constitution〕

本発明は、はんだと不活性溶剤とを収容し、はんだの融
点よりやや高い温度に維持する恒温加熱槽の下層部の溶
融はんだの堆積部より溶融状態のはんだを吸引するとと
もに、加熱槽上層部の不活性溶剤層より溶剤を吸収し、
両者を混合して溶融状態のはんだを破砕して粒子化し、
加熱槽上層部に浸漬する噴出装置のノズルより破砕した
溶融はんだ粒子と不活性溶剤との混合物を噴流し、比重
差によるはんだ粒子の不活性溶剤層中の還流と、不活性
溶剤層におけるはんだ粒子の微粒子の漂動とを形成し、
表面に金属電極を露出し残部表面に酸化物層を形成した
被めつき体を前記加熱槽内の上層部に浸漬して、その金
属電極面にはんだを付着するはんだバンプの形成方法で
あつて、はんだの付着量の制御を、前記ノズル上端面と
前記金属電極面との間隔、または被めつき体の不活性溶
剤層への浸漬時間を調整することにより行う構成を具備
している。
The present invention contains a solder and an inert solvent, while sucking the molten solder from the deposition portion of the molten solder of the lower layer of the constant temperature heating tank that maintains a temperature slightly higher than the melting point of the solder, the heating tank upper layer portion Absorbs the solvent from the inert solvent layer of
Mixing both, crushing the molten solder into particles,
A mixture of molten solder particles and an inert solvent crushed from a nozzle of a jetting device immersed in the upper part of the heating tank is jetted, and the reflux of the solder particles in the inert solvent layer due to the difference in specific gravity and the solder particles in the inert solvent layer Forming drifts of fine particles of
A method of forming solder bumps, in which a metal electrode is exposed on the surface and an adherend having an oxide layer formed on the remaining surface is immersed in the upper layer of the heating tank and solder is attached to the metal electrode surface, The solder adhesion amount is controlled by adjusting the distance between the upper end surface of the nozzle and the metal electrode surface or the immersion time of the adherend in the inert solvent layer.

〔作用〕[Action]

はんだの融点よりやや高い温度に不活性溶剤とともに恒
温加熱された槽中のはんだは溶融状態で不活性溶剤との
比重差により槽内の下層に堆積する。この溶融はんだと
加温不活性溶剤とを攪拌等の手段により混合攪拌し、溶
融はんだを破砕し粒子化する。そしてこのはんだ粒子を
加熱槽上層部の不活性溶剤層中に複数のパイプを設置し
て該パイプのノズルから上方に向けて噴出させ、槽内の
溶剤層の上層部に均一に分散させる。分散したはんだ粒
子のうちの比較的大きい粒子はその比重差により徐々に
下降し不活性溶剤層中を還流し、微粒子化した小さな粒
子は不活性溶剤層上層部に漂動する。一方、金属電極表
面を露出し残部表面に酸化物層を形成した被めつき体を
上記はんだ粒子が還流し、漂動する不活性溶剤層中に浸
漬すると、活性化した金属電極表面に接触するはんだ粒
子は金属面と合金層を形成し金属電極表面に付着する。
残部表面の酸化層ははんだの濡れ性が悪いため、該層に
ははんだ粒子は付着せず、金属電極表面に選択的に付着
する。はんだ粒子の付着量は、ほぼ接触時間に比例し、
浸漬時間を調整することによりはんだバンプの形成量を
調節できる。また、ストークスの原則にのつとつて、は
んだ粒子の不活性溶剤層中の分布状況は、ノズル上端面
からの距離が長いほどはんだの粒子径が小さくなりはん
だ粒子の大きさのばらつきが少なくなるため、被めつき
体をパイプの噴出ノズルから遠ざけて浸漬すると金属電
極面への付着はんだ粒子が均一となる。
The solder in the bath, which is heated to a temperature slightly higher than the melting point of the solder together with the inert solvent, is deposited in the molten state in the lower layer in the bath due to the difference in specific gravity from the inert solvent. The molten solder and the heating inert solvent are mixed and stirred by a means such as stirring to crush the molten solder into particles. Then, a plurality of pipes are installed in the inert solvent layer in the upper layer of the heating tank, and the solder particles are jetted upward from the nozzles of the pipes to be uniformly dispersed in the upper layer of the solvent layer in the tank. The relatively large particles among the dispersed solder particles gradually descend due to the difference in specific gravity and flow back in the inert solvent layer, and the small particles that have become fine particles drift to the upper layer portion of the inert solvent layer. On the other hand, when the adherend having the metal electrode surface exposed and the oxide layer formed on the remaining surface is refluxed by the solder particles and immersed in a drifting inert solvent layer, it comes into contact with the activated metal electrode surface. The solder particles form an alloy layer with the metal surface and adhere to the surface of the metal electrode.
Since the oxide layer on the surface of the remaining portion has poor solder wettability, solder particles do not adhere to the layer but selectively adhere to the surface of the metal electrode. The amount of solder particles attached is almost proportional to the contact time,
The amount of solder bumps formed can be adjusted by adjusting the immersion time. In addition, according to Stokes' principle, the distribution of solder particles in the inert solvent layer is such that the longer the distance from the nozzle upper end surface, the smaller the solder particle size and the less variation in solder particle size. When the adherend is immersed away from the jet nozzle of the pipe, the solder particles adhered to the metal electrode surface become uniform.

