JPH07114048A - Nonlinear optical material - Google Patents

Nonlinear optical material

Info

Publication number
JPH07114048A
JPH07114048A JP28052693A JP28052693A JPH07114048A JP H07114048 A JPH07114048 A JP H07114048A JP 28052693 A JP28052693 A JP 28052693A JP 28052693 A JP28052693 A JP 28052693A JP H07114048 A JPH07114048 A JP H07114048A
Authority
JP
Japan
Prior art keywords
matrix
optical material
particles
metal
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28052693A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP28052693A priority Critical patent/JPH07114048A/en
Publication of JPH07114048A publication Critical patent/JPH07114048A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To ensure stability over a long period of time by incorporating hyperfine particles of a ferromagnetic metal selected from among Fe, Co and Ni into a matrix having an Al oxide phase and an amorphous alloy phase consisting of the metal and Al. CONSTITUTION:Hyperfine particles of a metal selected from among Fe, Co and Ni are incorporated into the matrix of a nonlinear optical material. A large amt. of the particles can be incorporated into the matrix and the matrix has an Al oxide phase and an amorphous alloy phase consisting of the metal and Al. Especially in the case of a matrix having an Al oxide phase and an alloy phase consisting of <=50wt.% Al and Fe, Co or Ni, hyperfine particles of Fe, Co or Ni having <=50Angstrom size can be incorporated. Since a large amt. of the ferromagnetic metal is contained as fine particles, larger X<(3)> is obtd. and transparency and stability can be satisfied. The optical material can be produced as a thin film by sputtering or other method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、光双安定素子、光ゲート、光ス
イッチおよび波長変換素子などの分野で薄膜の形で用い
られ、量子サイズ効果を示す非線形光学材料に関する。
TECHNICAL FIELD The present invention relates to a non-linear optical material which is used in the form of a thin film in the fields of optical bistable devices, optical gates, optical switches, wavelength conversion devices and the like and exhibits a quantum size effect.

【0002】[0002]

【従来技術】非線形光学薄膜の従来技術としては、従来
透明な絶縁物(例えばアモルファスAl23やアモルフ
ァスSiO2)中に100Å以下の半導体超微粒子〔C
dS,CdSe,CuCl,GaAl,ZnSe,In
Sb,InP,CdTe,CdSxSey(y=1−
x)等〕や金属超微粒子(Au,Ag等)が分散された
ものが用いられた。しかしながら、3次の非線形感受率
(3)(以下、X(3)という)はいまだ十分な大きさの値
が得られているとはいえず、例えばX(3)がさらに大き
な材料が得られればさらに弱い光によりスイッチング動
作を行うことができるというメリットがあるが、現状で
は不満足という問題点がある。また、従来の超微粒子分
散薄膜は加熱すると粒径が大きくなるという基本的欠点
を有していた。本来粒径は制御されて作製されており、
これにより非線形光学特性が出現していた。しかし熱に
よる粒径安定性が悪く、くり返し使用に対して問題があ
った。すなわち、従来の超微粒子分散薄膜は、粒子サイ
ズを制御するのに基板加熱による方法がとられたが、こ
れは膜中のマトリックス中に分散している粒子が原子の
拡散によって集合し大きくなることを意味している。従
って、これらの膜は作製直後は粒径を制御できるが、長
期の熱安定性が劣ることを意味する。
2. Description of the Related Art As a conventional technique for a nonlinear optical thin film, a semiconductor ultrafine particle having a particle size of 100 Å or less in a transparent insulator (eg, amorphous Al 2 O 3 or amorphous SiO 2 ) has been used.
dS, CdSe, CuCl, GaAl, ZnSe, In
Sb, InP, CdTe, CdSxSey (y = 1−
x) etc.] and ultrafine metal particles (Au, Ag, etc.) dispersed therein were used. However, it cannot be said that the third-order nonlinear susceptibility X (3) (hereinafter referred to as X (3)) has a sufficiently large value, and for example, a material having a larger X (3) is obtained. If it is possible, there is an advantage that the switching operation can be performed with weaker light, but there is a problem that it is not satisfied at present. Further, the conventional ultrafine particle-dispersed thin film has a basic defect that the particle size becomes large when heated. Originally, the particle size is controlled and produced,
This has led to the appearance of nonlinear optical characteristics. However, the particle size stability due to heat was poor, and there was a problem with repeated use. That is, in the conventional ultrafine particle-dispersed thin film, the method of heating the substrate was used to control the particle size. This is because the particles dispersed in the matrix in the film are aggregated by the diffusion of atoms and become large. Means Therefore, the particle size of these films can be controlled immediately after production, but it means that the long-term thermal stability is poor.

