JPH07112032B2 - Radiator with heat pipe function - Google Patents

Radiator with heat pipe function

Info

Publication number
JPH07112032B2
JPH07112032B2 JP4280505A JP28050592A JPH07112032B2 JP H07112032 B2 JPH07112032 B2 JP H07112032B2 JP 4280505 A JP4280505 A JP 4280505A JP 28050592 A JP28050592 A JP 28050592A JP H07112032 B2 JPH07112032 B2 JP H07112032B2
Authority
JP
Japan
Prior art keywords
heat
container
wick
heat pipe
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4280505A
Other languages
Japanese (ja)
Other versions
JPH06112380A (en
Inventor
良夫 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Electric Manufacturing Co Ltd
Original Assignee
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Electric Manufacturing Co Ltd filed Critical Diamond Electric Manufacturing Co Ltd
Priority to JP4280505A priority Critical patent/JPH07112032B2/en
Publication of JPH06112380A publication Critical patent/JPH06112380A/en
Publication of JPH07112032B2 publication Critical patent/JPH07112032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、特に発熱密度の高い
半導体装置の冷却に用いられるヒートパイプ機能を備え
た放熱体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiator having a heat pipe function, which is used for cooling a semiconductor device having a particularly high heat generation density.

【0002】[0002]

【従来の技術】近年の半導体装置、特に集積回路はより
一層の高速動作、高密度化を実現しているが、これによ
り半導体装置自体の発熱は極めて高くなり、従来のセラ
ミックパッケージの半導体装置では電気的な性能を充分
に活用できる程度の発熱に抑えることが困難になってき
ている。
2. Description of the Related Art In recent years, semiconductor devices, especially integrated circuits, have realized higher speed operation and higher density. However, the heat generation of the semiconductor device itself becomes extremely high. It is becoming difficult to suppress heat generation to a level where electrical performance can be fully utilized.

【0003】そこでこの熱を積極的に放熱する手段とし
て、例えば図8に示すように配線基板10に取り付けた半
導体装置(特に大規模集積回路、以下「LSI」と呼
ぶ)12の上面にアルミニュウム等熱伝導性の良い材質で
形成される放熱体14を密着させ、これにより前記LSI
12に発生する熱を大気中に放出している。
Therefore, as a means for actively radiating this heat, for example, aluminum or the like is provided on the upper surface of a semiconductor device (particularly a large-scale integrated circuit, hereinafter referred to as "LSI") 12 mounted on a wiring board 10 as shown in FIG. A heat radiator 14 formed of a material having good thermal conductivity is brought into close contact, whereby the LSI
The heat generated in 12 is released to the atmosphere.

【0004】また前記LSI12をより効果的に放熱した
い時には、放熱体14に後述のヒートパイプを備えた放熱
体(以下「ヒートパイプ」と呼ぶ)が種々提案されてい
る。
Further, in order to more effectively dissipate heat from the LSI 12, various heat dissipating bodies (hereinafter referred to as "heat pipes") having a heat pipe to be described later as the heat dissipating body 14 have been proposed.

【0005】前記ヒートパイプをLSI12に取り付けた
図を図5に、これをB−B断面で矢印方向に見た図を図
6に示す。図6に示すようにヒートパイプとは、密閉し
た銅等の熱伝導率の良い平面状容器20の内部長手方向
(場合によっては短手方向でも良い)に毛管力の大きい
ウイック24を設け、前記平面状容器20の内部に作動流体
と呼ばれる気体層と液体層に交互に変化し易い流体(例
えば水、アルコール等)を作動液注入口42を通して適量
注入させ、この後この注入口42を密閉する構造になって
いる。
FIG. 5 is a view showing the heat pipe attached to the LSI 12, and FIG. 6 is a view of the heat pipe seen in the direction of the arrow along the line BB. As shown in FIG. 6, the heat pipe is provided with a wick 24 having a large capillary force in the inner longitudinal direction of the flat container 20 having a good heat conductivity such as copper (in some cases, the shorter direction may be used). An appropriate amount of a fluid called a working fluid, which is likely to alternate between a gas layer and a liquid layer (for example, water, alcohol, etc.), is injected into the planar container 20 through a working liquid inlet 42, and then the inlet 42 is sealed. It is structured to