[実施例] まず、本発明のはんだバンプの形成方法を実施するはん
だバンプ形成装置を図面により説明する。
Example First, a solder bump forming apparatus for carrying out the solder bump forming method of the present invention will be described with reference to the drawings.

第1図は本発明の方法を実施する装置の断面説明図であ
る。
FIG. 1 is a cross-sectional explanatory view of an apparatus for carrying out the method of the present invention.

縦長形状の加熱槽1の底部には加熱器2を配設し、加熱
槽1上端には図示しない冷却装置からの冷却媒体を通過
させる冷却蛇管3を、その内縁に沿つて螺旋状に設置す
る。
A heater 2 is arranged at the bottom of the vertically long heating tank 1, and a cooling coil 3 for passing a cooling medium from a cooling device (not shown) is installed at the upper end of the heating tank 1 in a spiral shape along the inner edge thereof. .

加熱槽1内にははんだと不活性溶剤とを収容する。槽内
は加熱器2によりはんだの融点よりやや高い温度に加温
され、はんだは溶融状態とされている。不活性溶剤の比
重に対してはんだの比重は約5倍あるので、加熱槽1内
は溶融はんだの堆積層4と不活性溶剤層5とに分離し、
比重の重いはんだの堆積層4を下層とし、不活性溶剤層
5を上層とする二層構造となつている。
The heating bath 1 contains solder and an inert solvent. The inside of the bath is heated by the heater 2 to a temperature slightly higher than the melting point of the solder, so that the solder is in a molten state. Since the specific gravity of the solder is about 5 times that of the inert solvent, the inside of the heating tank 1 is separated into the molten solder deposition layer 4 and the inert solvent layer 5,
It has a two-layer structure in which the solder deposition layer 4 having a high specific gravity is the lower layer and the inert solvent layer 5 is the upper layer.

上層部の不活性溶剤5中の適宜位置には上方に向けてノ
ズルを開孔するパイプ7を複数本立設する噴出装置6を
浸漬し配設する。
At a proper position in the inert solvent 5 in the upper layer portion, a jetting device 6 in which a plurality of pipes 7 for opening the nozzles are installed upright is immersed and disposed.

加熱槽1の外部にははんだ微粒化装置8を設ける。はん
だ微粒化装置8は混合攪拌器を内部に備えている。加熱
層1とはんだ微粒化装置8間は3本の管体9で連絡す
る。まず、加熱槽1下層部のはんだ溶融堆積層4とはん
だ微粒化装置8間にははんだ導入管9eを配設し、溶融は
んだの堆積層4より溶融状態のはんだをはんだ微粒化装
置8に吸引する。上層部の不活性溶剤層5とはんだ微粒
化装置8間は不活性溶剤導入管9fで連結し、加熱不活性
溶剤をはんだ微粒化装置8内に吸引する。そして、噴出
装置6とはんだ微粒化装置8間を混合液導出管9gで連結
し、はんだ微粒化装置8内の混合液を送出する。
A solder atomizer 8 is provided outside the heating tank 1. The solder atomizer 8 has a mixing stirrer inside. The heating layer 1 and the solder atomizer 8 are connected by three tubes 9. First, a solder introducing tube 9e is provided between the solder melt deposition layer 4 in the lower layer of the heating tank 1 and the solder atomization device 8, and the molten solder deposition layer 4 sucks the molten solder into the solder atomization device 8. To do. The inert solvent layer 5 in the upper layer and the solder atomizing device 8 are connected by an inert solvent introducing pipe 9f, and the heated inert solvent is sucked into the solder atomizing device 8. Then, the jetting device 6 and the solder atomizing device 8 are connected by a mixed liquid outlet pipe 9g, and the mixed liquid in the solder atomizing device 8 is sent out.