【0003】[0003]

【目的】本発明は、X(3)の値が改善され、長期的に安
定な非線形光学材料の提供を目的とする。
The object of the present invention is to provide a non-linear optical material having an improved value of X (3) and being stable in the long term.

【0004】[0004]

【構成】本発明は三次元の閉込め効果によって電子や励
起子が0次元的挙動を示す、いわゆる量子サイズ効果を
示す非線形光学材料に関するものである。ここで非線形
光学効果とは、物質に光を照射すると、その物質の吸収
係数や屈折率等の光学特性が光の強度に応じて変化する
現象であり、これを利用することによって光の制御が可
能になり、入出力に光のみを使用する全光型の論理素子
を実現できる。また、量子サイズ効果とは、可視光領域
で透明なガラス中に埋め込まれた半導体粒子の電子と正
孔は、ガラスの作る深いポテンシャルによって三次元的
に閉じ込められるが、電子を波動のように考えるなら
ば、小さい箱の中では波動様式は特定のものに制限され
てしまうので、電子状態は離散的になり振動強度や非線
形感受率が増大する。この微粒子分散ガラスの量子サイ
ズ効果は最近になって見出され、注目されるようになっ
たものであり、絶縁物例えばガラス中に100Å以下の
半導体微粒子を分散させたものである。これらの技術的
事項は、たとえば〔JAPANESE JOURNAL
OFAPPLIED PHYSICS, 28巻, 1
0号, 1928−1933頁〕および「光学、第19
巻、第1号(1990年1月)10−16頁」に具体的
に説明されている。
The present invention relates to a non-linear optical material exhibiting a so-called quantum size effect in which electrons and excitons exhibit zero-dimensional behavior due to a three-dimensional confinement effect. Here, the non-linear optical effect is a phenomenon in which when a substance is irradiated with light, the optical characteristics such as the absorption coefficient and the refractive index of the substance change according to the intensity of the light. This makes it possible to realize an all-optical logic element that uses only light for input and output. The quantum size effect is that electrons and holes of semiconductor particles embedded in transparent glass in the visible light region are confined three-dimensionally by the deep potential created by the glass, but the electrons are considered like waves. Then, in a small box, the wave mode is limited to a specific one, so the electronic state becomes discrete and the vibration intensity and nonlinear susceptibility increase. The quantum size effect of this fine particle-dispersed glass has recently been discovered and has come to the forefront, in which semiconductor fine particles of 100 Å or less are dispersed in an insulating material such as glass. These technical matters are described, for example, in [JAPANESE JOURNAL
OFAPPLIED PHYSICS, Volume 28, 1
0, pp. 1928-1933] and "Optics, 19th.
Vol. 1, No. 1, January 1990, pp. 10-16 ".