【0006】この動作原理は、平面状容器20の一端の蒸
発部(受熱部)に発熱があると、内部に封入されている
作動流体が蒸発し、発生した蒸気は前記蒸発部より低温
の平面状容器20の他端の凝縮部に移動し液体に変化し、
この液体はウイック24の毛管力により蒸発部に戻され
る。この蒸発潜熱により、大量の熱がわずかの温度差し
かない一端から他端に輸送される。
The operating principle is that, when heat is generated in the evaporating portion (heat receiving portion) at one end of the flat container 20, the working fluid enclosed inside is evaporated, and the generated vapor is flattened at a temperature lower than that of the evaporating portion. It moves to the condensation part at the other end of the container 20 and changes to a liquid,
This liquid is returned to the evaporation section by the capillary force of the wick 24. Due to this latent heat of vaporization, a large amount of heat is transported from one end to the other end with a slight temperature difference.

【0007】なお図6に示すヒートパイプにおいては蒸
発部と凝縮部は逆の位置に配置することも可能で、設置
状態は凝縮部を上にするほど熱伝導効率が良い。
In the heat pipe shown in FIG. 6, the evaporating section and the condensing section can be arranged at opposite positions, and the installed state is such that the heat transfer efficiency is higher as the condensing section is placed higher.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記記載
のヒートパイプでは、図5に示すようにLSI12との接
触部が線状であり、受熱面積が多くとれない。また液体
の蒸発潜熱を利用して熱輸送を行なうので、適当な平面
状容器20の断面積と長さを有しないと充分な熱輸送が行
なえないために、比較的大型のものは実用化されている
が、「従来の技術」で述べたような電気回路用の配線基
板に取り付け可能な小型のものは、期待したほどの放熱
効果は得られない。
However, in the heat pipe described above, the contact portion with the LSI 12 is linear as shown in FIG. 5, and the heat receiving area cannot be large. Further, since heat is transferred by utilizing latent heat of vaporization of the liquid, sufficient heat transfer cannot be performed unless the cross-sectional area and the length of the flat container 20 are appropriate, so that a relatively large one is put to practical use. However, the small size that can be attached to the wiring board for the electric circuit as described in "Prior Art" does not provide the expected heat dissipation effect.

【0009】また前記ヒートパイプでは半導体装置全体
の冷却効果は向上するが、図7に示すようなLSI12で
は、実際のチップ部(発熱部)16と配線基板10に取り付
けるための部分として設けられている発熱しない部分が
あり、この発熱密度の高い発熱部16を効率よく冷却する
ことは非常に困難である。
Although the heat pipe improves the cooling effect of the entire semiconductor device, the LSI 12 as shown in FIG. 7 is provided as a portion to be mounted on the actual chip portion (heat generating portion) 16 and the wiring board 10. There is a part that does not generate heat, and it is very difficult to efficiently cool the heat generating part 16 having a high heat generation density.

【0010】そこでこの発明は、ヒートパイプを小型化
しても効率的に半導体装置の冷却が行なえ、さらに局部
的に発熱密度の高い半導体装置であっても効率よく放熱
させることができるヒートパイプを提供することを目的
とする。
Therefore, the present invention provides a heat pipe capable of efficiently cooling a semiconductor device even if the heat pipe is downsized, and more efficiently dissipating heat even in a semiconductor device having a locally high heat generation density. The purpose is to do.

【0011】[0011]

【課題を解決するための手段】本発明では上記目的を達
成するために、容器部と容器蓋部により平板状容器を形
成し、この平板状容器の内壁のほぼ全面にウイックを有
し、前記平板状容器の内部の空間に減圧下で作動液を封
入したヒートパイプ機能を備えた放熱体において、前記
空間の中央付近より放射状に伸びる複数の内ウイックを
有し、前記内ウイックの前記空間中央付近と、前記内ウ
イックと前記容器の外縁端部の内壁付近に作動流体の連
絡路となる通路を設ける。
According to the present invention, in order to achieve the above object, a flat container is formed by a container portion and a container lid, and a wick is formed on substantially the entire inner wall of the flat container. In a radiator having a heat pipe function in which a working fluid is sealed under a reduced pressure in a space inside a flat container, a plurality of inner wicks radially extending from the vicinity of the center of the space are provided, and the center of the space of the inner wick. A passage serving as a communication passage for the working fluid is provided in the vicinity and near the inner wall of the inner wick and the outer edge portion of the container.