次に、上記構成のはんだバンプ形成装置の作用を説明す
る。
Next, the operation of the solder bump forming apparatus having the above configuration will be described.

加熱槽1内のはんだおよび不活性溶剤の被収容物は加熱
器2によりはんだの融点よりやや高い温度に加熱され、
図示しない温度調整装置により、一定温度に維持され
る。また、同時に冷却蛇管3中に冷却媒体を供給し、加
熱槽1上端を一定温度に冷却し、槽上端開口から上外部
への不活性溶剤層5からの溶剤の蒸発・飛散を防止す
る。
The contained objects of the solder and the inert solvent in the heating tank 1 are heated by the heater 2 to a temperature slightly higher than the melting point of the solder,
A constant temperature is maintained by a temperature adjusting device (not shown). At the same time, a cooling medium is supplied into the cooling corrugated pipe 3 to cool the upper end of the heating tank 1 to a constant temperature and prevent evaporation and scattering of the solvent from the inert solvent layer 5 from the opening of the upper end of the tank to the outside.

融点以上に熱せられて溶融し、比重差により下層部に堆
積する溶融はんだは、はんだ導入管9eからはんだ微粒化
装置8に吸引導入される。同様に、温められた不活性溶
剤は不活性溶剤導入管9fからはんだ微粒化装置8に吸引
導入される。はんだ微粒化装置8内の溶融はんだと不活
性溶剤の2液は、例えば攪拌等の手段により攪拌・混合
され、溶融はんだは破砕し微粒化される。
The molten solder which is heated to a temperature equal to or higher than the melting point and melted and deposited on the lower layer portion due to the difference in specific gravity is sucked and introduced into the solder atomizing device 8 from the solder introducing pipe 9e. Similarly, the warmed inert solvent is sucked and introduced into the solder atomizing device 8 through the inert solvent introducing pipe 9f. The two liquids of the molten solder and the inert solvent in the solder atomizing device 8 are stirred and mixed by means such as stirring, and the molten solder is crushed and atomized.

はんだ微粒化装置8により破砕微粒化されたはんだ粒子
は不活性溶剤との混合液として混合液導出管9gから不活
性溶剤層5中に浸漬する噴出装置6へと液送される。噴
出装置6は不活性溶剤とはんだ粒子との混合液を該噴出
装置6に上方に向けて植立したパイプ7の上端のノズル
から加熱槽1上方に向けて噴出し、混合液中のはんだ粒
子10を不活性溶剤層5中に噴流・分散させる。不活性溶
剤層5間ではんだ粒子10は溶剤中を還流し、あるいは漂
動する。このパイプ7の上端に形成されたノズルから噴
流するはんだ粒子10を含む不活性溶剤が加熱槽1の不活
性溶剤層5中全体に噴出し、はんだ粒子10を均等に分散
するように噴出装置6に備える副数本のパイプ7の配置
が設定される。
The solder particles crushed and atomized by the solder atomizer 8 are fed as a liquid mixture with an inert solvent from a mixed liquid outlet pipe 9g to a jetting device 6 immersed in the inert solvent layer 5. The jetting device 6 jets a mixed liquid of an inert solvent and solder particles upward from the nozzle at the upper end of the pipe 7 which is set up in the jetting device 6 upwards toward the heating tank 1, and the solder particles in the mixed liquid are jetted. 10 is jetted and dispersed in the inert solvent layer 5. Between the inert solvent layers 5, the solder particles 10 reflux or drift in the solvent. The inert solvent containing the solder particles 10 jetted from the nozzle formed at the upper end of the pipe 7 is jetted into the entire inert solvent layer 5 of the heating tank 1, and the jetting device 6 is arranged so that the solder particles 10 are evenly dispersed. Arrangement of a few sub pipes 7 is provided.

