JPH07110171A - Air conditioner using absorption type freezer machine - Google Patents

Air conditioner using absorption type freezer machine

Info

Publication number
JPH07110171A
JPH07110171A JP5279050A JP27905093A JPH07110171A JP H07110171 A JPH07110171 A JP H07110171A JP 5279050 A JP5279050 A JP 5279050A JP 27905093 A JP27905093 A JP 27905093A JP H07110171 A JPH07110171 A JP H07110171A
Authority
JP
Japan
Prior art keywords
refrigerant
amount
regenerator
concentration
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5279050A
Other languages
Japanese (ja)
Inventor
Takashi Tanaka
崇 田中
Hideki Furukawa
秀樹 古川
Kanako Nakayama
香奈子 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP5279050A priority Critical patent/JPH07110171A/en
Publication of JPH07110171A publication Critical patent/JPH07110171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide an air conditioner in which the time required for condensing circulating solution at a starting time of an operation for increasing a cooling capacity of the air conditioner can be shortened and a maximum cooling capability can be rapidly assured. CONSTITUTION:An amount of refrigerant within a refrigerant tank 18 is detected by a sensor T5, a mean solution concentration is calculated in reference to the amount of refrigerant and if the mean solution concentration is lower than an allowable solution concentration, a degree of opening of a fuel supplying control valve 15 is increased to enforce a fire power of a burner 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一般の住宅や小規模な建
物などを対象とした吸収式冷凍機を用いた空調装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using an absorption refrigerating machine for general houses and small buildings.

【0002】[0002]

【従来の技術】吸収式冷凍機を用いた空調装置は、現
在、ビルあるいは大型店舗などのような産業用、業務用
の設備に主として用いられている。
2. Description of the Related Art At present, an air conditioner using an absorption chiller is mainly used for industrial or commercial facilities such as a building or a large store.

【0003】吸収式冷凍機を用いた空調装置の冷房方式
は、再生器で蒸発させた冷媒蒸気を水冷方式の凝縮器で
凝縮させ、この凝縮した冷媒を蒸発器に導いて蒸発させ
るが、その際の蒸発潜熱で冷房すべき室内に設けられた
ファンコイルユニットと冷凍機との間を循環する冷熱媒
(通常は水)を冷却する。一方、蒸発した冷媒蒸気は水
冷方式の吸収器で濃溶液(吸収液)に吸収させ、再び再
生器に戻すというサイクルで運転される。
In a cooling system of an air conditioner using an absorption refrigerator, a refrigerant vapor evaporated in a regenerator is condensed in a water-cooled condenser, and the condensed refrigerant is guided to an evaporator for evaporation. The cooling heat medium (usually water) that circulates between the fan coil unit provided in the room to be cooled and the refrigerator is cooled by the latent heat of vaporization at that time. On the other hand, the evaporated refrigerant vapor is operated in a cycle in which a water-cooled absorber absorbs the concentrated solution (absorption liquid) and returns it to the regenerator.

【0004】この種の吸収式冷凍機を用いた空調装置で
は、室内側ファンコイルユニット内に循環させる冷熱媒
の温度を蒸発器において7℃前後まで冷却し、この冷熱
媒を室内のファンコイル内に循環させて室内空気を冷却
して12℃前後で蒸発器に戻すようにしている。吸収液
としてリチウムブロマイド水溶液を使用する場合は、吸
収器内の吸収液の温度を40℃前後に保つことが必要と
なり、この温度を維持するためには冷却塔を屋上などに
設置して水冷回路で冷却する方法が取られている。
In an air conditioner using this type of absorption refrigerator, the temperature of the cold heat medium circulated in the indoor fan coil unit is cooled to around 7 ° C. in the evaporator, and the cold heat medium is circulated in the indoor fan coil. It is circulated to cool the indoor air and return it to the evaporator at around 12 ° C. When using an aqueous lithium bromide solution as the absorbing liquid, it is necessary to maintain the temperature of the absorbing liquid in the absorber at around 40 ° C. To maintain this temperature, a cooling tower is installed on the rooftop or the like, and the water cooling circuit is installed. The method of cooling is adopted.

【0005】ところがこのような水冷方式を採用した従
来の吸収式冷凍機を用いた空調装置には次のような問題
がある。
However, the conventional air conditioner using the absorption type refrigerating machine adopting such a water cooling system has the following problems.

【0006】(1)吸収器を水冷方式で温度管理してい
るために、設備が大型になるとともに配管が必要にな
り、そのために多くの工事費がかかり、一般の住宅や小
規模の建物の冷房用には不向きである。
(1) Since the temperature of the absorber is controlled by a water cooling system, the equipment becomes large and piping is required. Therefore, a lot of construction cost is required, which is a problem for general houses and small buildings. Not suitable for cooling.

【0007】(2)冷房すべき室内のファンコイルユニ
ットと冷凍機とを冷熱媒循環用の配管で結ぶ必要がある
ために、工事費や設備費が高額になる。これは、吸収液
と冷媒にアンモニア水を使用するアンモニア吸収式冷凍
機についても同じである。
(2) Since it is necessary to connect the fan coil unit and the refrigerator in the room to be cooled by the pipe for circulating the heating / cooling medium, the construction cost and equipment cost are high. The same applies to an ammonia absorption refrigerator that uses ammonia water as the absorbing liquid and the refrigerant.

