JPH07109537A - Hypo-eutectic al-si alloy and casting method therefor - Google Patents

Hypo-eutectic al-si alloy and casting method therefor

Info

Publication number
JPH07109537A
JPH07109537A JP25435993A JP25435993A JPH07109537A JP H07109537 A JPH07109537 A JP H07109537A JP 25435993 A JP25435993 A JP 25435993A JP 25435993 A JP25435993 A JP 25435993A JP H07109537 A JPH07109537 A JP H07109537A
Authority
JP
Japan
Prior art keywords
weight
alloy
less
eutectic
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25435993A
Other languages
Japanese (ja)
Other versions
JP3335732B2 (en
Inventor
Akio Hashimoto
昭男 橋本
Yamaji Kitaoka
山治 北岡
Hiroji Namekawa
洋児 滑川
Kiyoshi Takagi
潔 高木
Hideo Yoshioka
英夫 吉岡
Ken Kanezashi
研 金指
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Techno Research Co Ltd
Nissan Motor Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Nikkei Techno Research Co Ltd
Nissan Motor Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Techno Research Co Ltd, Nissan Motor Co Ltd, Nippon Light Metal Co Ltd filed Critical Nikkei Techno Research Co Ltd
Priority to JP25435993A priority Critical patent/JP3335732B2/en
Publication of JPH07109537A publication Critical patent/JPH07109537A/en
Application granted granted Critical
Publication of JP3335732B2 publication Critical patent/JP3335732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To obtain a hypo-eutectic Al-Si alloy suitable for all of casting material, extruding material, and forging material. CONSTITUTION:This alloy is a hypo-eutectic Al-Si alloy which has a composition containing 3.3-5.5% Si, 0.2-0.7% Mg, 0.01-0.2% Ti, 0.0001-0.01% B, <=0.2% Fe, <=0.005% P, and <=0.005% Ca and satisfying P/Ca<=1.0 by weight ratio. If necessary, one or >=2 kinds among 0.02-0.5% Mn, 0.01-0.3% Cr, 0.01-0.2% Zr, and 0.2-O.5% Cu can be incorporated Further, one or >=2 kinds among <=0.03% Sb, 0.001-0.01% Na, and 0.001-0.05% Sr may be incorporated under the condition of Ca+Na+2XSr>=3XP+0.3XSb. This hypo-eutectic Al-Si alloy has a cast structure in which eutectic Si of <=30Xm average grain size is dispersed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、T6 処理後に30kg
f/mm2 以上の引張り強さ及び10%以上の伸びをも
つ鋳造材として、更には押出し材又は鍛造材としても使
用される亜共晶Al−Si系合金に関する。
FIELD OF THE INVENTION The present invention uses 30 kg after T 6 treatment.
The present invention relates to a hypoeutectic Al-Si alloy used as a cast material having a tensile strength of f / mm 2 or more and an elongation of 10% or more, and also used as an extruded material or a forged material.

【0002】[0002]

【従来の技術】アルミニウム合金の代表的な鍛造用素材
として、6061合金が使用されている。しかし、60
61合金は、押出し工程を経て鍛造用素材にされること
から、コスト高になる。また、押出し材を鍛造するの
で、製品形状がおのずと単純な形状に限定される。その
ため、形状が複雑な製品を得る場合、鍛造用素材を鋳造
で得る必要が生じる。鋳造によって所定の形状が付与さ
れた素材、すなわち予形材で鍛造が可能な材料として
は、AC4C,AC4CH等がJISで掲げられる。し
かし、AC4C,AC4CH等のアルミニウム合金は、
6061合金に比較し伸び率等の引張り特性が劣り、形
状特性に優れた鍛造製品を得ることができない。
2. Description of the Related Art As a typical forging material of aluminum alloy, 6061 alloy is used. But 60
Since the 61 alloy is made into a forging material through an extrusion process, the cost is high. Further, since the extruded material is forged, the product shape is naturally limited to a simple shape. Therefore, in order to obtain a product having a complicated shape, it is necessary to obtain a forging material by casting. AC4C, AC4CH, and the like are listed in JIS as materials that are given a predetermined shape by casting, that is, materials that can be forged by preforms. However, aluminum alloys such as AC4C and AC4CH are
Tensile properties such as elongation are inferior to those of the 6061 alloy, and a forged product excellent in shape properties cannot be obtained.