不活性溶剤層5中はんだ粒子10は不活性溶剤より比重が
重いので溶剤中を漂いながらゆつくり降下し、再び下層
溶融はんだの堆積層4に還流・堆積する。そして、はん
だ堆積層4の溶融はんだは導入管9eからはんだ微粒化装
置8へ吸引され、破砕・粒子化して噴出装置6から不活
性溶剤中へ分散する循環を連続して行う。このようにし
て加熱槽1上層に溶融はんだ粒子10が分散・漂動する不
活性溶剤層5を形成する。
Since the specific gravity of the solder particles 10 in the inert solvent layer 5 is heavier than that of the inert solvent, the solder particles 10 drift down in the solvent while drifting down, and then flow back and deposit again in the deposition layer 4 of the lower layer molten solder. Then, the molten solder of the solder deposition layer 4 is sucked into the solder atomization device 8 from the introduction pipe 9e, crushed and granulated, and continuously circulated so as to be dispersed from the ejection device 6 into the inert solvent. In this way, the inert solvent layer 5 in which the molten solder particles 10 are dispersed and drifted is formed on the upper layer of the heating tank 1.

このような構成・作用を有するはんだバンプ形成装置に
より、ウエハ(被めつき体)にはんだバンプを形成する
方法を説明する。
A method of forming solder bumps on a wafer (body to be adhered) by using the solder bump forming apparatus having the above structure and operation will be described.

第3図はフリツプチツプIC用ウエハ(以下ウエハとい
う)の一部断面図である。
FIG. 3 is a partial cross-sectional view of a flip-chip IC wafer (hereinafter referred to as a wafer).

ウエハ12は基板13上に種々の回路を形成した後銅電極14
を残し、その他の回路面をパシペーシヨン15で覆い保護
したものである。
The wafer 12 has a copper electrode 14 after forming various circuits on the substrate 13.
And the other circuit surface is covered and protected by passivation 15.

この被めつき体であるウエハ12上の銅電極14表面にはん
だバンプを形成する(第2図参照)。
Solder bumps are formed on the surface of the copper electrode 14 on the wafer 12 which is the adherend (see FIG. 2).

ウエハ12を図示しない前処理装置等により銅電極14表面
の活性化を図つた後、適宜搬送機構により不活性溶剤が
貯留されている不活性溶剤層5中に浸漬する(第1図参
照)。
After activating the surface of the copper electrode 14 by a pretreatment device (not shown) or the like, the wafer 12 is appropriately immersed in the inert solvent layer 5 in which the inert solvent is stored by the transfer mechanism (see FIG. 1).

加熱槽1内のはんだと不活性溶剤とははんだの融点より
やや高い温度、例えば200℃に温度制御される。はんだ
は加熱槽1内で溶融状態であり、この溶融はんだははん
だ導入管9eからはんだ微粒化装置8内に吸引される。ま
た、はんだと同温となつている不活性溶剤を不活性溶剤
導入管9fからはんだ微粒化装置8内に吸引し、これら2
液をはんだ微粒化装置8内で混合攪拌してはんだを破砕
し粒子化する。はんだ粒子を含んだ不活性溶剤は混合液
導出管9gから噴出装置6に液送され、パイプ7の上端に
形成されたノズルから槽1内に噴流される。不活性溶剤
層5中のはんだ粒子10は溶融状態で溶剤層5の上層部中
に漂つている。これ等の溶融はんだ粒子10は不活性溶剤
で被覆された状態となつており外気と接触することがな
い。このためはんだ粒子10の表面は金属表面を保ち、活
性状態にある。
The temperature of the solder and the inert solvent in the heating tank 1 is controlled to a temperature slightly higher than the melting point of the solder, for example, 200 ° C. The solder is in a molten state in the heating tank 1, and the molten solder is sucked into the solder atomizing device 8 from the solder introducing pipe 9e. In addition, the inert solvent having the same temperature as the solder is sucked into the solder atomizing device 8 from the inert solvent introducing pipe 9f, and these 2
The liquid is mixed and stirred in the solder atomizer 8 to crush the solder into particles. The inert solvent containing the solder particles is sent from the mixed liquid outlet pipe 9g to the jetting device 6 and jetted into the tank 1 from the nozzle formed at the upper end of the pipe 7. The solder particles 10 in the inert solvent layer 5 are floating in the upper layer portion of the solvent layer 5 in a molten state. These molten solder particles 10 are in a state of being coated with an inert solvent and do not come into contact with the outside air. Therefore, the surface of the solder particle 10 maintains the metal surface and is in an active state.