【0008】そこで本発明者らは、凝縮器と吸収器とを
水冷方式でなく空冷方式で冷却し、冷熱媒を用いる代わ
りに冷房したい空気を直接蒸発器に通して冷却する冷房
サイクル運転を行う空調装置についてすでに特許出願を
している(特願平5−22351号)。
Therefore, the present inventors carry out a cooling cycle operation in which the condenser and the absorber are cooled by an air cooling method instead of a water cooling method, and the air to be cooled is directly passed through an evaporator instead of using a cooling / heating medium. A patent application has already been filed for the air conditioner (Japanese Patent Application No. 5-22351).

【0009】図4は上記出願で提案された単効用吸収式
冷凍機を用いた空調装置の変形例の要部を示し、図5は
同空調装置の設置状態を示す。
FIG. 4 shows an essential part of a modified example of an air conditioner using the single-effect absorption refrigerator proposed in the above application, and FIG. 5 shows an installed state of the air conditioner.

【0010】空調装置は、図5に示すように、室外機1
と室内機2とから成り、室外機1は図4に示すような構
成で空調しようとする住宅の室5の外に配置され、室内
機2は冷風の吹出し口と室内空気の吸込み口のみを有
し、室5の内部に配置される。室外機1と室内機2は冷
風の送風ダクト3と室内空気の吸気ダクト4とで接続さ
れている。6は、装置の運転のスタートまたはストッ
プ、自動運転の設定または解除、室内温度の設定、冷風
の吹出し風量などの調整を行うリモコン操作器である。
As shown in FIG. 5, the air conditioner includes an outdoor unit 1
The outdoor unit 1 is arranged outside the room 5 of the house to be air-conditioned with the configuration shown in FIG. 4, and the indoor unit 2 has only the outlet for cool air and the inlet for indoor air. It has and is arranged inside the chamber 5. The outdoor unit 1 and the indoor unit 2 are connected by a blower duct 3 for cold air and an intake duct 4 for indoor air. Reference numeral 6 is a remote controller for starting or stopping the operation of the apparatus, setting or canceling the automatic operation, setting the room temperature, adjusting the amount of blown cold air, and the like.

【0011】室外機1の内部は図4に示すような構成に
なっており、吸収液としてリチウムブロマイド水溶液が
用いられ、冷媒として水が用いられる。
The inside of the outdoor unit 1 has a structure as shown in FIG. 4, in which an aqueous lithium bromide solution is used as the absorbing liquid and water is used as the refrigerant.

【0012】蒸発器10は、冷媒を蒸発させ、その蒸発
潜熱によりそこを通過する空気を冷却する機能を有し、
送風ダクト3と吸気ダクト4に接続されている。吸気ダ
クト4内には送風ファン11が設けられている。
The evaporator 10 has a function of evaporating a refrigerant and cooling the air passing therethrough by the latent heat of evaporation thereof.
It is connected to the blower duct 3 and the intake duct 4. A blower fan 11 is provided in the intake duct 4.

【0013】再生器12は、冷媒を吸収して濃度の低く
なった吸収液をバーナ13により加熱することによって
冷媒蒸気を発生させるとともに吸収液を濃縮する機能を
有する。バーナ13へは燃料供給管14から燃料ガスが
供給され、その燃焼程度は燃料供給制御弁15の開度に
より調節される。
The regenerator 12 has the functions of absorbing the refrigerant and heating the absorbent having a low concentration by the burner 13 to generate refrigerant vapor and to concentrate the absorbent. Fuel gas is supplied to the burner 13 from a fuel supply pipe 14, and the degree of combustion is adjusted by the opening degree of the fuel supply control valve 15.

【0014】凝縮器16は、再生器12から送られてく
る冷媒蒸気を空冷ファン17により冷却して液化する機
能を有し、循環する溶液の平均濃度を調節するために冷
媒の一部を冷媒タンク18に溜めておく。
The condenser 16 has a function of cooling and liquefying the refrigerant vapor sent from the regenerator 12 by the air-cooling fan 17, and a part of the refrigerant is used as a refrigerant in order to adjust the average concentration of the circulating solution. Store in the tank 18.

【0015】吸収器20は吸収液を蓄えており、蒸発器
10で蒸発した冷媒をその吸収液に吸収させる機能を有
しており、凝縮器16と同じ空冷ファン17により空冷
される。冷媒を吸収して濃度の低くなった吸収液は一旦
希溶液タンク21に蓄えられる。
The absorber 20 stores the absorbing liquid, has a function of absorbing the refrigerant evaporated in the evaporator 10 into the absorbing liquid, and is cooled by the same air cooling fan 17 as the condenser 16. The absorbing liquid which has absorbed the refrigerant and has a low concentration is temporarily stored in the dilute solution tank 21.

【0016】22は、希溶液タンク21から再生器12
に向かう濃度の低い低温の吸収液と再生器12から吸収
器20に向かう濃度の高い高温の吸収液との間で熱交換
を行なう熱交換器、23は、冷媒を吸収して濃度の低く
なった吸収液を希溶液タンク21から再生器12に送出
するポンプ、24は、蒸発器10の上流側と凝縮器16
の下流側との間に設けられたキャピラリなどの圧損部材
である。
Reference numeral 22 denotes the regenerator 12 from the dilute solution tank 21.
The heat exchanger 23, which performs heat exchange between the low-temperature and high-concentration absorption liquid flowing from the regenerator 12 and the high-concentration high-temperature absorption liquid toward the absorber 20, absorbs the refrigerant to reduce the concentration. A pump for sending the absorbed liquid from the dilute solution tank 21 to the regenerator 12, and 24 are the upstream side of the evaporator 10 and the condenser 16
Is a pressure loss member such as a capillary provided between the pressure loss member and the downstream side.

