JPH0711002A - Production of organic polygermane - Google Patents

Production of organic polygermane

Info

Publication number
JPH0711002A
JPH0711002A JP17745493A JP17745493A JPH0711002A JP H0711002 A JPH0711002 A JP H0711002A JP 17745493 A JP17745493 A JP 17745493A JP 17745493 A JP17745493 A JP 17745493A JP H0711002 A JPH0711002 A JP H0711002A
Authority
JP
Japan
Prior art keywords
germanium
group
polygermane
organic
organic polygermane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17745493A
Other languages
Japanese (ja)
Inventor
Masakatsu Shimoda
昌克 下田
Kunio Mochida
邦夫 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP17745493A priority Critical patent/JPH0711002A/en
Publication of JPH0711002A publication Critical patent/JPH0711002A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an organic polygermane having a single-peak molecular weight distribution in short time and high yield by condensing a germanium dihalide with an alkali metal in the presence of HMPA. CONSTITUTION:An organic polygermane expressed by the formula I (Rl and R2 are H, a 1-20C alkyl, aromatic group or alicyclic group; the alkyl groups may be bonded with each other to form a germanium-containing ring together with the germanium; (n) is 50-10,000) is produced by the condensation reaction of the corresponding germanium dihalide compound with an alkali metal. The polymerization reaction is carried out in an inert gas in the presence of hexamethylphosphoric triamide of the formula II.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、導電性材料、フォトレジスト、
重合開始剤、セラミックス前駆体、電子写真感光体のキ
ャリア移動剤などとして有用な有機ポリゲルマンの新規
な製造法に関する。
TECHNICAL FIELD The present invention relates to a conductive material, a photoresist,
The present invention relates to a novel method for producing an organic polygermane which is useful as a polymerization initiator, a ceramics precursor, a carrier transfer agent for an electrophotographic photoreceptor, and the like.

【0002】[0002]

【従来技術】従来より、有機ポリゲルマンの製造法とし
ては、有機ゲルマニウムジハロゲン化物を出発原料とし
て、有機溶媒中でアルカリ金属等を用いて脱ハロゲン化
縮合する方法が知られている(たとえば、M.Lesbre,P.
Mazerolles,J.Satge,“TheOrganic Compound of Germ
anium”John Wiley & Sons (1971)参照)。
2. Description of the Related Art Conventionally, as a method for producing an organic polygermane, there has been known a method in which an organogermanium dihalide is used as a starting material and a dehalogenation condensation is carried out in an organic solvent using an alkali metal or the like (for example, M .Lesbre, P.
Mazerolles, J. Satge, “The Organic Compound of Germ
See anium ”John Wiley & Sons (1971)).

【化3】 ここでA、Bは有機置換基、Xはハロゲン原子、Mはア
ルカリ金属、zは10〜1000である。この一般式(I
II)の反応はウルツ型反応であり、反応の初期にナトリ
ウムからのゲルマニウムへの電子移動によって、ハロゲ
ン化ゲルマンのアニオンラジカルが発生し、続いて生成
する種々のゲルマニウム中間体(例えば、ゲルミルラジ
カル、ゲルミルアニオン、ゲルミレン、ゲルミレンアニ
オン、ゲルメン等)を経由して有機ポリゲルマンが生成
すると考えられている。この様にして製造された有機ポ
リゲルマンの分子量分布は、バイモーダル(bimod
al)分布といわれる2つの幅広いピークを示す。この
様に、従来の製造法が複数のピークをもつ分子量分布を
もつポリマーを与える理由はあきらかではないが、有機
ポリシランの製造においても同様な分布を示すことか
ら、アルカリ金属を用いた縮重合にみられる特有の現象
と考えられる。したがって、前述のような製造法は、こ
のように複数のピークの分子量分布をもつポリマーしか
得られず、かつ収量が低いなど多くの欠点をかかえてい
る。ところで、一般式(III)の重合反応における律速
は、反応中に生ずるゲルマニウムアニオン−アルカリ金
属カチオンの錯体のジハロゲン化ゲルマニウム化合物へ
の求核性により支配されている。一方、アルカリ金属イ
オン錯体において、アルカリ金属イオンを捕捉すること
により対アニオンを活性化する作用がクラウンエーテル
において見いだされ、ポリシラン合成の助触媒としてク
ラウンエーテルが使用されている(たとえば、藤野、特
開平1−252637)。しかしながら、クラウンエー
テル化合物は、一般に高価であり、実験室レベルでの使
用には最適であるが、実用上の使用にはコストなどの点
で問題がある。
[Chemical 3] Here, A and B are organic substituents, X is a halogen atom, M is an alkali metal, and z is 10 to 1000. This general formula (I
The reaction of (II) is a wurtz type reaction, and anion radical of germane halide is generated by electron transfer from sodium to germanium in the initial stage of the reaction, and various germanium intermediates (for example, germanyl radical) that are generated subsequently are generated. , Germyl anion, germylene, germylene anion, germene, etc.) is believed to form organic polygermane. The molecular weight distribution of the organic polygermane produced in this way is bimodal.
al) shows two broad peaks called distribution. As described above, the reason why the conventional production method gives a polymer having a molecular weight distribution having a plurality of peaks is not clear, but the similar distribution is exhibited in the production of organic polysilane. It is considered to be a unique phenomenon that can be seen. Therefore, the above-mentioned production method has many drawbacks such that only a polymer having a molecular weight distribution of a plurality of peaks can be obtained and the yield is low. The rate-determining rate in the polymerization reaction of the general formula (III) is governed by the nucleophilicity of the germanium anion-alkali metal cation complex generated during the reaction to the dihalogenated germanium compound. On the other hand, in the alkali metal ion complex, the action of activating the counter anion by trapping the alkali metal ion has been found in the crown ether, and the crown ether is used as a cocatalyst for the synthesis of polysilane (for example, Fujino, JP-A-HEI). 1-252637). However, the crown ether compound is generally expensive and is most suitable for use at the laboratory level, but there is a problem in cost in practical use.