【0003】[0003]

【発明が解決しようとする課題】AC4C,AC4CH
等のアルミニウム合金を鋳造することにより得られた鍛
造用素材の伸び率を大きくするため、Si含有量を3重
量%程度まで少なく、更にNa、Sr、Sb等を添加
し、共晶Siを微細化することが、特開昭54−134
07号公報で紹介されている。共晶Siの微細化によっ
て、伸び率がある程度改善される。しかし、依然として
6061合金の伸び率に及ばず、鍛造性に問題が残って
いる。また、得られた鍛造製品の耐力が十分でないこと
から、所定の構造強度をだすために厚肉化することを余
儀なくされていた。その結果、軽量化部品としてのアル
ミニウム材料の長所を活用できない現状である。
[Problems to be Solved by the Invention] AC4C, AC4CH
In order to increase the elongation of the forging material obtained by casting aluminum alloys, etc., the Si content should be reduced to about 3% by weight, and Na, Sr, Sb, etc. should be added to refine the eutectic Si. It is disclosed in JP-A-54-134
No. 07 publication. The degree of elongation is improved to some extent by making the eutectic Si finer. However, the elongation of the 6061 alloy is still lower than that of the 6061 alloy, and a problem remains in the forgeability. Further, since the yield strength of the obtained forged product is not sufficient, it has been unavoidable to increase the wall thickness in order to obtain a predetermined structural strength. As a result, the advantages of aluminum materials as lightweight parts cannot be utilized.

【0004】このように、従来のAl−Si合金は、鋳
造,押出し,鍛造等の製造工程を考慮して成分設計され
ており、それぞれの工程ごとに異なった組成をもってい
る。そのため、汎用性に乏しく、たとえば鋳造材に押出
し,鍛造等の加工を施して製品とすることは稀である。
本発明は、このような問題を解消すべく案出されたもの
であり、共晶Siが微細化するように各合金成分間のバ
ランスを図ることにより、鋳造材としては勿論,押出し
材,鋳造材等としても使用可能で、機械的特性及び切削
性に優れた亜共晶Al−Si系合金を提供することを目
的とする。
As described above, the conventional Al-Si alloys are designed in terms of their manufacturing processes such as casting, extrusion, and forging, and each process has a different composition. Therefore, it has poor versatility and, for example, it is rare that a cast material is extruded and forged to be processed into a product.
The present invention has been devised to solve such a problem, and by balancing the alloy components so that the eutectic Si is refined, not only as a cast material but also as an extruded material and a cast material, It is an object of the present invention to provide a hypoeutectic Al-Si alloy which can be used as a material and has excellent mechanical properties and machinability.

【0005】[0005]

【課題を解決するための手段】本発明の亜共晶Al−S
i系合金は、その目的を達成するため、Si:3.3〜
5.5重量%,Mg:0.2〜0.7重量%,Ti:
0.01〜0.2重量%,B:0.0001〜0.01
重量%,Fe:0.2重量%以下,P:0.005重量
%以下及びCa:0.005重量%以下を含み、P/C
aの重量比が1.0以下である。この亜共晶Al−Si
系合金は、更にMn:0.02〜0.5重量%,Cr:
0.01〜0.3重量%,Zr:0.01〜0.2重量
%及びCu:0.2〜0.5重量%の一種又は二種以
上、及び/又はCa+Na+2×Sr≧3×P+0.3
×Sbの条件下でSb:0.03重量%以下,Na:
0.001〜0.01重量%及びSr:0.001〜
0.05重量%の一種又は二種以上を含むことができ
る。Sb,Na,Sr等を含む合金系では、P/Caの
重量比が1.0以下の制約を受けない。所定組成に調製
された合金溶湯は、冷却速度0.1℃/秒以上で鋳造さ
れる。得られた鋳塊は、平均長さ30μm以下の共晶S
iが分散した鋳造組織をもっている。
Means for Solving the Problems Hypoeutectic Al--S of the present invention
In order to achieve the purpose, the i-based alloy contains Si: 3.3-
5.5% by weight, Mg: 0.2 to 0.7% by weight, Ti:
0.01-0.2% by weight, B: 0.0001-0.01
%, Fe: 0.2% by weight or less, P: 0.005% by weight or less and Ca: 0.005% by weight or less, P / C
The weight ratio of a is 1.0 or less. This hypoeutectic Al-Si
The system alloy further has Mn: 0.02 to 0.5% by weight and Cr:
0.01 to 0.3% by weight, Zr: 0.01 to 0.2% by weight and Cu: 0.2 to 0.5% by weight, and / or two or more kinds, and / or Ca + Na + 2 × Sr ≧ 3 × P + 0. .3
XSb: Sb: 0.03 wt% or less, Na:
0.001-0.01% by weight and Sr: 0.001-
One or more of 0.05 wt% can be included. In the alloy system containing Sb, Na, Sr, etc., the weight ratio of P / Ca is not restricted to 1.0 or less. The molten alloy prepared to have a predetermined composition is cast at a cooling rate of 0.1 ° C./sec or more. The obtained ingot is an eutectic S having an average length of 30 μm or less.
It has a cast structure in which i is dispersed.