【0017】V1、V2、V3、V4、V5はいずれも
電磁弁のような制御弁であり、特にV4は希溶液タンク
21側から冷媒タンク18側へは流さない逆止機能を有
する弁である。
V1, V2, V3, V4, and V5 are all control valves such as solenoid valves, and in particular V4 is a valve having a check function that does not flow from the dilute solution tank 21 side to the refrigerant tank 18 side. .

【0018】上記の空調装置は、吸収液を希溶液タンク
21から再生器12に送出するのにポンプ23を用いて
いる点を除き、基本的には各容器の温度を制御すること
によって各容器間に圧力差を作り、その圧力差で冷媒お
よび吸収液が送出され、循環するようにしている。
The above-mentioned air conditioner basically controls each container by controlling the temperature of each container except that the pump 23 is used to deliver the absorbing solution from the dilute solution tank 21 to the regenerator 12. A pressure difference is created between them, and the refrigerant and the absorbing liquid are sent and circulated by the pressure difference.

【0019】[0019]

【発明が解決しようとする課題】ところで上記の空調装
置においては、循環する溶液の平均濃度が高いほど空調
装置の冷房能力を高めることができる。一方、溶液の濃
度が許容溶液濃度よりも高くなると溶液が晶析し、管路
を塞いでしまい安定した運転ができなくなる。そこで、
溶液が晶析しない程度、すなわち許容溶液濃度に達しな
い程度の高濃度で溶液を循環させて運転するのが望まし
い。
In the above air conditioner, the higher the average concentration of the circulating solution, the higher the cooling capacity of the air conditioner. On the other hand, when the concentration of the solution becomes higher than the allowable concentration of the solution, the solution is crystallized and the pipe is blocked, so that stable operation cannot be performed. Therefore,
It is desirable to operate by circulating the solution at such a high concentration that the solution does not crystallize, that is, does not reach the allowable solution concentration.

【0020】上述したように循環する溶液の平均濃度は
冷媒タンク18の冷媒量で調節され、冷媒タンク18の
冷媒量が多いほど循環する溶液の平均濃度が高くなる。
たとえば、空調装置の運転開始時には冷媒タンク18に
は冷媒が存在しない状態であるので冷媒タンク18に冷
媒を溜め溶液を濃縮してから運転を開始した方が高い冷
房能力を確保できる。
As described above, the average concentration of the circulating solution is adjusted by the amount of the refrigerant in the refrigerant tank 18, and the larger the amount of the refrigerant in the refrigerant tank 18, the higher the average concentration of the circulating solution.
For example, when the operation of the air conditioner is started, there is no refrigerant in the refrigerant tank 18, so it is possible to secure a higher cooling capacity by starting the operation after collecting the refrigerant in the refrigerant tank 18 and concentrating the solution.

【0021】ところで、通常の冷房運転中にバーナ13
に供給する定格の燃料ガス量は、冷媒タンク18の冷媒
量が最も多い状態、すなわち循環する溶液の平均濃度が
最も高い状態における再生器12による濃縮結果が許容
溶液濃度を越えない燃焼程度に抑える量に設定してい
る。
By the way, the burner 13 is operated during the normal cooling operation.
The rated fuel gas amount to be supplied to the refrigerant tank 18 is suppressed to a combustion level such that the concentration result by the regenerator 12 in the state in which the refrigerant amount in the refrigerant tank 18 is the maximum, that is, in the state in which the circulating solution has the highest average concentration, does not exceed the allowable solution concentration. The amount is set.

【0022】上述したように運転開始時には冷媒を冷媒
タンク18に溜めることにより循環する溶液を濃縮し、
循環する溶液の平均濃度を所定の濃度にしてから冷房運
転を開始する。この濃縮時には、冷媒タンク18の冷媒
量が少ないため、上記の定格の燃料ガス量を越えた量の
燃料ガスをバーナ13に供給して溶液を濃縮しても許容
溶液濃度に達することがない。
As described above, when the operation is started, the refrigerant is accumulated in the refrigerant tank 18 to concentrate the circulating solution,
The cooling operation is started after the average concentration of the circulating solution is set to a predetermined concentration. At the time of this concentration, since the amount of the refrigerant in the refrigerant tank 18 is small, even if the amount of the fuel gas exceeding the above rated amount of the fuel gas is supplied to the burner 13 to concentrate the solution, the allowable solution concentration will not be reached.

【0023】つまり、運転開始時には上記の定格の燃料
ガス量よりも多い量の燃料ガスを供給しても許容溶液濃
度に達しないにもかかわらず、上記の定格の燃料ガス量
で溶液の濃縮を行っていたのでは、運転開始時の濃縮に
かかる時間がいたずらに長くなってしまい、濃縮の完了
を待って行われる冷房運転の開始が遅れることになる。
That is, at the start of the operation, even if the fuel gas is supplied in an amount larger than the rated fuel gas amount, the allowable solution concentration is not reached, but the solution is concentrated with the rated fuel gas amount. If this is done, the time required for concentration at the start of operation will become unnecessarily long, and the start of the cooling operation that is performed after the completion of concentration will be delayed.

【0024】本発明は上記の点にかんがみてなされたも
ので、運転開始時や、外気温の上昇にともない許容溶液
濃度が高くなった場合などにおいて、最大冷房能力を素
早く確保できる空調装置を提供することを目的とする。
The present invention has been made in view of the above points, and provides an air conditioner capable of quickly ensuring the maximum cooling capacity at the time of starting operation or when the allowable solution concentration becomes high as the outside air temperature rises. The purpose is to do.