そして、不活性溶剤層5中の活性はんだ粒子10が浸漬す
るウエハ12の表面に接触すると、パシベーシヨン15表面
ははんだの濡れ性が悪く、はんだ粒子10はパシベーシヨ
ン15表面に反発し、付着することなく重力矢印A方向に
作動する。銅電極14表面に接触するはんだ粒子10は銅と
はんだ合金層を容易に形成して銅電極14表面に付着し、
銅電極14表面を溶融したはんだ皮膜で覆う。はんだ粒子
10はこのはんだ皮膜に吸着しやすいので、この部分のは
んだ粒子10は次々に皮膜上にさらに付着する。そして、
表面張力の許す限りはんだ量を増加させ、銅電極14上に
付着しなかつたはんだ粒子10は、その比重差により、徐
々に下降し、下層のはんだ堆積層4に堆積する。
When the active solder particles 10 in the inert solvent layer 5 come into contact with the surface of the wafer 12 to be dipped, the surface of the passivation 15 has poor solder wettability, and the solder particles 10 repel the surface of the passivation 15 without adhering. It operates in the direction of gravity arrow A. The solder particles 10 contacting the surface of the copper electrode 14 easily form a solder alloy layer with copper and adhere to the surface of the copper electrode 14,
The surface of the copper electrode 14 is covered with a molten solder film. Solder particles
Since 10 is easily adsorbed to this solder coating, the solder particles 10 in this portion are further attached to the coating one after another. And
The amount of solder is increased as much as the surface tension allows, and the solder particles 10 that have not adhered to the copper electrode 14 gradually descend due to the difference in specific gravity and are deposited on the lower solder deposition layer 4.

このように、活性はんだ粒子が漂動する不活性溶剤中に
ウエハを浸漬することにより銅電極表面にのみ選択的に
はんだバンプを形成することができる。
Thus, by immersing the wafer in an inert solvent in which the active solder particles drift, solder bumps can be selectively formed only on the copper electrode surface.

なお、この実施例は前記処理により銅電極14表面を活性
化したものについて説明しているが、前処理として、他
の手段によつて電極表面にはんだ皮膜を形成し、その後
にはんだ粒子が分散する不活性溶剤中に浸漬すればより
早くはんだバンプを形成することができる。
In this example, the copper electrode 14 surface is activated by the above treatment, but as a pretreatment, a solder film is formed on the electrode surface by other means, and then the solder particles are dispersed. The solder bumps can be formed more quickly by immersing the solder bumps in an inert solvent.

次に、銅電極14上へのはんだの付着量の制御方法を述べ
る。
Next, a method for controlling the amount of solder adhered onto the copper electrode 14 will be described.

噴出装置6のパイプ7の上端に形成したノズルから噴出
する混合液中のはんだ粒子は大径小径の粒子が混在して
いる。しかし、不活性溶融中に噴出するはんだ粒子のう
ちの大径の粒子は抵抗が大きいため噴出後、早く失速
し、パイプ7上端面との間隔が短い領域で漂動しなが
ら、比重差により不活性溶剤中を徐々に降下して堆積層
部に堆積する。小径のはんだ微粒子は抵抗が少なく噴出
が大径の粒子と同じであつてもパイプ7の上端面のノズ
ルから遠距離までの不活性溶剤中を上方に向つて噴流
し、ノズル端面から離れた領域で漂動しながら、徐々に
降下堆積する。
The solder particles in the mixed liquid ejected from the nozzle formed at the upper end of the pipe 7 of the ejection device 6 are mixed with large and small particles. However, since the large-diameter particles of the solder particles ejected during the inert melting have large resistance, they quickly stall after ejection, drifting in the region where the distance from the upper end surface of the pipe 7 is short, and are unacceptable due to the difference in specific gravity. Gradually descend in the active solvent and deposit on the deposition layer. Even if the small-diameter solder fine particles have low resistance and the same ejection as the large-diameter particles, the small-diameter solder fine particles are jetted upward in the inert solvent up to a long distance from the nozzle on the upper end surface of the pipe 7, and are separated from the nozzle end surface While drifting in, it gradually descends and accumulates.

ここで、不活性溶剤層5中のはんだ粒子10の分布状況を
みると、ノズル端面からの距離が短い領域においては大
径はんだ粒子と小径はんだ粒子とが混在漂動し、ノズル
端面との間隔を長くする程はんだ粒子の粒子径は小さく
なり、粒子径のばらつきが少なくなる。
Here, looking at the distribution state of the solder particles 10 in the inert solvent layer 5, in the region where the distance from the nozzle end surface is short, large-diameter solder particles and small-diameter solder particles coexist and drift, resulting in a gap between the nozzle end surface. The longer the particle diameter, the smaller the particle diameter of the solder particles, and the smaller the variation in particle diameter.