【0003】[0003]

【目的】本発明の目的は、単一のピークの分子量分布を
もつ有機ポリゲルマンを、短時間、高収率で得ることが
できる製造法を提供することにある。
[Object] It is an object of the present invention to provide a method for producing an organic polygermane having a single peak molecular weight distribution in a short time in a high yield.

【0004】[0004]

【構成】本発明は、下記一般式(I)で示される有機ポ
リゲルマンを、相当するジハロゲン化ゲルマニウム化合
物とアルカリ金属との縮合反応により製造する方法にお
いて、該製造方法をクラウンエーテルと同様にアルカリ
金属イオンを捕捉して対アニオンを活性化する作用をも
ち、より安価に入手でき、また、古くから重合反応に利
用されているヘキサメチルホスホリックトリアミド(H
MPA)の存在下で行うことを特徴とする。
The present invention is a method for producing an organic polygermane represented by the following general formula (I) by a condensation reaction of a corresponding dihalogenated germanium compound and an alkali metal, wherein the production method is the same as for the crown ether. Hexamethylphosphoric triamide (H, which has a function of scavenging a metal ion and activating a counter anion, can be obtained at a lower cost, and has been used for a long time in a polymerization reaction.
It is characterized in that it is carried out in the presence of MPA).

【化4】 (式中、R1、R2は互いに同一または相異なっていても
よく、水素原子、炭素数1〜20のアルキル基、置換ま
たは無置換芳香族基、および置換または無置換脂環族基
よりなる群から選ばれるものである。ただし、アルキル
基は互いに結合しゲルマニウム原子と一緒にゲルマニウ
ム含有環を形成することもできる。nは50〜1000
0の整数である。) 前記一般式(I)で示される有機ポリゲルマン中、置換
基R1およびR2としては、メチル基、エチル基、n−プ
ロピル基、i−プロピル基、n−ブチル基、s−ブチル
基、t−ブチル基、n−ペンチル基、i−ペンチル基、
ネオペンチル基、n−ヘキシル基、シクロヘキシル基、
n−オクチル基、n−ドデシル基などのアルキル基、置
換または無置換のフェニル基およびベンジル基を挙げる
ことができる。フェニル基およびベンジル基に置換する
置換基としては、メチル基、エチル基、n−プロピル
基、n−ブチル基、t−ブチル基などのアルキル基、メ
トキシ基、エトキシ基、n−プロポキシ基、t−ブトキ
シ基などのアルコキシ基、ニトロ基、シアノ基ならびに
これらアルキル基、アルコキシ基、ニトロ基、シアノ基
の一置換、二置換、三置換体などが挙げられる。以上の
ような一般式(I)の有機ポリゲルマンの具体例を表1
〜表6に示す。 (以下余白)
[Chemical 4] (In the formula, R 1 and R 2 may be the same or different from each other and are each a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted alicyclic group. However, the alkyl groups may be bonded to each other to form a germanium-containing ring together with the germanium atom, and n is 50 to 1000.
It is an integer of 0. ) In the organic polygermane represented by the general formula (I), as the substituents R 1 and R 2 , methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group , T-butyl group, n-pentyl group, i-pentyl group,
Neopentyl group, n-hexyl group, cyclohexyl group,
Examples thereof include alkyl groups such as n-octyl group and n-dodecyl group, substituted or unsubstituted phenyl group and benzyl group. Examples of the substituent that substitutes the phenyl group and the benzyl group include an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and a t-butyl group, a methoxy group, an ethoxy group, an n-propoxy group, and t. Examples thereof include an alkoxy group such as a butoxy group, a nitro group and a cyano group, and alkyl, alkoxy, nitro and cyano groups such as mono-substituted, di-substituted and tri-substituted compounds. Specific examples of the organic polygermane of the general formula (I) as described above are shown in Table 1.
~ Shown in Table 6. (Below margin)