【0025】[0025]

【課題を解決するための手段】本発明は上記の目的を達
成するために、冷媒を蒸発させる蒸発器と、冷媒を吸収
する吸収液を蓄え前記蒸発器で蒸発した冷媒蒸気をこの
吸収液に吸収させる吸収器と、冷媒蒸気を吸収した希吸
収液を加熱して冷媒蒸気と濃吸収液とを発生する再生器
と、この再生器で発生した冷媒蒸気を凝縮させる凝縮器
と、循環する冷媒の総量を調節するために循環させない
冷媒を溜める冷媒タンクと、この冷媒タンクの冷媒量を
検出する冷媒量検出手段とを有し、所定の冷房能力を確
保するために前記冷媒タンクに前記再生器からの冷媒を
溜めることにより前記希吸収液を濃縮し、前記蒸発器に
より空調すべき室内の空気を直接冷却し、この冷却した
空気をダクトを介して室内に送風して冷房を行う吸収式
冷凍機を用いた空調装置において、前記濃縮時には前記
再生器における加熱量を濃吸収液が晶析しない程度に増
加する加熱制御手段を設けて空調装置を構成した。
In order to achieve the above object, the present invention provides an evaporator for evaporating a refrigerant, an absorption liquid for absorbing the refrigerant, and a refrigerant vapor evaporated in the evaporator for the absorption liquid. An absorber that absorbs, a regenerator that heats a rare absorption liquid that has absorbed refrigerant vapor to generate a refrigerant vapor and a concentrated absorption liquid, a condenser that condenses the refrigerant vapor generated in this regenerator, and a circulating refrigerant. Of the regenerator in the refrigerant tank in order to secure a predetermined cooling capacity, and a refrigerant tank for accumulating the refrigerant that is not circulated in order to adjust the total amount of the refrigerant tank, and a refrigerant quantity detecting means for detecting the refrigerant quantity of the refrigerant tank. The above-mentioned diluted absorption liquid is concentrated by accumulating the refrigerant from, the air in the room to be air-conditioned is directly cooled by the evaporator, and the cooled air is blown into the room through the duct to cool the room. Sky with a machine In the apparatus, said at concentrated to constitute an air conditioning apparatus provided with a heating control means for the concentrated absorption liquid heating amount increases to such an extent that no crystallization in the regenerator.

【0026】[0026]

【作用】本発明は以上の構成によって、空調装置の冷房
サイクルを循環する吸収液と冷媒とを足し合わせた上で
の濃度、すなわち平均溶液濃度を高くするために濃縮す
るときには、加熱制御手段により再生器における加熱を
濃縮時以外のときよりも強くする。
According to the present invention, with the above configuration, when the concentration of the absorbing liquid and the refrigerant circulating in the cooling cycle of the air conditioner are added, that is, when the concentration is increased to increase the average solution concentration, the heating control means is used. The heating in the regenerator should be stronger than when it is not concentrated.

【0027】[0027]

【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0028】図1は本発明を実施した単効用吸収式冷凍
機を用いた空調装置の一実施例の要部を示す。本発明に
よる空調装置の設置状態は図5に示したとおりである。
FIG. 1 shows a main part of an embodiment of an air conditioner using a single-effect absorption refrigerator according to the present invention. The installation state of the air conditioner according to the present invention is as shown in FIG.

【0029】本発明による空調装置の構成は図4に示し
たと同じであるからその説明は省略するが、装置の制御
に必要な電気回路について説明する。
Since the structure of the air conditioner according to the present invention is the same as that shown in FIG. 4, the description thereof will be omitted, but an electric circuit required for controlling the device will be described.

【0030】T1は蒸発器10の上流側に設けられた室
内温度検出用のセンサ、T2は送風温度検出用のセン
サ、T3は再生器の液面レベル検出用のセンサ、T4は
凝縮器温度検出用のセンサ、T5は室外温度検出用のセ
ンサ、T6は冷媒タンクの冷媒量検出用のセンサであ
る。
T1 is a sensor for detecting the room temperature provided on the upstream side of the evaporator 10, T2 is a sensor for detecting the temperature of the blown air, T3 is a sensor for detecting the liquid level of the regenerator, and T4 is for detecting the temperature of the condenser. Sensor, T5 is a sensor for detecting the outdoor temperature, and T6 is a sensor for detecting the amount of refrigerant in the refrigerant tank.

【0031】CPU、メモリ、駆動回路から成るコント
ローラ30と、リモコン操作器6(図5参照)からの設
定信号を室内機2の受信部2aで受け、受信部2aから
の信号を受ける通信制御器31とが設けられており、コ
ントローラ30はセンサT1、T2、T3、T4、T
5、T6からの信号と、通信制御器31からの信号とを
受け、送風ファン11、空冷ファン17、ポンプ23、
燃料供給管14の燃料供給制御弁15の動作を制御する
ようになっている。
A controller 30 including a CPU, a memory, and a drive circuit, and a communication controller that receives a setting signal from the remote controller 6 (see FIG. 5) at the receiver 2a of the indoor unit 2 and receives a signal from the receiver 2a. 31 is provided, and the controller 30 uses the sensors T1, T2, T3, T4, T
5, the signal from T6 and the signal from the communication controller 31 are received, and the blower fan 11, the air cooling fan 17, the pump 23,
The operation of the fuel supply control valve 15 of the fuel supply pipe 14 is controlled.

【0032】次に図2を参照して冷房サイクルの動作を
説明する。
Next, the operation of the cooling cycle will be described with reference to FIG.

【0033】運転開始前は、弁V1、V3、V5は閉じ
ており、弁V2、V4は開いている。吸収液はすべて希
溶液タンク21に入っており、再生器12は空の状態に
なっている。
Before the start of operation, the valves V1, V3 and V5 are closed and the valves V2 and V4 are open. All the absorbing liquid is contained in the dilute solution tank 21, and the regenerator 12 is empty.

【0034】リモコン操作器6のスタートボタンをオン
すると、弁V1、V3、V5が開くとともに弁V2、V
4が閉じ(F−1)、モータM2 が駆動されてポンプ2
3により希溶液タンク21から吸収液が再生器12に送
出される(F−2)。このときコントローラ30のCP
UはセンサT3からの信号を見て再生器12の液面が規
定のレベルに達しているか否かを判断する(F−3)。
液面が規定のレベルに達したときは、燃料供給制御弁1
5を開いて燃料供給管14から燃料ガスを供給しバーナ
13に点火する(F−4)。
When the start button of the remote controller 6 is turned on, the valves V1, V3 and V5 are opened and the valves V2 and V are opened.
4 is closed (F-1), the motor M 2 is driven and the pump 2
The absorption liquid is sent from the dilute solution tank 21 to the regenerator 12 by 3 (F-2). At this time, the CP of the controller 30
U determines the liquid level of the regenerator 12 has reached a specified level by looking at the signal from the sensor T3 (F-3).
When the liquid level reaches the specified level, the fuel supply control valve 1
5 is opened and fuel gas is supplied from the fuel supply pipe 14 to ignite the burner 13 (F-4).

【0035】再生器12で冷媒蒸気が発生し凝縮器16
に流れ、冷媒蒸気の温度により凝縮器16の温度が次第
に上昇する。コントローラ30のCPUはセンサT4か
らの信号により凝縮器16の温度が所定値に達したか否
かを判断し(F−5)、所定値に達したときは空冷ファ
ン17を回転させる(F−6)。
Refrigerant vapor is generated in the regenerator 12 and the condenser 16
The temperature of the condenser 16 gradually rises due to the temperature of the refrigerant vapor. The CPU of the controller 30 determines from the signal from the sensor T4 whether the temperature of the condenser 16 has reached a predetermined value (F-5), and when it reaches the predetermined value, the air-cooling fan 17 is rotated (F- 6).

【0036】凝縮器16では再生器12から送られてく
る蒸気冷媒が液化し、この液化冷媒は弁V5を介して冷
媒タンク18に流入する。このときコントローラ30の
CPUはセンサT6からの信号を見て冷媒タンク18内
の冷媒が所定量に達しているか否かを判断し(F−
7)、所定値に達したときには、弁V5を閉じ(F−
8)、送風ファン11を回転させる(F−9)。
In the condenser 16, the vapor refrigerant sent from the regenerator 12 is liquefied, and this liquefied refrigerant flows into the refrigerant tank 18 via the valve V5. At this time, the CPU of the controller 30 looks at the signal from the sensor T6 and determines whether the refrigerant in the refrigerant tank 18 has reached a predetermined amount (F-
7) When the predetermined value is reached, the valve V5 is closed (F-
8) Rotate the blower fan 11 (F-9).

【0037】このとき凝縮器16からの冷媒はキャピラ
リ24を通って蒸発器10に流れ込み、蒸発器10では
冷媒が蒸発しこの潜熱によって送風ファン11により吸
気ダクト4を通って室内から送られてくる空気を冷却す
る。冷却された空気は送風ダクト3を通って室内機2に
送られ、室5内に冷風として吹き出され、室5が冷房さ
れる(F−10)。
At this time, the refrigerant from the condenser 16 flows into the evaporator 10 through the capillary 24, the refrigerant is evaporated in the evaporator 10, and the latent heat is sent from the room through the intake duct 4 by the blower fan 11. Cool the air. The cooled air is sent to the indoor unit 2 through the air duct 3 and is blown into the room 5 as cold air to cool the room 5 (F-10).

【0038】この冷房動作においては、蒸発器10で蒸
発して蒸気となった冷媒は吸収器20に流れ込み、そこ
で吸収液に吸収される。冷媒を吸収して濃度が低くなっ
た吸収液は一旦希溶液タンク21に入った後ポンプ23
により弁V3を通って熱交換器22で再生器12から送
り出される濃度の高い高温の吸収液と熱交換され、再生
器12に送り込まれる。この状態が運転の定常モードで
ある。
In this cooling operation, the refrigerant evaporated in the evaporator 10 to become vapor flows into the absorber 20 and is absorbed therein by the absorbing liquid. The absorbing liquid, which has absorbed the refrigerant and becomes low in concentration, once enters the dilute solution tank 21 and is then pumped by the pump
As a result, the heat is exchanged with the high-concentration high-temperature absorption liquid sent from the regenerator 12 by the heat exchanger 22 through the valve V3, and is sent to the regenerator 12. This state is the steady mode of operation.

【0039】ここで冷房運転中における系の各部におけ
る容器および吸収液、冷媒の温度および圧力を例示する
と次のようになる。
Examples of the temperature and pressure of the container, the absorbing liquid, and the refrigerant in each part of the system during the cooling operation are as follows.