以上のことから、加熱槽1のノズル端面からの間隔が長
い領域に被めつき体としてのウエハ12を浸漬すると粒子
径の小さなはんだ粒子10が付着するので、電極面へのは
んだ付着量のばらつきが少ない。このように、ノズル端
面とウエハとの間隔を調整してはんだ付着量、付着状態
の制御を行う。
From the above, when the wafer 12 as the adherend is dipped in the region where the distance from the nozzle end surface of the heating tank 1 is long, the solder particles 10 having a small particle diameter adhere, so that the variation in the amount of solder adhered to the electrode surface Less is. In this way, the distance between the nozzle end surface and the wafer is adjusted to control the amount and amount of solder adhered.

また、被めつき面へのはんだ付着量ははんだ粒子との接
触時間とほぼ比例関係にあり、浸漬時間を長くすること
によりはんだ付着量が増加する。このことから、不活性
溶剤層5中へのウエハ12の浸漬時間を調整して電極面へ
のはんだ付着量の制御を行う。
Further, the amount of solder attached to the surface to be covered has a substantially proportional relationship with the contact time with the solder particles, and the amount of solder attached increases as the immersion time is lengthened. From this, the immersion time of the wafer 12 in the inert solvent layer 5 is adjusted to control the amount of solder adhered to the electrode surface.

この実施例は、フリツプチツプIC用ウエハにおけるはん
だバンプの形成について説明しているが、その他あらゆ
るはんだバンプを形成する工程に応用することができ
る。
Although this embodiment describes the formation of solder bumps on a flip-chip IC wafer, it can be applied to any other process for forming solder bumps.

[発明の効果] 本発明のはんだバンプの形成方法は、電極表面にバンプ
を形成するために印刷マスク等の道具を必要とせず、か
つ超音波印加等の手段を加えることなく、はんだ粒子が
漂動する不活性溶剤層中に単に被めつき体を浸漬するだ
けで、選択的にはんだバンプを形成したい部所に容易に
はんだを付着することができ、器具を使用することがな
いので、被めつき面の形状を問わず対応できる方法であ
る。
EFFECTS OF THE INVENTION The method for forming solder bumps of the present invention does not require a tool such as a printing mask for forming bumps on the electrode surface, and does not add means such as application of ultrasonic waves to allow solder particles to float. By simply immersing the covering object in the moving inert solvent layer, the solder can be easily adhered to the place where the solder bump is desired to be formed, and the tool is not used. This method can be used regardless of the shape of the plated surface.