【0005】[0005]

【表1】 [Table 1]

【0006】[0006]

【表2】 [Table 2]

【0007】[0007]

【表3】 [Table 3]

【0008】[0008]

【表4】 [Table 4]

【0009】[0009]

【表5】 [Table 5]

【0010】[0010]

【表6】 本発明で使用するHMPAは、次の一般式(II)[Table 6] HMPA used in the present invention has the following general formula (II)

【化5】 で表されるものであつて、その使用量は、反応に用いら
れる有機溶媒と同量から10倍量であることが好まし
い。本発明の脱ハロゲン化による縮重合反応系において
用いられる有機溶媒には、ベンゼン、トルエン、キシレ
ン等の芳香族炭化水素溶媒、ジエチルエーテル、テトラ
ヒドロフラン、ジオキサン等のエーテル系溶媒等が使用
できる。また、縮合反応の際、複数種のジハロゲン化ゲ
ルマニウム化合物を用いると、これらの共重合体が得ら
れる。
[Chemical 5] The amount used is preferably the same as the organic solvent used in the reaction and is 10 times as much. As the organic solvent used in the condensation polymerization reaction system by dehalogenation of the present invention, aromatic hydrocarbon solvents such as benzene, toluene and xylene, ether solvents such as diethyl ether, tetrahydrofuran and dioxane can be used. When a plurality of types of germanium dihalide compounds are used in the condensation reaction, these copolymers can be obtained.

【0011】[0011]

【実施例】以下、本発明を実施例によって具体的に説明
するが、本発明はこれら実施例に限定されるものではな
い。 実施例1 〔ジイソプロピルポリゲルマン(ポリマーN
o.4)の製造〕 100mlの三口フラスコに、1.00g(0.043
mol)の金属ナトリウム、50mlのヘキサメチルホ
スホリックトリアミド、20mlのトルエンを入れ、フ
ラスコ内をアルゴンガスで置換した後、高速で撹拌を行
いナトリウムを分散させる。これに5.00g(0.0
21mol)のジイソプロピルジクロロゲルマンを滴下
する。滴下が終わったらトルエンが還流する温度で2時
間加熱撹拌を行う。ついで室温まで冷却した後、20m
lのメタノールを加えてナトリウムを分解させ、不溶物
を濾別して反応溶液をベンゼンで抽出する。ベンゼン溶
液は無水硫酸ナトリウムで乾燥させる。溶媒を留去し、
さらに減圧乾燥させて得られた白色の固体に10mlの
トルエンを加えて白色固体を溶解し、この溶液を100
0mlのメタノールに注ぎ結晶を析出させる。結晶を濾
別し、減圧乾燥を行って1.20gのジイソプロピルポ
リゲルマンが得られた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Example 1 [Diisopropyl polygermane (Polymer N
o. Production of 4)] In a 100 ml three-necked flask, 1.00 g (0.043
(mol) of metallic sodium, 50 ml of hexamethylphosphoric triamide, and 20 ml of toluene were put therein, and after the inside of the flask was replaced with argon gas, stirring was carried out at high speed to disperse sodium. Add 5.00 g (0.0
21 mol) of diisopropyldichlorogermane is added dropwise. After the completion of dropping, the mixture is heated and stirred for 2 hours at a temperature at which toluene is refluxed. Then, after cooling to room temperature, 20m
1 of methanol is added to decompose sodium, insoluble matter is filtered off, and the reaction solution is extracted with benzene. The benzene solution is dried over anhydrous sodium sulfate. Evaporate the solvent,
Further, 10 ml of toluene was added to the white solid obtained by drying under reduced pressure to dissolve the white solid.
Pour crystals into 0 ml of methanol to precipitate crystals. The crystals were separated by filtration and dried under reduced pressure to obtain 1.20 g of diisopropyl polygermane.