【0040】 温 度(℃) 圧 力(Torr) 蒸発器10: 10〜20 10〜20 再生器12: 60〜90 90〜110 凝縮器16: 50〜80 90〜110 吸収器20: 45〜50 11 冷媒タンク18: 30〜50 40〜50 希溶液タンク21: 40〜60 11 熱交換器22: 30〜90 − 吸気ダクト4: 26(室温) − 送風ダクト3: 13〜20 − 希溶液: 35〜40 濃度:61% 濃溶液: 90 濃度:64.8% リモコン操作器6のスタートボタンをオフすると(F−
11)、停止処理を行った(F−12)後終了する。停
止処理としては、まず、バーナ13を消火し、弁V2、
V4を開き、弁V1を閉じる。次にしばらくしてからポ
ンプ23を停止し、弁V3を閉じ、送風ファン11およ
び空冷ファン17を停止する。このようにすることによ
り冷媒タンク18内の冷媒および再生器12内の吸収液
が希溶液タンク21にすべて流れ込む。これは装置が停
止している間に吸収液により冷媒タンク18や再生器1
2が腐食するのを防止し、濃溶液を希釈し晶析を防止す
るためである。
Temperature (° C.) Pressure (Torr) Evaporator 10:10 to 20 10 to 20 Regenerator 12: 60 to 90 90 to 110 Condenser 16: 50 to 80 90 to 110 Absorber 20: 45 to 50 11 Refrigerant tank 18: 30-50 50-40 50 Dilute solution tank 21: 40-60 11 Heat exchanger 22: 30-90-Intake duct 4: 26 (room temperature) -Blower duct 3: 13-20- Dilute solution: 35 -40 Concentration: 61% Concentrated solution: 90 Concentration: 64.8% When the start button of the remote controller 6 is turned off (F-
11), stop processing is performed (F-12), and then the processing ends. As the stop processing, first, the burner 13 is extinguished, and the valve V2,
Open V4 and close valve V1. Then, after a while, the pump 23 is stopped, the valve V3 is closed, and the blower fan 11 and the air cooling fan 17 are stopped. By doing so, the refrigerant in the refrigerant tank 18 and the absorbing liquid in the regenerator 12 all flow into the dilute solution tank 21. This is because the refrigerant tank 18 and the regenerator 1 are absorbed by the absorbing liquid while the device is stopped.
This is to prevent 2 from corroding and diluting the concentrated solution to prevent crystallization.

【0041】次に、循環する溶液を濃縮して平均濃度を
高くする際の制御について説明する。
Next, the control when the circulating solution is concentrated to increase the average concentration will be described.

【0042】図3は、循環する溶液を濃縮して平均濃度
を高くする際の燃料供給制御弁15の開度を調節する処
理のフローチャートである。
FIG. 3 is a flow chart of a process for adjusting the opening degree of the fuel supply control valve 15 when the circulating solution is concentrated to increase the average concentration.

【0043】図3に示した処理は、図2のステップ(F
−4)で燃料供給制御弁15を開くときや、ステップ
(F−10)の冷房動作において、循環する溶液を濃縮
する際における燃料供給制御弁15の開度調節にかかる
処理である。
The process shown in FIG. 3 is performed in the step (F
-4) is a process for adjusting the opening of the fuel supply control valve 15 when the fuel supply control valve 15 is opened or when the circulating solution is concentrated in the cooling operation of step (F-10).

【0044】まず、冷媒タンク18の冷媒量をセンサT
5によって検出する(S−1)。次に検出した冷媒量を
もとに循環する溶液の平均濃度を算出する(S−2)。
空調装置の冷房サイクルを循環するすべての溶液と冷媒
の量は予めわかっているので、循環しない冷媒量、すな
わち冷媒タンク18に溜っている冷媒量がわかれば循環
する溶液の平均濃度を求めることができる。
First, the amount of refrigerant in the refrigerant tank 18 is measured by the sensor T.
It detects by 5 (S-1). Next, the average concentration of the circulating solution is calculated based on the detected refrigerant amount (S-2).
Since the amounts of all the solutions and the refrigerant circulating in the cooling cycle of the air conditioner are known in advance, the average concentration of the circulating solution can be obtained if the amount of the refrigerant not circulating, that is, the amount of the refrigerant accumulated in the refrigerant tank 18 is known. it can.

【0045】次に、ステップ(S−2)で求めた平均濃
度と許容溶液濃度とを比較する(S−3)。循環する溶
液の平均濃度が許容溶液濃度を越えると溶液が晶析して
しまうおそれがあるので平均濃度を許容溶液濃度より高
くはしないような制御を行う。
Next, the average concentration obtained in step (S-2) is compared with the allowable solution concentration (S-3). If the average concentration of the circulating solution exceeds the permissible solution concentration, the solution may be crystallized. Therefore, control is performed so that the average concentration is not higher than the permissible solution concentration.

【0046】すなわち平均濃度が許容溶液濃度よりも低
い場合には、燃料供給制御弁15の開度を大きくして定
格の燃料ガス量よりも多くの燃料ガスがバーナ13に供
給されるようにする(S−4)。定格の燃料ガス量と
は、上述したように冷媒タンク18の冷媒量が最も多い
状態、すなわち循環する溶液の平均濃度が最も高い状態
における再生器12による濃縮結果が許容溶液濃度を越
えない燃焼程度に抑える量のことである。ところで、ス
テップ(S−4)の処理によってバーナ13に供給され
る燃料ガスの量は、上記定格の燃料ガス量よりも多い
が、再生器12から吸収器20に向かう濃溶液、すなわ
ち吸収液が晶析しない程度に制限される。
That is, when the average concentration is lower than the permissible solution concentration, the opening of the fuel supply control valve 15 is increased so that more fuel gas than the rated fuel gas amount is supplied to the burner 13. (S-4). As described above, the rated fuel gas amount is the combustion level at which the concentration result by the regenerator 12 in the state in which the refrigerant amount in the refrigerant tank 18 is the maximum, that is, in the state in which the circulating solution has the highest average concentration, does not exceed the allowable solution concentration. It is the amount to be suppressed to. By the way, the amount of fuel gas supplied to the burner 13 by the process of step (S-4) is larger than the rated fuel gas amount, but the concentrated solution from the regenerator 12 to the absorber 20, that is, the absorbing liquid is Limited to the extent that crystallization does not occur.

【0047】平均濃度が許容溶液濃度と等しくなったな
らば、循環する溶液の濃縮は完了なので処理を終了す
る。
When the average concentration becomes equal to the permissible solution concentration, the concentration of the circulating solution is completed, and the process is terminated.

【0048】図3に示した処理を行うことにより、循環
する溶液の濃縮を、定格の燃料ガス量で行うよりも早く
行うことができる。
By performing the process shown in FIG. 3, the circulating solution can be concentrated more quickly than when the rated fuel gas amount is used.

【0049】なお、本発明によれば、循環する溶液を許
容溶液濃度にまで濃縮する際、循環する溶液の濃度が最
も早く許容溶液濃度に達するためにバーナ13に供給す
る最適な燃料ガスの量をPID制御等の演算により求
め、この求めた燃料ガス量を供給するように燃料供給制
御弁15の開度を調節することもできる。
According to the present invention, when the circulating solution is concentrated to the allowable solution concentration, the optimum amount of the fuel gas supplied to the burner 13 so that the circulating solution concentration reaches the allowable solution concentration earliest. It is also possible to obtain P by the calculation such as PID control and adjust the opening degree of the fuel supply control valve 15 so as to supply the obtained fuel gas amount.

【0050】また、本実施例では、吸収液にリチウムブ
ロマイド水溶液を用い、冷媒に水を用いたが、本発明が
これに限られるものではない。
Further, in this embodiment, the lithium bromide aqueous solution was used as the absorbing liquid and water was used as the refrigerant, but the present invention is not limited to this.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
空調装置の運転開始時等における冷房サイクルを循環す
る溶液の濃縮に要する時間を短縮することができる。
As described above, according to the present invention,
It is possible to shorten the time required for concentrating the solution circulating in the cooling cycle at the start of operation of the air conditioner.

【0052】すなわち、運転開始時などにおいて最大冷
房能力を素早く確保できる空調装置を提供することがで
きる。
That is, it is possible to provide an air conditioner which can quickly secure the maximum cooling capacity at the time of starting operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による空調装置の一実施例の要部のブロ
ック図である。
FIG. 1 is a block diagram of a main part of an embodiment of an air conditioner according to the present invention.

【図2】本発明による空調装置の運転の定常モードのフ
ローチャートを示す。
FIG. 2 shows a flow chart of a steady mode of operation of an air conditioner according to the present invention.

【図3】循環する溶液を濃縮して平均濃度を高くする際
の燃料供給制御弁15の開度を調節する処理のフローチ
ャートである。
FIG. 3 is a flowchart of a process of adjusting the opening degree of the fuel supply control valve 15 when the circulating solution is concentrated to increase the average concentration.

【図4】先願で提案された単効用吸収式冷凍機を用いた
空調装置の変形例の要部のブロック図である。
FIG. 4 is a block diagram of a main part of a modified example of an air conditioner using a single-effect absorption refrigerating machine proposed in the prior application.

【図5】図4に示した空調装置の設置状態を示す。5 shows an installed state of the air conditioner shown in FIG.

【符号の説明】[Explanation of symbols]

1 室外機 2 室内機 3 送風ダクト 4 吸気ダクト 5 室 6 リモコン操作器 10 蒸発器 11 送風ファン 12 再生器 13 バーナ 16 凝縮器 17 空冷ファン 18 冷媒タンク 20 吸収器 21 希溶液タンク 30 コントローラ 31 通信制御器 T1、T2、T3、T4、T5 センサ V1、V2、V3、V4、V5 弁 1 Outdoor unit 2 Indoor unit 3 Blower duct 4 Intake duct 5 Room 6 Remote control device 10 Evaporator 11 Blower fan 12 Regenerator 13 Burner 16 Condenser 17 Air cooling fan 18 Refrigerant tank 20 Absorber 21 Dilute solution tank 30 Controller 31 Communication control Vessels T1, T2, T3, T4, T5 Sensors V1, V2, V3, V4, V5 valves