そして、はんだの融点よりやや高い温度に恒温加熱する
層内にはんだ粒子を噴出し分散させることにより、層内
に比較的小径のはんだ微粒子が漂動する部分と、大径・
小径のはんだ粒子が混在して漂動する部分とを構成でき
るので、電極上に付着するはんだ粒子の品質の制御が容
易に行われる。また、はんだの付着量ははんだバンプの
表面張力が許す限り時間に比例して増加するので、付着
量の制御が簡単にでき、電極ピツチを狭くしてもはんだ
がブリツジ状態となることを防止でき、適量のはんだ量
が確保できる。また、温度以外のストレス(超音波等)
を加えないので製品はクラツクが入つたりせず長期間の
はんだ形成が可能となり高品質化が可能となる。さら
に、被めつき体に加わるストレスは通常のリフローの温
度である300℃程度よりかなり低温であるはんだの融点
温度よりやや高めの200℃程度までの温度のみであり、
被めつき体に加わるストレスはかなり減少する。このス
トレスの低減は製品特性に与える悪影響を最小限に迎え
ることができ、品質向上がはかれる。
Then, by spraying and dispersing the solder particles in a layer that is heated to a temperature slightly higher than the melting point of the solder, a portion where the solder fine particles having a relatively small diameter drift and a large diameter
Since it is possible to form a portion where small-diameter solder particles are mixed and drift, it is possible to easily control the quality of the solder particles attached to the electrodes. Also, the amount of solder adhesion increases in proportion to the time as long as the surface tension of the solder bumps allows, so the amount of adhesion can be controlled easily and the solder will not be in a bridging state even if the electrode pitch is narrowed. A proper amount of solder can be secured. In addition, stress other than temperature (such as ultrasonic waves)
Since no cracks are added to the product, solder can be formed for a long time and high quality can be achieved. Furthermore, the stress applied to the adherend is only up to about 200 ° C, which is slightly higher than the melting point of the solder, which is considerably lower than the normal reflow temperature of about 300 ° C,
The stress on the covered body is considerably reduced. This reduction in stress can minimize adverse effects on the product characteristics and improve quality.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明のはんだバンプ形成方法を実施する装
置の断面説明図, 第2図は、金属電極表面へのはんだ付着状態説明図, 第3図は、ウエハの一部断面図, 第4図は、従来の基板のはんだバンプ形成状態斜視図, 第5図は、ペースト印刷方式の説明図、 第6図は、電極上のはんだブリツジ説明図、 第7図は、超音波のはんだ取付け方法の説明図、であ
る。 1…加熱槽、2…加熱器、4…はんだ堆積層、5……不
活性溶剤層、6…噴出装置、7…パイプ、8…はんだ微
粒化装置、10…はんだ粒子、12…ウエハ、13…基板、14
…電極、15…パシペーシヨン、16…はんだバンプ。
FIG. 1 is a cross-sectional explanatory view of an apparatus for carrying out a solder bump forming method of the present invention, FIG. 2 is a schematic explanatory view of a state of solder adhesion on a metal electrode surface, and FIG. 3 is a partial cross-sectional view of a wafer. FIG. 4 is a perspective view of a solder bump formation state of a conventional substrate, FIG. 5 is an illustration of a paste printing method, FIG. 6 is an illustration of solder bridging on electrodes, and FIG. 7 is ultrasonic solder attachment. It is explanatory drawing of a method. DESCRIPTION OF SYMBOLS 1 ... Heating tank, 2 ... Heater, 4 ... Solder deposition layer, 5 ... Inert solvent layer, 6 ... Spouting device, 7 ... Pipe, 8 ... Solder atomizing device, 10 ... Solder particle, 12 ... Wafer, 13 ... substrate, 14
… Electrodes, 15… Passivation, 16… Solder bumps.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】はんだと不活性溶剤とを収容した槽内にお
いて前記はんだと不活性溶剤とを前記はんだの融点より
やや高い温度に維持し、 前記槽内に浸漬せしめた噴出装置のノズルより、溶融し
た前記はんだを破砕したはんだ粒子と前記不活性溶剤と
の混合物を噴流せしめて、比重差による前記はんだ粒子
の前記不活性溶剤中の還流と、前記不活性溶剤層の上層
部における前記はんだ粒子の微粒子の漂動とを形成し、 被めつき体を前記槽内の前記不活性溶剤層に浸漬して被
めつき体の金属表面にはんだを付着させることを特徴と
するはんだバンプの形成方法。
1. A nozzle of an ejection device, which is maintained in a bath containing solder and an inert solvent at a temperature slightly higher than the melting point of the solder and is immersed in the bath, A mixture of solder particles and the inert solvent crushed the melted solder is jetted, reflux of the solder particles in the inert solvent due to the difference in specific gravity, and the solder particles in the upper layer portion of the inert solvent layer. And a method of forming solder bumps, characterized in that the adherend is immersed in the inert solvent layer in the bath to attach solder to the metal surface of the adherend. .
【請求項2】恒温加熱槽内にはんだと不活性溶剤とを収
容して前記はんだと不活性溶剤とを前記はんだの融点よ
りやや高い温度に維持し、 前記加熱槽内の下層部の前記はんだとの堆積層より溶融
状態の前記はんだを吸引するとともに前記加熱層の上層
部の前記不活性溶剤層より該溶剤を吸引し、両者を混合
して前記溶融状態のはんだを破砕して粒子化し、 前記加熱層の上層部に浸漬した噴出装置のノズルより前
記破砕した溶融はんだ粒子と不活性溶剤の混合物を噴流
せしめ、 表面に金属電極を露出せしめる残部表面に酸化物層を形
成した半導体被めつき体を前記加熱槽内の不活性溶剤層
中の上層部に浸漬してその金属電極面にはんだを付着せ
しめることを特徴とする第1請求項に記載のはんだバン
プの形成方法。
2. A solder and an inert solvent are accommodated in a constant temperature heating tank to maintain the solder and the inert solvent at a temperature slightly higher than the melting point of the solder, and the solder in the lower layer portion in the heating tank. With sucking the solder in the molten state from the deposited layer and sucking the solvent from the inert solvent layer in the upper layer of the heating layer, mixing both to crush the molten solder into particles, A mixture of the crushed molten solder particles and an inert solvent is jetted from a nozzle of a jetting device immersed in the upper layer of the heating layer, and a metal electrode is exposed on the surface. The method for forming solder bumps according to claim 1, wherein the body is dipped in an upper layer portion of the inert solvent layer in the heating tank to attach solder to the metal electrode surface thereof.
【請求項3】被めつき体の前記上層部に浸漬する時間を
調整することにより、被めつき体の金属表面へのはんだ
の付着量を制御することを特徴とする第1請求項または
第2請求項に記載のはんだバンプの形成方法。
3. The amount of solder adhered to the metal surface of the adherend is controlled by adjusting the time of immersion in the upper layer portion of the adherend. 2. The method for forming a solder bump according to claim 2.
【請求項4】被めつき体の前記金属表面と前記槽内のノ
ズルの噴射面との間隔を制御することにより、被めつき
体の金属表面へのはんだの付着量を制御することを特徴
とする第1請求項または第2請求項に記載のはんだバン
プの形成方法。
4. The amount of solder adhered to the metal surface of the adherend is controlled by controlling the distance between the metal surface of the adherend and the ejection surface of the nozzle in the bath. The method for forming a solder bump according to claim 1 or 2, wherein:
JP63160699A 1988-06-30 1988-06-30 Method of forming solder bumps Expired - Fee Related JPH07114205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63160699A JPH07114205B2 (en) 1988-06-30 1988-06-30 Method of forming solder bumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63160699A JPH07114205B2 (en) 1988-06-30 1988-06-30 Method of forming solder bumps