【0012】なお前記平板状容器の上面及び下面は4角
形だけでなく多角形、または円形でもよい。
The upper surface and the lower surface of the plate-like container may be polygonal or circular as well as quadrangular.

【0013】別の方法として、前記平板状容器の内部に
形成される空間を複数個に独立分離し、この個々の空間
にそれぞれ内ウイックを配置することも考えられる。
As another method, it is conceivable that the space formed inside the flat plate-shaped container is separated into a plurality of spaces, and an inner wick is arranged in each space.

【0014】また前記平板状容器の上部と外縁端部の少
なくとも一方に放熱用のフィン22を設ければさらに良好
な冷却効果が得られる。
Further, if a fin 22 for heat radiation is provided on at least one of the upper portion and the outer edge portion of the flat plate-like container, a better cooling effect can be obtained.

【0015】[0015]

【作用】上記手段により、蒸気通路を大きくできること
で蒸気の圧力損失を減少すると同時に内ウイック量を任
意に増減できるためにヒートパイプの熱輸送限界を決め
るウイック内の作動液が蒸気流によって持ち去られる飛
散限界値を上げ、極めて効率の良いヒートパイプ機能構
造を有する放熱体となる。
With the above means, the steam passage can be enlarged to reduce the pressure loss of steam and at the same time, the amount of the inner wick can be arbitrarily increased or decreased, so that the working fluid in the wick that determines the heat transport limit of the heat pipe is carried away by the steam flow. The scattering limit value is increased, and the radiator has a very efficient heat pipe function structure.

【0016】また前記平板状容器の上部と外縁端部の少
なくとも一方に放熱用のフィン22を設ければさらに良好
な冷却効果が得られる。
Further, if a fin 22 for heat radiation is provided on at least one of the upper portion and the outer edge portion of the flat plate-like container, a better cooling effect can be obtained.

【0017】[0017]

【実施例】図1は本発明の第1の実施例を示すヒートパ
イプ機能を備えた放熱体の部分的に断面を示した上面図
を、またこの図1のヒートパイプ機能を備えた放熱体の
A−A断面を矢印方向に見た断面図を図2に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a partial cross-sectional top view of a heat radiator having a heat pipe function according to a first embodiment of the present invention, and this heat radiator having a heat pipe function shown in FIG. FIG. 2 shows a cross-sectional view of the section AA taken along the arrow direction.

【0018】図1と2において、平板状容器20(本実施
例では平板状容器の上面及び下面には4角形のものを使
用しているが、これは多角形または円形でもよい)は容
器部201と容器蓋部202を溶着することにより形成され、
この平面状容器20は銅等熱伝導の良い材質で、例えば応
用されるLSI12の大きさとほぼ同等の大きさの外枠を
持つ、直方体で内部を空洞にした形状のものである。こ
の平面状容器20(直方体)の側面の内、一面が開口して
おりこの開口部より、以下で説明するウイック保持管30
と内ウイック32、強弾性ウイック34、外ウイック36が一
体挿入されている。
In FIGS. 1 and 2, the flat container 20 (in the present embodiment, the upper and lower surfaces of the flat container are quadrangular, but this may be polygonal or circular) is the container part. Formed by welding 201 and container lid 202,
The planar container 20 is made of a material having good thermal conductivity such as copper, and has a rectangular parallelepiped shape with an inner frame having an outer frame having a size substantially equal to the size of the LSI 12 to be applied. One of the side surfaces of the planar container 20 (a rectangular parallelepiped) is open, and the wick holding tube 30 described below is opened from this opening.
The inner wick 32, the strong elastic wick 34, and the outer wick 36 are integrally inserted.

【0019】また平面状容器20は前記ウイック保持管30
等挿入後容器蓋部202で前記開口部が閉じられ、この接
続部(溶接部44)を溶接することにより容器部201と容
器蓋部202が溶着し一体化され、これにより容器部201と
容器蓋部202で形成される平面状容器20の内部に空間が
存在する。
The flat container 20 is the wick holding tube 30.
After the equal insertion, the opening is closed by the container lid 202, and the container portion 201 and the container lid portion 202 are welded and integrated by welding the connection portion (welding portion 44), whereby the container portion 201 and the container There is a space inside the planar container 20 formed by the lid portion 202.

【0020】さらに容器蓋部202の外側側面に設けられ
ている作動流体注入口42によりこの平面状容器20の内部
空間を減圧し適量の作動流体を封入する。以上により平
面状容器20の内部空間が完全に密閉される。
Further, the internal space of the planar container 20 is decompressed by the working fluid inlet 42 provided on the outer side surface of the container lid 202, and an appropriate amount of working fluid is enclosed. As described above, the internal space of the planar container 20 is completely sealed.

【0021】なお図1、2においては、平面状容器20の
中央に発熱密度の高い(図7に示す発熱部16)ものが配
置され、ここで発生する熱は平面状容器20の外側に向か
って放射状に放出されている。
In FIGS. 1 and 2, a flat container 20 having a high heat generation density (heat generating portion 16 shown in FIG. 7) is arranged in the center, and the heat generated here is directed to the outside of the flat container 20. Are emitted radially.

【0022】前記ウイック保持管30と内ウイック32、強
弾性ウイック34、外ウイック36であるが、ウイック保持
管30は銅等熱伝導の良い材質で四角管または円管に成形
されており、このウイック保持管30の長手方向が内ウイ
ック32により巻かれている。ここで外ウイック36と内ウ
イック32は上下壁に密着しているほど毛細管現象により
冷却効果があり、これらを密着させる補助として強弾性
ウイック34を内ウイック32の外側に配置している。なお
この強弾性ウイック34は外ウイック36が平面状容器20の
内壁に密着できる構造のものを用いた場合は設けなくて
も良い。
The wick holding tube 30, the inner wick 32, the strong elastic wick 34, and the outer wick 36 are used. The wick holding tube 30 is a square tube or a circular tube made of a material having good heat conductivity such as copper. The longitudinal direction of the wick holding tube 30 is wound by the inner wick 32. Here, the closer the outer wick 36 and the inner wick 32 are to the upper and lower walls, the more they have a cooling effect due to the capillary phenomenon, and the strong elastic wick 34 is arranged outside the inner wick 32 as an aid for closely adhering these. The strong elastic wick 34 may not be provided when the outer wick 36 has a structure in which the outer wick 36 can be brought into close contact with the inner wall of the planar container 20.

【0023】平面状の内壁のほぼ全面には、銅のスクリ
ーン等からなる外ウイック36が設けられている。
An outer wick 36 made of a copper screen or the like is provided on almost the entire surface of the inner wall having a flat shape.

【0024】図1、2に示す第1の実施例では、ウイッ
ク保持管30は平面状容器20の上面中央部を中心としてこ
の端に向かって放射上にそれぞれ4個づつ設けられ、こ
のウイック保持管30の外端部は作動流体が蒸気になりこ
れが巡回する蒸気連絡路38として、容器平面状20の外縁
端部の内壁に接触しない程度の長さになっているが、こ
の蒸気連絡路38が設けられない場合にはウイック保持管
30にこれに相当する横穴を設けることにより、これを蒸
気連絡路にすることもできる。
In the first embodiment shown in FIGS. 1 and 2, four wick holding tubes 30 are provided radially toward the end centering on the central portion of the upper surface of the planar container 20, respectively. The outer end of the pipe 30 has a length that does not come into contact with the inner wall of the outer edge of the container plane 20 as a vapor communication path 38 through which the working fluid becomes vapor and circulates through the vapor communication path 38. If not provided, wick holding tube
It is also possible to use this as a steam communication path by providing a side hole corresponding to this in 30.

【0025】前記ウイック保持体30は内ウイック32の構
造によっては省略することもでき、また前記内ウイック
32の数、形状、向き、容器部201と容器蓋部202及び作動
流体注入口42の位置と形状等は任意に決定することがで
き、平面状容器20その他の部分は熱伝導の良いセラミッ
クスで作ることもできる。さらに「発明が解決しようと
する課題」で述べたLSI12のチップ部16を本発明の構
造の放熱体に埋め込むことも可能である。
The wick holder 30 may be omitted depending on the structure of the inner wick 32.
The number, shape and orientation of 32, the position and shape of the container portion 201, the container lid portion 202 and the working fluid inlet 42 can be arbitrarily determined, and the flat container 20 and other portions are made of ceramics having good thermal conductivity. You can also make it. Further, the chip portion 16 of the LSI 12 described in "Problems to be Solved by the Invention" can be embedded in the heat radiator having the structure of the present invention.

【0026】前記記載の放熱体は平面に水平に取り付け
られる場合には作動流体はある一部に偏ることなく最大
の冷却効果を発揮できるが、この放熱体が様々な角度で
取り付けられる場合は、作動流体が平面状容器20のある
一部に偏ってしまい、放熱作用を低減させてしまうこと
がある。従って前記のような場合には、第2の実施例と
して図3に示す構成のヒートパイプがより大きな冷却効
果を有する。
When the radiator described above is mounted horizontally on a flat surface, the working fluid can exert the maximum cooling effect without being biased to a certain part, but when the radiator is mounted at various angles, The working fluid may be biased to a part of the planar container 20, and the heat radiation effect may be reduced. Therefore, in the above case, the heat pipe having the configuration shown in FIG. 3 as the second embodiment has a greater cooling effect.

【0027】図3は本発明の第2の実施例を示すヒート
パイプ機能を備えた放熱体の部分的に断面を示した上面
図を示す。なお本発明の第1の実施例図1、2において
説明したものと同一または相当部分については説明を省
略する。
FIG. 3 is a partial cross-sectional top view of a heat radiator having a heat pipe function according to a second embodiment of the present invention. The description of the same or corresponding parts as those described with reference to FIGS. 1 and 2 of the first embodiment of the present invention will be omitted.

【0028】なお図3においても図1、2と同様に平面
状容器20の中央に発熱密度の高い(図7に示す発熱部1
6)ものが配置され、ここで発生する熱は平面状容器20
の外側に向かって放射状に放出されている。
Also in FIG. 3, as in FIGS. 1 and 2, the heat generation density is high in the center of the planar container 20 (the heat generating portion 1 shown in FIG. 7).
6) Objects are placed, and the heat generated here is generated by the flat container 20.
Is emitted radially toward the outside of.

【0029】図3において平面状容器20は銅等熱伝導の
良い材質で、例えば直方体で内部を空洞にした形状のも
のである。この平面状容器20(直方体)の上面は開口し
ており、この内部は複数個(例えば4つ)の等しい大き
さ(等しくない場合もある)の空間に仕切られており、
前記開口部に容器蓋部202を溶着させることによりこの
4つの空間はそれぞれ独立して密閉される。ここで作動
流体注入口42は仕切りが交わる部分(図3では容器蓋20
2の中心部分)に4つの空間分をまとめて設けてもよい
し、4つの空間それぞれに一つづつ別々に設けることも
考えられる。この空間にはそれぞれ前記図1、2で説明
したウイック保持管30と内ウイック32、強弾性ウイック
34、外ウイック36が挿入されている。
In FIG. 3, the planar container 20 is made of a material having good thermal conductivity such as copper, and has, for example, a rectangular parallelepiped shape with a hollow interior. The upper surface of the planar container 20 (a rectangular parallelepiped) is open, and the inside is partitioned into a plurality (for example, four) of equal-sized (sometimes not equal) spaces,
By welding the container lid 202 to the opening, the four spaces are independently sealed. Here, the working fluid inlet 42 is a portion where the partitions intersect (in FIG.
It is also possible to collectively provide four spaces in the central part of 2), or to separately provide one for each of the four spaces. In this space, the wick holding tube 30, the inner wick 32, and the strong elastic wick described in FIGS.
34 and outer wick 36 are inserted.

【0030】さらに図4に示すように平面状容器20の上
部と外縁端部の両方、またはどちらかの外側にフィン22
を設ければ、さらに効率の良い冷却が得られる。
Further, as shown in FIG. 4, the fins 22 are provided on the outside of either the upper portion or the outer edge portion of the planar container 20, or either of them.
By providing, more efficient cooling can be obtained.

【0031】[0031]

【発明の効果】上記手段により、蒸気の圧力損失を減少
すると同時にヒートパイプの熱輸送限界を決めるウイッ
ク内の作動液が蒸気流によって持ち去られる飛散限界値
を上げ、さらに要求仕様が変わってもその都度内ウイッ
ク量を任意に増減できるために、極めて効率の良いヒー
トパイプ機能構造を有する放熱体となる。
By the above means, the pressure loss of steam is reduced, and at the same time the working fluid in the wick, which determines the heat transport limit of the heat pipe, is carried away by the steam flow. Since the amount of wicks in each case can be arbitrarily increased or decreased, it becomes a radiator having an extremely efficient heat pipe function structure.

【0032】さらに図3に示す第2の実施例の構造にす
れば、放熱体をあらゆる角度にして取り付けても、この
冷却能力は低下することがない。
Further, according to the structure of the second embodiment shown in FIG. 3, even if the radiator is attached at any angle, the cooling capacity does not decrease.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例を示すヒートパイプ機
能を備えた放熱体の部分的に断面を示した上面図である
FIG. 1 is a top view showing a partial cross section of a radiator having a heat pipe function according to a first embodiment of the present invention.

【図2】 図1のヒートパイプ機能を備えた放熱体のA
−A断面を矢印方向に見た断面図である。
2 is a heat-dissipating body A having a heat pipe function shown in FIG.
It is sectional drawing which looked at the -A cross section in the arrow direction.

【図3】 本発明の第2の実施例を示すヒートパイプ機
能を備えた放熱体の部分的に断面を示した上面図であ
る。
FIG. 3 is a top view showing a partial cross section of a radiator having a heat pipe function according to a second embodiment of the present invention.

【図4】 本発明の第1または第2の実施例の容器及び
容器蓋にフィンを設けたヒートパイプ機能を備えた放熱
体を側面から見た図である。
FIG. 4 is a side view of a heat radiator having a heat pipe function in which fins are provided on the container and the container lid according to the first or second embodiment of the present invention.

【図5】 基本的なヒートパイプの断面図である。FIG. 5 is a sectional view of a basic heat pipe.

【図6】 図5のヒートパイプをB−B断面で矢印方向
に見た図である。
FIG. 6 is a view of the heat pipe of FIG. 5 as seen in a direction of an arrow in a BB cross section.

【図7】 大規模集積回路の上面図である。FIG. 7 is a top view of a large scale integrated circuit.

【図8】 従来の放熱体を示す図である。FIG. 8 is a diagram showing a conventional radiator.

【符号の説明】[Explanation of symbols]