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を蒸発させる蒸発器と、冷媒を吸収
する吸収液を蓄え前記蒸発器で蒸発した冷媒蒸気を該吸
収液に吸収させる吸収器と、冷媒蒸気を吸収した希吸収
液を加熱して冷媒蒸気と濃吸収液とを発生する再生器
と、該再生器で発生した冷媒蒸気を凝縮させる凝縮器
と、循環する冷媒の総量を調節するために循環させない
冷媒を溜める冷媒タンクと、該冷媒タンクの冷媒量を検
出する冷媒量検出手段とを有し、所定の冷房能力を確保
するために前記冷媒タンクに前記再生器からの冷媒を溜
めることにより前記希吸収液を濃縮し、前記蒸発器によ
り空調すべき室内の空気を直接冷却し、この冷却した空
気をダクトを介して室内に送風して冷房を行う吸収式冷
凍機を用いた空調装置において、前記濃縮時には前記再
生器における加熱量を濃吸収液が晶析しない程度に増加
する加熱制御手段を設けたことを特徴とする空調装置。
1. An evaporator that evaporates a refrigerant, an absorber that stores an absorption liquid that absorbs the refrigerant and that absorbs the refrigerant vapor that has evaporated in the evaporator, and a rare absorption liquid that absorbs the refrigerant vapor. A regenerator that generates a refrigerant vapor and a concentrated absorbent, a condenser that condenses the refrigerant vapor generated in the regenerator, and a refrigerant tank that stores a refrigerant that is not circulated to adjust the total amount of the circulating refrigerant, And a refrigerant amount detecting means for detecting the amount of refrigerant in the refrigerant tank, the refrigerant from the regenerator is accumulated in the refrigerant tank to secure a predetermined cooling capacity, thereby concentrating the diluted absorbent, An air conditioner using an absorption chiller that directly cools the air in the room to be air-conditioned by an evaporator and blows the cooled air into the room through a duct to cool the room, and heats the regenerator at the time of concentration. Amount An air conditioner characterized by comprising heating control means for increasing the absorption liquid to such an extent that it does not crystallize.
【請求項2】 前記加熱制御手段は、 前記冷媒量検出手段により検出された前記冷媒タンクの
冷媒量に基づいて平均溶液濃度を演算する平均溶液濃度
演算手段と、 吸収液が晶析しない平均溶液濃度の限界値を許容溶液濃
度として記憶する記憶手段と、 前記平均溶液濃度演算手段により求められた平均溶液濃
度が前記許容溶液濃度より低いときの前記再生器におけ
る加熱量を演算する加熱量演算手段とから成り、 該加熱量演算手段により求められた加熱量で前記再生器
における加熱を行うことを特徴とする請求項1に記載の
空調装置。
2. The heating control means calculates an average solution concentration based on the refrigerant amount in the refrigerant tank detected by the refrigerant amount detecting means, and an average solution in which the absorbing liquid does not crystallize. Storage means for storing the limit value of the concentration as the allowable solution concentration, and heating amount calculation means for calculating the heating amount in the regenerator when the average solution concentration obtained by the average solution concentration calculation means is lower than the allowable solution concentration The air conditioner according to claim 1, characterized in that the regenerator is heated by the heating amount obtained by the heating amount calculation means.
JP5279050A 1993-10-12 1993-10-12 Air conditioner using absorption type freezer machine Pending JPH07110171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5279050A JPH07110171A (en) 1993-10-12 1993-10-12 Air conditioner using absorption type freezer machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5279050A JPH07110171A (en) 1993-10-12 1993-10-12 Air conditioner using absorption type freezer machine

Publications (1)

Publication Number Publication Date
JPH07110171A true JPH07110171A (en) 1995-04-25

Family

ID=17605705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5279050A Pending JPH07110171A (en) 1993-10-12 1993-10-12 Air conditioner using absorption type freezer machine

Country Status (1)

Country Link
JP (1) JPH07110171A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119161A (en) * 1982-12-27 1984-07-10 株式会社荏原製作所 Method of preventing crystallization of absorption refrigerator
JPH0560414A (en) * 1991-03-29 1993-03-09 Hitachi Ltd Cold and hot air directly blowing type absorption space heater and cooler, and absorption type air conditioning system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119161A (en) * 1982-12-27 1984-07-10 株式会社荏原製作所 Method of preventing crystallization of absorption refrigerator
JPH0560414A (en) * 1991-03-29 1993-03-09 Hitachi Ltd Cold and hot air directly blowing type absorption space heater and cooler, and absorption type air conditioning system

Similar Documents

Publication Publication Date Title
JP3399663B2 (en) Air conditioner using absorption refrigerator
JPH07110171A (en) Air conditioner using absorption type freezer machine
JP3229464B2 (en) Air conditioner using absorption refrigerator
JP3227036B2 (en) Air conditioner using absorption refrigerator
JPH08145495A (en) Air conditioner using absorption type refrigerator
JP3399664B2 (en) Air conditioner using absorption refrigerator
JP3174674B2 (en) Air conditioner using absorption refrigerator
JP3124662B2 (en) Air conditioner using absorption refrigerator
JPH07103603A (en) Air-conditioner utilizing absorptine refrigerator
JP3142997B2 (en) Air conditioner using absorption refrigerator
JP3197725B2 (en) Air conditioner using absorption refrigerator
JP3313876B2 (en) Air conditioner using absorption refrigerator
JP3142998B2 (en) Air conditioner using absorption refrigerator
JP3118127B2 (en) Air conditioner using absorption refrigerator
JP3118124B2 (en) Air conditioner using absorption refrigerator
JP3313481B2 (en) Air conditioner using absorption refrigerator
JP3313880B2 (en) Air conditioner using absorption refrigerator
JP3231923B2 (en) Air conditioner using absorption refrigerator
JPH07146024A (en) Air-conditioner utilizing absorption type refrigerator
JPH07103602A (en) Air-conditioner utilizing absorptive refrigerator
JP3313486B2 (en) Air conditioner using absorption refrigerator
JPH0798164A (en) Air-conditioner using absorptive freezer
JPH07120099A (en) Air conditioner using absorption type refrigerator
JPH07133966A (en) Air conditioner using absorption freezer
JP3118128B2 (en) Air conditioner using absorption refrigerator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010321