【0005】本発明者は、X(3)の値が改善された非線
形光学材料を得るために、Fe、CoおよびNiよりな
る群から選ばれた少なくとも1種の強磁性金属の超微粒
子を、前記金属の酸化物や窒化物のマトリックス中に配
合されたものを提案している。そして、この非線形光学
材料は、前記のような量子サイズ効果による非線形光学
効果を示すものであるが、Fe、CoおよびNi等の金
属は、酸化しやすい為に、膜中の酸素や窒素含有量は、
40〜60%位となり、微粒子の含有量が少なくなっ
た。しかし、この微粒子量を増大させることは酸化物、
窒化物をマトリックスとする以上限界があった。
In order to obtain a non-linear optical material having an improved value of X (3) , the present inventor has prepared ultrafine particles of at least one ferromagnetic metal selected from the group consisting of Fe, Co and Ni, It has been proposed that the metal oxide or nitride is compounded in a matrix. This non-linear optical material exhibits the non-linear optical effect due to the quantum size effect as described above. However, since metals such as Fe, Co and Ni are easily oxidized, the content of oxygen or nitrogen in the film is increased. Is
It was around 40 to 60%, and the content of fine particles decreased. However, increasing this amount of fine particles is an oxide,
There was a limit because nitride was used as the matrix.

【0006】そこで、本発明者は、非線形光学材料のマ
トリックスとして、Fe、CoおよびNi等の金属の超
微粒子を多量に含ませることができ、かつ透明性が良好
で、長期的に安定なマトリックスを探求した結果、Al
酸化物相と前記金属とAlのアモルファス合金相を有す
るものが好ましいことを見い出し、本発明に到達した。
特に、Alの含有率を50重量%以下としたAlとF
e,Co,Niとの合金相及びAl酸化物相を有するマ
トリックス中には50Å以下のFe,Co,Ni超微粒
子を含有させることができること、多量の強磁性金属が
微粒子として配合されるためにより大きなX(3)が得ら
れること及び透明性や安定性を満足することを発見し
た。ただし、Alなしの場合には上記の効果は達せられ
ない。本発明の非線形光学材料は、例えばスパッタ法、
イオンプレーティング法、真空蒸着法、MBE法等のP
VD法あるいはCVD法によって製膜することによって
薄膜として製造することができるが、特にAlFeのよ
うなターゲットを使用し、イオンビームスパッタ法で行
うことが、比較的簡便に高真空で成膜できてコンタミが
少なく、反応性が良好であるということで好ましい。な
お、前記薄膜の膜厚は特に限定されないが、透明性の点
等の観点から100〜1000Å程度のものが好まし
い。また、前記の各製膜方法において、基板を加熱する
ことにより得られる超微粒子の粒子径は増大する。な
お、基板としては、透明基板が光学材料として利用する
上で好ましく、このような基板としては、セラミックス
やガラス等が挙げられるが、これらに限定されるもので
はない。
Therefore, the present inventor has made it possible to incorporate a large amount of ultrafine particles of a metal such as Fe, Co and Ni as a matrix of a non-linear optical material, has good transparency, and is a stable matrix for a long period of time. As a result of searching for
The inventors have found that a material having an oxide phase and an amorphous alloy phase of the above metal and Al is preferable, and have reached the present invention.
In particular, Al and F with an Al content of 50 wt% or less
Because Fe, Co, Ni ultrafine particles of 50Å or less can be contained in a matrix having an alloy phase with e, Co, Ni and an Al oxide phase, and a large amount of ferromagnetic metal is mixed as fine particles. It has been discovered that a large X (3) can be obtained and that transparency and stability are satisfied. However, the above effect cannot be achieved without Al. The nonlinear optical material of the present invention is, for example, a sputtering method,
Ion plating method, vacuum deposition method, MBE method, etc.
It can be manufactured as a thin film by forming a film by the VD method or the CVD method, but it is relatively easy to form a film in a high vacuum by using a target such as AlFe and performing the ion beam sputtering method. It is preferable because there is little contamination and the reactivity is good. The thickness of the thin film is not particularly limited, but is preferably about 100 to 1000 liters from the viewpoint of transparency and the like. Further, in each of the above film forming methods, the particle size of the ultrafine particles obtained by heating the substrate increases. The substrate is preferably a transparent substrate for use as an optical material, and examples of such a substrate include ceramics and glass, but the substrate is not limited to these.

【0007】[0007]

【実施例】以下、本発明の実施例を示し、本発明を説明
するが、本発明はこれら実施例に限定されるものではな
い。
The present invention will be described below by showing Examples of the present invention, but the present invention is not limited to these Examples.

【0008】実施例1 石英基板上にイオンビームスパッタ法を用いて次の条件
で約600Å厚の透明薄膜を作製した。基板温度を常
温、60℃、100℃と変化させて3種類作製した。 ターゲット AlFe合金(Al−14atm%) イオン化ガス Ar(99.999%) イオン銃 1.2mA × 8KV イオン入射角 30度 ベースプレッシャー 2 × 10-6 Torr ターゲット−基板間距離 15mm 作製した3種類の薄膜をX線回折法、TEM法で調べ
た。X線回折法ではα−Feの回折ピークしか観察され
なかった。2つの方法から求めた平均粒径は、常温−2
2Å、60℃−34Å、110℃−45Åであった。磁
気特性は軟磁性を示し、保磁力は7〜11 Oeであっ
た。XPSの測定結果からAlの組成比率は約8atm
%であった。膜の光透過率を測定した結果は図1に示
す。AlはFeとの合金及びAl酸化物で含まれること
がわかった。平均粒径の減少と共に吸収ピークのエネル
ギーが高エネルギー側へシフト(約330〜380n
m)していることがわかる。膜は3ヶ月間放置しても各
特性に変化はなかった。
Example 1 A transparent thin film having a thickness of about 600 Å was formed on a quartz substrate by the ion beam sputtering method under the following conditions. Three types of substrates were manufactured by changing the substrate temperature to room temperature, 60 ° C., and 100 ° C. Target AlFe alloy (Al-14 atm%) Ionized gas Ar (99.999%) Ion gun 1.2 mA x 8 KV Ion incidence angle 30 degrees Base pressure 2 x 10 -6 Torr Target-substrate distance 15 mm Three types of thin films prepared Was examined by X-ray diffraction method and TEM method. Only the α-Fe diffraction peak was observed by the X-ray diffraction method. The average particle size obtained from the two methods is room temperature-2.
It was 2Å, 60 ° C-34Å, 110 ° C-45Å. The magnetic characteristics showed soft magnetism, and the coercive force was 7 to 11 Oe. From the XPS measurement results, the Al composition ratio is about 8 atm.
%Met. The result of measuring the light transmittance of the film is shown in FIG. It was found that Al is contained in an alloy with Fe and an Al oxide. The energy of the absorption peak shifts to the high energy side as the average particle size decreases (about 330 to 380n
m) that you are doing. There was no change in each property even when the film was left for 3 months.

【0009】実施例2 ターゲット(AlCo合金)のAlとCoの比率を2
0:80、40:60、60:40、80:20とした
他は実施例1と全く同様にして12種類薄膜を作製し
た。XPSで測定したAlの組成は各約9、17、2
8、36atm%であった。これらはいずれも軟磁気特
性を示し、又Coの微粒子が観察された。透明性や安定
性も良好であった。微粒子径はいずれも100Å以下で
あった。実施例1にみられた高エネルギー側へのシフト
(ブルーシフト)も確認できた。
Example 2 The ratio of Al and Co of the target (AlCo alloy) was set to 2
Twelve kinds of thin films were prepared in exactly the same manner as in Example 1 except that the ratio was 0:80, 40:60, 60:40, 80:20. The composition of Al measured by XPS is about 9, 17, 2 each.
It was 8,36 atm%. All of them showed soft magnetic characteristics, and Co fine particles were observed. The transparency and stability were also good. The particle size was 100 Å or less in all cases. The shift to the high energy side (blue shift) seen in Example 1 was also confirmed.