図において同一符号は同一、または相当部分を示す。 20 平面状容器 22 フィン 24 ウイック 30 ウイック保持管 32 内ウイック 34 強弾性ウイック 36 外ウイック 42 作動流体注入口 44 溶接部 202 容器部 204 容器蓋部 In the drawings, the same reference numerals indicate the same or corresponding parts. 20 Planar Container 22 Fin 24 Wick 30 Wick Retaining Tube 32 Inner Wick 34 Strong Elastic Wick 36 Outer Wick 42 Working Fluid Injecting Port 44 Welding Part 202 Container Part 204 Container Lid Part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平板状容器の内壁のほぼ全面にウイック
を有し、前記平板状容器の内部の空間に作動液を封入し
た放熱体において、前記空間の中央付近より放射状に伸
びる複数の内ウイックを有し、前記内ウイックの前記空
間中央付近と、前記内ウイックと平板状容器の外縁端部
の内壁付近に作動流体の連絡路となる通路を設けるヒー
トパイプ機能を備えた放熱体。
1. In a radiator having a wick on substantially the entire inner wall of a flat container and having a working liquid sealed in the space inside the flat container, a plurality of inner wicks extending radially from near the center of the space. A heat radiator having a heat pipe function, which has a passage serving as a communication passage for a working fluid near the center of the space of the inner wick and near the inner wall of the inner wick and the outer edge of the flat container.
【請求項2】 請求項1記載の放熱体において、前記平
板状容器の上部と外縁端部の少なくとも一方に放熱用の
フィンを設けるヒートパイプ機能を備えた放熱体。
2. The heat radiator according to claim 1, wherein the heat radiator has a heat pipe function in which a fin for heat radiation is provided on at least one of an upper portion and an outer edge portion of the flat container.
【請求項3】 請求項1記載の平板状容器により形成さ
れる空間を複数個に独立分離し、この個々の空間にそれ
ぞれ内ウイックを配置する、請求項1記載のヒートパイ
プ機能を備えた放熱体。
3. A heat dissipation device having a heat pipe function according to claim 1, wherein a plurality of spaces formed by the flat plate container according to claim 1 are independently separated, and an inner wick is arranged in each of the spaces. body.
【請求項4】 請求項3記載の放熱体において、前記平
板状容器の上部と外縁端部の少なくとも一方に放熱用の
フィンを設けるヒートパイプ機能を備えた放熱体。
4. The heat radiator according to claim 3, which has a heat pipe function in which fins for heat radiation are provided on at least one of an upper portion and an outer edge portion of the flat plate-shaped container.
JP4280505A 1992-09-24 1992-09-24 Radiator with heat pipe function Expired - Lifetime JPH07112032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4280505A JPH07112032B2 (en) 1992-09-24 1992-09-24 Radiator with heat pipe function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4280505A JPH07112032B2 (en) 1992-09-24 1992-09-24 Radiator with heat pipe function

Publications (2)

Publication Number Publication Date
JPH06112380A JPH06112380A (en) 1994-04-22
JPH07112032B2 true JPH07112032B2 (en) 1995-11-29

Family

ID=17626032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4280505A Expired - Lifetime JPH07112032B2 (en) 1992-09-24 1992-09-24 Radiator with heat pipe function

Country Status (1)

Country Link
JP (1) JPH07112032B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095684A (en) * 2002-08-29 2004-03-25 Fujikura Ltd Heat sink
KR100473560B1 (en) * 2002-11-25 2005-03-10 엘지전선 주식회사 A Heat Spreader With Folded Screen Wick
CN1314112C (en) * 2004-01-08 2007-05-02 杨洪武 Heat-tube radiator for heating electronic element
US7032652B2 (en) * 2004-07-06 2006-04-25 Augux Co., Ltd. Structure of heat conductive plate
US7832462B2 (en) * 2008-03-31 2010-11-16 Alcatel-Lucent Usa Inc. Thermal energy transfer device

Also Published As

Publication number Publication date
JPH06112380A (en) 1994-04-22

Similar Documents

Publication Publication Date Title
US7607470B2 (en) Synthetic jet heat pipe thermal management system
US5309986A (en) Heat pipe
US7304842B2 (en) Apparatuses and methods for cooling electronic devices in computer systems
JPH0735955B2 (en) Integrated heat pipe / heat exchanger / tightening assembly and method for obtaining same
US6263959B1 (en) Plate type heat pipe and cooling structure using it
US6474074B2 (en) Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
US20170363363A1 (en) Electronics Cooling with Multi-Phase Heat Exchange and Heat Spreader
US20050173098A1 (en) Three dimensional vapor chamber
US20020060902A1 (en) HIgh performance heat sink configurations for use in high density packaging applications
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
US20060181848A1 (en) Heat sink and heat sink assembly
JPH0744246B2 (en) Heat removal equipment
JP2004523911A (en) Heat dissipation device
JP2010522996A (en) Thin thermal diffusion liquid chamber using boiling
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
WO2006014288A1 (en) Micro heat pipe with wedge capillaries
EP1708261B1 (en) Heat pipe radiator for a heat-generating component
JP2007263427A (en) Loop type heat pipe
WO2002041396A2 (en) High performance heat sink configurations for use in high density packaging applications
JPH07112032B2 (en) Radiator with heat pipe function
JP2000091482A (en) Cooler for semiconductor element and manufacture thereof
JP4028202B2 (en) Heat sink with freeze-fracture prevention function
KR100468278B1 (en) Heat pipe heat sink with conduction block
JPS6129163A (en) Ic module unit
JPS63254754A (en) Cooling device for electronic element body