Publications (2)

Publication Number Publication Date
JPH0212830A JPH0212830A (en) 1990-01-17
JPH07114205B2 true JPH07114205B2 (en) 1995-12-06

Family

ID=15720559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63160699A Expired - Fee Related JPH07114205B2 (en) 1988-06-30 1988-06-30 Method of forming solder bumps

Country Status (1)

Country Link
JP (1) JPH07114205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439119B1 (en) * 2012-07-26 2014-09-11 티디케이가부시기가이샤 Method for manufacturing electronic component and device for manufacturing electronic component

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184153A (en) * 1991-01-04 1993-02-02 Eastman Kodak Company Compact laser printer with light tight compartment access
US7350686B2 (en) 2002-12-06 2008-04-01 Tamura Corporation Method for supplying solder
JP4576286B2 (en) 2004-05-10 2010-11-04 昭和電工株式会社 Electronic circuit board manufacturing method and electronic component mounting method
JP4576270B2 (en) * 2005-03-29 2010-11-04 昭和電工株式会社 Method for manufacturing solder circuit board
WO2007007865A1 (en) 2005-07-11 2007-01-18 Showa Denko K.K. Method for attachment of solder powder to electronic circuit board and solder-attached electronic circuit board
US10362720B2 (en) 2014-08-06 2019-07-23 Greene Lyon Group, Inc. Rotational removal of electronic chips and other components from printed wire boards using liquid heat media

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439119B1 (en) * 2012-07-26 2014-09-11 티디케이가부시기가이샤 Method for manufacturing electronic component and device for manufacturing electronic component

Also Published As

Publication number Publication date
JPH0212830A (en) 1990-01-17

Similar Documents

Publication Publication Date Title
JP4759509B2 (en) Solder bump forming method and apparatus
US6015083A (en) Direct solder bumping of hard to solder substrate
JP4892340B2 (en) Solder composition and bump forming method using the same
JP3592486B2 (en) Soldering equipment
JP4372690B2 (en) Method and apparatus for forming solder bumps
US7422973B2 (en) Method for forming multi-layer bumps on a substrate
US20050272244A1 (en) Method for manufacturing circuit element, method for manufacturing electronic element, circuit substrate, electronic device, and electro-optical apparatus
JPH0368192A (en) Application of fusing agent to substrate and device therefor
JPH07114205B2 (en) Method of forming solder bumps
JP2007208108A (en) Material feeder and material feeding method
KR100823433B1 (en) Solder composition and method of bump formation therewith
JP4276550B2 (en) Solder supply method and solder bump forming method and apparatus using the same
WO2006057394A1 (en) Method and device for forming solder bump
JPH1197839A (en) Board for mounting electronic component, board and method for mounting the electronic component and member to be bonded on board
JPH03241756A (en) Apparatus and method of mounting semiconductor integrated circuit
TWI307640B (en)
JP2011251296A (en) Method and device for feeding flux
JPH02108457A (en) Method and device for soldering printed circuit board

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees