JPH07111166A - Control method for zinc-bromine battery for electric power storage - Google Patents

Control method for zinc-bromine battery for electric power storage

Info

Publication number
JPH07111166A
JPH07111166A JP5255339A JP25533993A JPH07111166A JP H07111166 A JPH07111166 A JP H07111166A JP 5255339 A JP5255339 A JP 5255339A JP 25533993 A JP25533993 A JP 25533993A JP H07111166 A JPH07111166 A JP H07111166A
Authority
JP
Japan
Prior art keywords
module
modules
zinc
power storage
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5255339A
Other languages
Japanese (ja)
Inventor
Hiromichi Ito
裕通 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5255339A priority Critical patent/JPH07111166A/en
Publication of JPH07111166A publication Critical patent/JPH07111166A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Abstract

PURPOSE:To eliminate the dispersion of performance existing between modules in the control method for a zinc-bromine battery for electric power storage fabricated by connecting in series a plurality of modules comprising a plurality of battery stacks. CONSTITUTION:The electrolyte adjusting temperature of modules 1-24 on operation is equalized in the range of 25-35 deg.C. For the module with high performance, for example, the module 1, operation temperature is increased, and for the module with low performance, for example, the module 2, operation temperature is decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複数の電池モジュールを
直列に接続して充電、放電、完全放電を行う電力貯蔵用
亜鉛−臭素電池の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a zinc-bromine battery for electric power storage, in which a plurality of battery modules are connected in series to perform charging, discharging and complete discharging.

【0002】[0002]

【従来の技術】従来、電力貯蔵用亜鉛−臭素電池の実証
試験は、電力変電所において例えば1000KW級電池
のパイロットプラントにより行われていた。この実証試
験においては図2に示すようなストリング構成が用いら
れていた。図2において複数の電池スタックを並列接続
してなるモジュール(25KW)は24台(1〜24)
直列に接続されている。このような構成において充電、
放電、完全放電等が行われる。
2. Description of the Related Art Conventionally, a demonstration test of a zinc-bromine battery for power storage has been conducted at a power substation by a pilot plant of 1000 KW class batteries, for example. In this verification test, the string configuration as shown in FIG. 2 was used. In FIG. 2, 24 modules (1 to 24) are modules (25 kW) configured by connecting a plurality of battery stacks in parallel.
It is connected in series. Charging in such a configuration,
Discharge, complete discharge, etc. are performed.

【0003】[0003]

【発明が解決しようとする課題】図2に示される構成の
プラントにおいて、各モジュール1〜24の性能の違い
により、特に放電末期にモジュール間の性能の差が顕著
に表れた。
In the plant having the structure shown in FIG. 2, due to the difference in performance of the modules 1 to 24, the difference in performance among the modules is particularly remarkable at the end of discharge.

【0004】具体的には放電末期のストリング電圧特性
を示す図3のように、性能の悪いモジュールの電圧が急
激に低下し、24台のモジュール中、数台の性能の悪い
モジュールによってストリング電圧は放電終止電圧(7
20V)まで低下した。つまり2〜3割の性能の悪いモ
ジュールによって全体の効率が決定されていた。
Specifically, as shown in FIG. 3 showing the string voltage characteristic at the end of discharge, the voltage of the module with poor performance sharply drops, and the string voltage is changed by several of the 24 modules with poor performance. Discharge end voltage (7
20V). In other words, the overall efficiency was determined by 20 to 30% of the modules with poor performance.

【0005】さらに各モジュール1〜24は直列に接続
されているため、放電後に行われる完全放電において
も、残留亜鉛の除去は行われても、完全放電終了時点に
おける負極側臭素濃度は性能の悪いモジュールは高く、
良いモジュールは低い状態で終了する。
Further, since the modules 1 to 24 are connected in series, even if the residual zinc is removed even in the complete discharge performed after the discharge, the bromine concentration on the negative electrode side at the end of the complete discharge is poor in performance. The module is high,
Good modules finish low.

【0006】 亜鉛が残っている時の負極反応:Zn→Zn2++2e 亜鉛がなくなった時の負極反応:Br2-→Br2+2e その状態で次の充電が行われるため性能の良いモジュー
ルと悪いモジュールの格差はサイクルが進む程広がって
いた。
Negative electrode reaction when zinc remains: Zn → Zn 2+ + 2e Negative electrode reaction when zinc disappears: Br 2 → → Br 2 + 2e In this state, the next charge is performed, and thus a module with good performance is obtained. The gap between bad modules was widening as the cycle progressed.

【0007】本発明は上記の点に鑑みてなされたもので
その目的は、各モジュール間の性能のバラツキをなくす
ことができる電力貯蔵用亜鉛−臭素電池の制御方法を提
供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a method for controlling a zinc-bromine battery for electric power storage, which can eliminate variation in performance among modules.

【0008】[0008]

【課題を解決するための手段】本発明は、複数の電池ス
タックを並列接続して成るモジュールを複数台直列に接
続して構成された電力貯蔵用亜鉛−臭素電池の制御方法
において、運転時の前記各モジュールの電解液調節温度
を等しくするとともに、性能の良いモジュールに対して
は運転温度を上げ、性能の悪いモジュールに対しては運
転温度を下げることを特徴としている。
The present invention provides a method for controlling a zinc-bromine battery for power storage, which is configured by connecting a plurality of modules in which a plurality of battery stacks are connected in parallel to each other in series. It is characterized in that the electrolyte control temperatures of the respective modules are made equal, the operating temperature is raised for a module having good performance, and the operating temperature is lowered for a module having poor performance.

【0009】[0009]

【作用】本発明によれば、複数のモジュールを直列に接
続した電池システムにおいて、各モジュール間のクーロ
ン効率が等しくなり、性能の悪いモジュールに影響を受
けることなく良好な全体特性を得ることができる。
According to the present invention, in a battery system in which a plurality of modules are connected in series, the coulombic efficiencies of the respective modules become equal, and good overall characteristics can be obtained without being affected by the module having poor performance. .

【0010】[0010]

【実施例】以下図面を参照しながら本発明の一実施例を
説明する。まず前記問題点は、各モジュール間のクーロ
ン効率(AH効率)の差に起因する。この差はサイクル
が進むにつれて広がり、完全放電を十分に行うと仮定す
れば、性能の良いモジュールは効率が変わらず、悪いモ
ジュールはどんどん積算して悪くなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, the problem is caused by a difference in Coulomb efficiency (AH efficiency) between modules. This difference spreads as the cycle progresses, and if it is assumed that the complete discharge is sufficiently performed, the efficiency of the module with good performance does not change, and the bad module accumulates and becomes worse.

【0011】すなわち前記差が1%とすれば10サイク
ル後には10%の差になってしまう。これを解決するた
めに本実施例ではモジュール性能に合わせた各モジュー
ルの運転温度を設定した。つまり各モジュールの性能を
判定し、性能の良いモジュールは設定温度を高く、性能
の悪いモジュールは設定温度を低くした。
That is, if the difference is 1%, the difference becomes 10% after 10 cycles. In order to solve this, in this embodiment, the operating temperature of each module was set according to the module performance. That is, the performance of each module was judged, and the module with good performance had a high set temperature, and the module with poor performance had a low set temperature.

【0012】図1は30KWhモジュールを使用した2
0mA/cm2×4hの充電で20mA/cm2放電の試
験結果の一例であるが、ΔT=10degで1.2mA
h/cm2の差、つまりクーロン効率として1.5%の
差に相当する。
FIG. 1 shows a case of using a 30 KWh module.
It is an example of the test result of 20 mA / cm 2 discharge at 0 mA / cm 2 × 4 h charge, but 1.2 mA at ΔT = 10 deg.
This corresponds to a difference of h / cm 2 , that is, a difference of 1.5% in Coulombic efficiency.

【0013】クーロン効率の差は設定温度を等しくした
場合、製造のばらつきに起因し、±0.5%以内の範囲
に入るため、運転温度20〜40℃の範囲で調節すると
十分制御可能な領域に入る。具体的には830cm2
電極面積をもつ10セルを10台直列に接続し、25〜
35℃の設定範囲でばらつきのないサイクル特性を示す
ことができた。
The difference in coulombic efficiency is within ± 0.5% within the range of ± 0.5% when the set temperatures are made equal, due to manufacturing variations. to go into. Specifically, 10 cells having an electrode area of 830 cm 2 are connected in series, and
It was possible to show cycle characteristics without variation in the setting range of 35 ° C.

【0014】尚各モジュールにおけるスタックの個数や
直列接続するモジュールの台数等は実施例に限らず他の
個数でも良い。
The number of stacks in each module, the number of modules connected in series, etc. are not limited to those in the embodiment, and other numbers may be used.

【0015】[0015]

【発明の効果】以上のように本発明によれば、複数の電
池スタックを並列接続して成るモジュールを複数台直列
に接続して構成された電力貯蔵用亜鉛−臭素電池の制御
方法において、運転時の前記各モジュールの電解液調節
温度を等しくするとともに、性能の良いモジュールに対
しては運転温度を上げ、性能の悪いモジュールに対して
は運転温度を下げるように構成したので、次のような優
れた効果が得られる。
As described above, according to the present invention, a method for controlling a zinc-bromine battery for power storage, which is configured by connecting a plurality of modules in which a plurality of battery stacks are connected in parallel, in series, is operated. At the same time, the electrolyte control temperature of each module at the time is made equal, and the operating temperature is raised for the module with good performance, and the operating temperature is lowered for the module with poor performance. Excellent effect can be obtained.

【0016】(1)電解液循環型亜鉛−臭素電池モジュ
ールを複数個直列に接続した電池システムにおいて、モ
ジュール間のクーロン効率が等しくなるように調節する
ことができる。 (2)性能の悪いモジュールに影響されることなく良好
な全体特性を得ることができる。
(1) In a battery system in which a plurality of electrolytic solution circulating zinc-bromine battery modules are connected in series, the Coulombic efficiency between the modules can be adjusted to be equal. (2) Good overall characteristics can be obtained without being affected by a module with poor performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る制御温度とロス電気量
の関係を表す特性図。
FIG. 1 is a characteristic diagram showing a relationship between a control temperature and a loss electricity amount according to an embodiment of the present invention.

【図2】亜鉛−臭素電池におけるストリングモジュール
構成の一例を示す回路図。
FIG. 2 is a circuit diagram showing an example of a string module configuration in a zinc-bromine battery.

【図3】従来例による放電末期のストリング電圧を表す
特性図。
FIG. 3 is a characteristic diagram showing a string voltage at the end of discharge according to a conventional example.

【符号の説明】[Explanation of symbols]

1〜24…電池モジュール 1 to 24 ... Battery module

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の電池スタックを並列接続して成る
モジュールを複数台直列に接続して構成された電力貯蔵
用亜鉛−臭素電池の制御方法において、 運転時の前記各モジュールの電解液調節温度を等しくす
るとともに、性能の良いモジュールに対しては運転温度
を上げ、性能の悪いモジュールに対しては運転温度を下
げることを特徴とする電力貯蔵用亜鉛−臭素電池の制御
方法。
1. A method for controlling a zinc-bromine battery for power storage, which is configured by connecting a plurality of modules in which a plurality of battery stacks are connected in parallel to each other in series, wherein an electrolytic solution adjustment temperature of each of the modules during operation is provided. And increasing the operating temperature for a module with good performance and decreasing the operating temperature for a module with poor performance.
JP5255339A 1993-10-13 1993-10-13 Control method for zinc-bromine battery for electric power storage Pending JPH07111166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5255339A JPH07111166A (en) 1993-10-13 1993-10-13 Control method for zinc-bromine battery for electric power storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5255339A JPH07111166A (en) 1993-10-13 1993-10-13 Control method for zinc-bromine battery for electric power storage

Publications (1)

Publication Number Publication Date
JPH07111166A true JPH07111166A (en) 1995-04-25

Family

ID=17277418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5255339A Pending JPH07111166A (en) 1993-10-13 1993-10-13 Control method for zinc-bromine battery for electric power storage

Country Status (1)

Country Link
JP (1) JPH07111166A (en)

Similar Documents

Publication Publication Date Title
US6573687B2 (en) Charging/discharging control method for secondary battery
US6828757B2 (en) Circuit for adjusting charging rate of cells in combination
US8760118B2 (en) System and method for charging and discharging a Li-ion battery
JP3367382B2 (en) Lithium ion secondary battery
JP2003308817A (en) Battery pack
CN103779619A (en) Method for performing cell balancing of a battery system based on cell capacity values
CN115622187B (en) Active equalization circuit and active equalization method of battery pack
JP2950956B2 (en) Charging method
JP3378293B2 (en) Equipment system
WO2016035280A1 (en) Battery system, electric vehicle, and method for charging battery system
EP3443635B1 (en) Balanced battery charging system
KR101572923B1 (en) Battery system
JPH07111166A (en) Control method for zinc-bromine battery for electric power storage
Brost Performance of valve-regulated lead acid batteries in EV1 extended series strings
CN113991193A (en) Secondary battery and preparation method thereof
JPH10257684A (en) Charge-discharge control device
Abeywardana et al. Improved shared transformer cell balancing of Li-ion batteries
JP3936979B2 (en) Equal charging method for lithium ion secondary battery
CN220553840U (en) Storage battery device supporting natural equalization
KR102609887B1 (en) Method of controling current rate using preheating for charging battery fast
CN216794697U (en) Novel dry-type battery parallel charging module
US11855465B1 (en) Full current balancing method of state of charge for energy storage system
CN114567040B (en) Network topology and control method of high-capacity battery energy storage system
TWI755116B (en) Intelligent balanced charging method and system for series battery cells
US20240243368A1 (en) Power storage system, power supply, driving device, power control device, and method for equalizing power storage statuses