【0010】実施例1、2の15種類の磁気光学特性を
測定(波長400〜900nm)した。いずれも金属F
eとCoのような波長依存性の少ないファラデー回転角
が得られ、5〜10deg/μmの値を示した。
Fifteen types of magneto-optical characteristics of Examples 1 and 2 were measured (wavelength 400 to 900 nm). Both are metal F
A Faraday rotation angle with a small wavelength dependency such as e and Co was obtained, showing a value of 5 to 10 deg / μm.

【0011】比較例1 ターゲットをFe(99.9%)とした以外は、実施例
1と全く同様にしてイオンビームスパッタ法で薄膜を作
製する場合に、酸素(分圧−5×10-7Torr)を導入
しながら作製した。3種類の膜にはX線回折法やXPS
法で調べると鉄と鉄のアモルファス酸化物が観察された
鉄の平均粒子径は常温−42Å,60℃−64Å,11
0℃−91Åで、実施例1,2の場合より大きかったX
PSで調べた酸素の含有量は40〜47atm%であっ
た。透明性や安定性は実施例1,2と同等であった。光
学特性を測定すると、図1のような短波長側での吸収率
の差異は認められたが、図1にみられる吸収ピークは微
少でシフト量は不明確であった(粒径に依存するブルー
シフトは量子サイズ効果を示す)。
Comparative Example 1 When a thin film was formed by the ion beam sputtering method in exactly the same manner as in Example 1 except that the target was Fe (99.9%), oxygen (partial pressure −5 × 10 −7) was used. Torr) was introduced. X-ray diffractometry and XPS for three types of films
The average particle diameter of iron was found to be room temperature -42Å, 60 ℃ -64Å, 11
X at 0 ° C.-91 Å, which was larger than those in Examples 1 and 2.
The oxygen content determined by PS was 40 to 47 atm%. The transparency and stability were the same as in Examples 1 and 2. When optical characteristics were measured, a difference in absorption rate on the short wavelength side as shown in FIG. 1 was recognized, but the absorption peak seen in FIG. 1 was minute and the shift amount was unclear (depending on particle size. Blue shift indicates quantum size effect).

【0012】[0012]

【効果】理論的研究によれば、マトリックス中の超微粒
子の半径が数nmの場合には、非線形感受率X(3)はお
よそR-3に比例するので、本件の非線形光学材料は従来
のアモルファス酸化物相等の薄膜材料に比較し、大きな
非線形感受率X(3)を示し、かつブルーシフトが明確で
ある。また、前記非線形光学材料は、強磁性材料である
ために大きな磁気光学効果を有し、この磁気光学特性
は、磁化することによって、光の方向とスピンを揃えた
りあるいは不揃に変化させることができるので、この特
性を利用することによって、空間変調素子等の用途に使
用することができる。
[Effect] According to theoretical research, when the radius of the ultrafine particles in the matrix is several nm, the nonlinear susceptibility X (3) is approximately proportional to R -3 . Compared with a thin film material such as an amorphous oxide phase, it exhibits a large non-linear susceptibility X (3) and a clear blue shift. In addition, since the non-linear optical material is a ferromagnetic material, it has a large magneto-optical effect, and its magneto-optical characteristics can be changed by aligning the direction and spin of light by magnetizing. Therefore, by utilizing this characteristic, it can be used for applications such as a spatial modulation element.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の膜の光透過率(室温、60℃、11
0℃)を示す図である。
FIG. 1 shows the light transmittance of the film of Example 1 (room temperature, 60 ° C., 11
It is a figure which shows (0 degreeC).