【0012】実施例2 〔ジn−ブチルポリゲルマン
(ポリマーNo.5)の製造〕 100mlの三口フラスコに、1.00g(0.043
mol)の金属ナトリウム、50mlのヘキサメチルホ
スホリックトリアミド、20mlのトルエンを入れ、フ
ラスコ内をアルゴンガスで置換した後、高速で撹拌を行
いナトリウムを分散させる。これに5.41g(0.0
21mol)のジn−ブチルジクロロゲルマンを滴下す
る。滴下が終わったらトルエンが還流する温度で2時間
加熱撹拌を行う。ついで室温まで冷却した後、20ml
のメタノールを加えてナトリウムを分解させ、不溶物を
濾別して反応溶液をベンゼンで抽出する。ベンゼン溶液
は無水硫酸ナトリウムで乾燥させる。溶媒を留去し、さ
らに減圧乾燥させて得られた白色の固体に10mlのト
ルエンを加えて白色固体を溶解し、この溶液を1000
mlのメタノールに注ぎ結晶を析出させる。結晶を濾別
し、減圧乾燥を行って1.86gのジn−ブチルポリゲ
ルマンが得られた。
Example 2 [Production of di-n-butyl polygermane (Polymer No. 5)] In a 100 ml three-necked flask, 1.00 g (0.043) was added.
(mol) of metallic sodium, 50 ml of hexamethylphosphoric triamide, and 20 ml of toluene were put therein, and after the inside of the flask was replaced with argon gas, stirring was carried out at high speed to disperse sodium. To this, 5.41 g (0.0
21 mol) of di-n-butyldichlorogermane is added dropwise. After the completion of dropping, the mixture is heated and stirred for 2 hours at a temperature at which toluene is refluxed. Then, after cooling to room temperature, 20 ml
Methanol is added to decompose sodium, the insoluble matter is filtered off, and the reaction solution is extracted with benzene. The benzene solution is dried over anhydrous sodium sulfate. The solvent was distilled off, and 10 ml of toluene was added to the white solid obtained by drying under reduced pressure to dissolve the white solid.
It is poured into ml of methanol to precipitate crystals. The crystals were separated by filtration and dried under reduced pressure to obtain 1.86 g of di-n-butyl polygermane.

【0013】[0013]

【効果】本発明の方法によると、従来法より短時間、高
収率で、かつ分子量分布が単一の有機ポリゲルマンを得
ることができた。
[Effect] According to the method of the present invention, it was possible to obtain an organic polygermane having a single molecular weight distribution in a short time in a high yield as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例1のジイソプロピルポリゲルマン
のGPCチャートである。
FIG. 1 is a GPC chart of diisopropyl polygermane of Example 1 of the present invention.

【図2】従来法によって合成したジイソプロピルポリゲ
ルマンのGPCチャートである。
FIG. 2 is a GPC chart of diisopropyl polygermane synthesized by a conventional method.