【符号の説明】[Explanation of symbols]

(a) Feの平均粒径45Åの場合の光透過率 (b) Feの平均粒径34Åの場合の光透過率 (c) Feの平均粒径22Åの場合の光透過率 (A) Light transmittance when the average particle size of Fe is 45Å (b) Light transmittance when the average particle size of Fe is 34Å (c) Light transmittance when the average particle size of Fe is 22Å

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Fe、CoおよびNiよりなる群から選
ばれた少なくとも1種の強磁性金属の超微粒子が、Al
酸化物相および前記金属とAlのアモルファス合金相を
有するマトリックス中に配合されていることを特徴とす
る非線形光学材料。
1. Ultrafine particles of at least one ferromagnetic metal selected from the group consisting of Fe, Co and Ni are Al
A non-linear optical material, which is compounded in a matrix having an oxide phase and an amorphous alloy phase of the metal and Al.
【請求項2】 超微粒子の粒径が50Å以下であり、か
つマトリックスのAlの含有量が50重量%以下である
請求項1記載の非線形光学材料。
2. The nonlinear optical material according to claim 1, wherein the ultrafine particles have a particle size of 50 Å or less, and the matrix has an Al content of 50% by weight or less.
JP28052693A 1993-10-14 1993-10-14 Nonlinear optical material Pending JPH07114048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28052693A JPH07114048A (en) 1993-10-14 1993-10-14 Nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28052693A JPH07114048A (en) 1993-10-14 1993-10-14 Nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH07114048A true JPH07114048A (en) 1995-05-02

Family

ID=17626333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28052693A Pending JPH07114048A (en) 1993-10-14 1993-10-14 Nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH07114048A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034152B2 (en) * 2005-01-07 2011-10-11 Gunnar Westin Composite materials and method of its manufacture
JP2019165106A (en) * 2018-03-20 2019-09-26 公益財団法人電磁材料研究所 Magnetic optical thin film, magnetic optical device and magnetic field sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034152B2 (en) * 2005-01-07 2011-10-11 Gunnar Westin Composite materials and method of its manufacture
JP2019165106A (en) * 2018-03-20 2019-09-26 公益財団法人電磁材料研究所 Magnetic optical thin film, magnetic optical device and magnetic field sensor

Similar Documents

Publication Publication Date Title
Chiu et al. Fabrication and nonlinear optical properties of nanoparticle silver oxide films
JP6619216B2 (en) Translucent magnetic material
Shi et al. Structural and optical characteristics of SiO2 thin film containing GaAs microcrystallites
Tsoukatos et al. Giant magnetoresistance in magnetically inhomogeneous thin films
TW200407450A (en) Fabrication of nanocomposite thin films for high density magnetic recording media
JPH07114048A (en) Nonlinear optical material
US20240069124A1 (en) Magneto-optical material and method for producing same
JPS63107008A (en) Thin-film having large kerr&#39;s angle of rotation and manufacture thereof
JPH04281433A (en) Superfine particle dispersion thin film
JPH05224262A (en) Nonlinear optical material
JPH05158094A (en) Nonlinear optical material
JPH07270837A (en) Superfine particle dispersed thin film and its production
Sugawara et al. Magnetic and magneto‐optical properties of perpendicular magnetic 3 d transition‐metal fluoride films
JPH04338735A (en) Nonlinear optical material
JPS6347908A (en) Nickel ferrite-system spinel thin film
JPH04338733A (en) Nonlinear optical material containing superfine particle of quasi-crystal
Kita et al. Mössbauer study of insoluble Fe‐Ag coevaporated thin film
Dorosinets et al. Electrical conductivity of nanocrystalline nonstoichiometric tin dioxide films near the metal-insulator transition
Sato et al. Plasmon loss features of germanium nanocrystals fabricated by the cluster beam evaporation technique
US3539382A (en) Film of magneto-optical rare earth oxide including method therefor
JPS62267950A (en) Magneto-optical recording medium
JPS63281250A (en) Magnetooptics thin film material and manufacture thereof
JPH07281223A (en) Thin film containing of hyperfine particle of wo3 and its production
CN1177802A (en) Mn-Bi-Al magneto-optic material with high recording density and preparation method therefor
KANEKO RARE METALS< blue skies ahead