【図3】本発明実施例1のジイソプロピルポリゲルマン
の反射法で測定した赤外線吸収スペクトルである。
FIG. 3 is an infrared absorption spectrum of diisopropyl polygermane of Example 1 of the present invention measured by a reflection method.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I)で示される有機ポリゲルマ
ンを、相当するジハロゲン化ゲルマニウム化合物とアル
カリ金属との縮合反応により製造する方法において、下
式(II)で示されるヘキサメチルホスホリックトリアミ
ド(以下HMPAと略記)の存在下で重合反応を行うこ
とを特徴とする有機ポリゲルマンの製法。 【化1】 (式中、R1、R2は互いに同一または相異なっていても
よく、水素原子、炭素数1〜20のアルキル基、置換ま
たは無置換芳香族基、および置換または無置換脂環族基
よりなる群から選ばれるものである。ただし、アルキル
基は互いに結合しゲルマニウム原子と一緒にゲルマニウ
ム含有環を形成することもできる。nは50〜1000
0の整数である。) 【化2】
1. A method for producing an organic polygermane represented by the general formula (I) by a condensation reaction between a corresponding dihalogenated germanium compound and an alkali metal, wherein hexamethylphosphoric triazine represented by the following formula (II) is used. A method for producing an organic polygermane, which comprises performing a polymerization reaction in the presence of an amide (hereinafter abbreviated as HMPA). [Chemical 1] (In the formula, R 1 and R 2 may be the same or different from each other and are each a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aromatic group, and a substituted or unsubstituted alicyclic group. However, the alkyl groups may be bonded to each other to form a germanium-containing ring together with the germanium atom, and n is 50 to 1000.
It is an integer of 0. ) [Chemical 2]
【請求項2】 不活性ガスの存在下で重合反応を行うこ
とを特徴とする請求項1記載の有機ポリゲルマンの製
法。
2. The method for producing organic polygermane according to claim 1, wherein the polymerization reaction is carried out in the presence of an inert gas.
JP17745493A 1993-06-24 1993-06-24 Production of organic polygermane Pending JPH0711002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17745493A JPH0711002A (en) 1993-06-24 1993-06-24 Production of organic polygermane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17745493A JPH0711002A (en) 1993-06-24 1993-06-24 Production of organic polygermane

Publications (1)

Publication Number Publication Date
JPH0711002A true JPH0711002A (en) 1995-01-13

Family

ID=16031233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17745493A Pending JPH0711002A (en) 1993-06-24 1993-06-24 Production of organic polygermane

Country Status (1)

Country Link
JP (1) JPH0711002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
JP2016157942A (en) * 2015-02-23 2016-09-01 国立大学法人 奈良先端科学技術大学院大学 Method for manufacturing carbon-nanotube/dopant composite complex and carbon-nanotube/dopant composite complex

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
US8378050B2 (en) 2005-10-05 2013-02-19 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
JP2016157942A (en) * 2015-02-23 2016-09-01 国立大学法人 奈良先端科学技術大学院大学 Method for manufacturing carbon-nanotube/dopant composite complex and carbon-nanotube/dopant composite complex

Similar Documents

Publication Publication Date Title
US5585509A (en) Metallocene complexes having heterofunctional groups in the cyclopentadienyl system
CN1051367A (en) The lactone polymerization of yttrium and catalysis of rare-earth compound
US5171871A (en) Process for polymerizing an aromatic vinyl compound and a catalyst therefor
FI116675B (en) Cyclopentadienylmagnesium bridges, process for their preparation and their use in the preparation of metallocenes
NO323005B1 (en) Metallocene Compounds, Process of Preparation and Use thereof
JPH0711002A (en) Production of organic polygermane
US5420238A (en) Poly(silyleneethynylene phenyleneethynylenes), method for preparing same and hardened product thereof
EA018925B1 (en) Post-metallocene complexes based on bis-(naphtoxy)pyridine and bis-(naphtoxy)thiophene ligands for the polymerisation of ethylene and alpha-olefins
JP3083614B2 (en) Manufacturing method of organic polygermane
JP2000336082A (en) Fluorene derivative having oxetane ring
TWI435878B (en) Method for producing a compound containing a cyclopentadiene skeleton and a method for producing an organic transition metal compound
CA2088200C (en) Poly(silethynylenedisiloxane) and method for the manufacture thereof
JPH0827275A (en) N-carbazolylpolysilane and organo-n-carbazolyldihalogenosilane compound
US3627804A (en) Organosilicon compounds
JPH01252637A (en) Production of organometallic polymeric compound
JPH05163354A (en) Preparation of organopolygermane
JP4108334B2 (en) Method for synthesizing bridged bisindenyl compound and group 4 metallocene
US7253243B2 (en) Organosilicon compounds and method of manufacturing the same
JPH04342726A (en) Silicon-containing polymer and production thereof
JPH04164924A (en) Production of organopolygermane
JPH05320354A (en) Polysilane having short-wavelength absorption band
JP2003321516A (en) Stereocontrol-type methacrylic polymer and method for producing the same
JP3839176B2 (en) Method for producing alkali metal cyclopentadienylide and method for producing dihalobis (η-substituted cyclopentadienyl) zirconium using alkali metal cyclopentadienylide
JPH1180264A (en) Allenyloxymethylnaphthalene, its preparation and polymer obtained therefrom
KR100676302B1 (en) Preparation method of ansa-metallocene compounds