【0006】[0006]

【作用】本発明の亜共晶Al−Si系合金においては、
鋳造性を確保すると共に、高靭性化及び伸びを向上させ
るため、AC4C,AC4CH等の従来のアルミニウム
合金に比較しSi含有量を低めに設定している。共晶S
iの微細化は、微細化阻害元素であるP含有量を規制す
ると共に、P/Caの重量比が1.0以下の条件下でC
aを合金元素として含有させることによって促進され
る。また、Ca+Na+2×Sr≧3×P+0.3×S
bの条件下でNa,Sr,Sb等を添加するとき、共晶
Siが一層微細化される。更に、十分な伸びを確保でき
る範囲内でMgを増量することにより、耐力の向上を図
っている。この条件を満足する組成をもつ鋳造材は、平
均長さ30μm以下の共晶Siが晶出した鋳造組織をも
っており、鋳造材をT6 処理した後の機械的特性が30
kgf/mm2 以上の引張り強さ及び10%以上の伸び
率を呈する。鋳造材は、共晶Siが微細であるため、そ
のまま切削して製品にできることは勿論、押出し材や鍛
造材としても使用可能である。
In the hypoeutectic Al-Si alloy of the present invention,
In order to ensure castability and to improve toughness and elongation, the Si content is set to be lower than that of conventional aluminum alloys such as AC4C and AC4CH. Eutectic S
The refinement of i regulates the content of P, which is a refining inhibiting element, and reduces C under the condition that the weight ratio of P / Ca is 1.0 or less.
It is promoted by including a as an alloying element. Also, Ca + Na + 2 × Sr ≧ 3 × P + 0.3 × S
When Na, Sr, Sb, etc. are added under the condition of b, the eutectic Si is further refined. Further, the yield strength is improved by increasing the amount of Mg within the range where sufficient elongation can be secured. The cast material having a composition satisfying this condition has a cast structure in which eutectic Si having an average length of 30 μm or less is crystallized, and the mechanical property after T 6 treatment of the cast material is 30.
It exhibits a tensile strength of kgf / mm 2 or more and an elongation of 10% or more. Since the cast material has fine eutectic Si, it can be directly cut into a product and can also be used as an extruded material or a forged material.

【0007】以下、本発明で特定した合金成分,その含
有量等に関する条件を説明する。 Si:本発明の亜共晶Al−Si系合金は、鋳造材とし
ての用途の他に、押出し材,鍛造材等としても使用され
る。鋳造に際しては、溶湯の流動性,引け性等が良く、
鋳造割れ等の欠陥が発生しないことが要求される。この
鋳造性を確保する上から、Siを含有させることが必要
である。しかし、多量のSi含有は、アルミニウム合金
の伸びや機械的強度を低下させる。この点から、本発明
においては、Si含有量を3.3〜5.5重量%の範囲
に設定した。この範囲のSi含有量は、必要とする伸び
や機械的強度を得ると共に、鋳造性も良好にする。Si
含有量が5.5重量%を超えると、ミクロ組織でも検出
されるように粒界に比較的多量の共晶Siが晶出し、伸
び,機械的強度等が劣化する。逆に、Si含有量が3.
3重量%未満では、鋳造性が悪くなる。
The conditions relating to the alloy components specified in the present invention, their contents, etc. will be described below. Si: The hypoeutectic Al-Si alloy of the present invention is used not only as a casting material but also as an extruded material, a forged material and the like. During casting, the melt has good fluidity and shrinkage,
It is required that defects such as casting cracks do not occur. In order to secure this castability, it is necessary to contain Si. However, the inclusion of a large amount of Si reduces the elongation and mechanical strength of the aluminum alloy. From this point, in the present invention, the Si content is set in the range of 3.3 to 5.5% by weight. The Si content in this range provides the required elongation and mechanical strength, and also improves the castability. Si
If the content exceeds 5.5% by weight, a relatively large amount of eutectic Si crystallizes at the grain boundaries as detected in the microstructure, and the elongation, mechanical strength, etc. deteriorate. On the contrary, the Si content is 3.
If it is less than 3% by weight, the castability will be poor.

【0008】Mg:Siと共存して熱処理によりMg2
Siとして析出し、引張強さ,耐力等の機械的強度を向
上させる。しかし、Mg含有量が0.7重量%を越える
と,伸び,衝撃値等が大きく低下する。また、6061
合金の性能に近づけるためには、Si含有量の低下によ
って伸びを増大させた分、Mg含有量を可能な限り増量
して強度向上を図る。このようなMgの効果を発現させ
るため、0.2重量%以上のMg含有が必要である。 Ti,B:アルミニウム合金の鋳造組織は、Ti及びB
の併用添加により微細化される。鋳造組織の微細化に伴
い、粒界に析出する不純物やシュリンケージ等が細かく
分散され、機械的特性が向上する。このような効果を得
るため、0.01重量%以上のTi及び0.0001重
量%以上のBを含有させることが必要である。しかし、
Ti含有量及びB含有量がそれぞれ0.2重量%及び
0.01重量%を超えると、析出する介在物が多くな
り、却って靭性,強度,伸び等が劣化する。
By coexisting with Mg: Si, a heat treatment is carried out to obtain Mg 2
Precipitates as Si and improves mechanical strength such as tensile strength and proof stress. However, if the Mg content exceeds 0.7% by weight, the elongation, impact value, etc. are greatly reduced. Also, 6061
In order to approach the performance of the alloy, the Mg content is increased as much as possible in order to increase the strength by increasing the elongation by decreasing the Si content. In order to exert such an effect of Mg, it is necessary to contain 0.2% by weight or more of Mg. Ti, B: Aluminum alloy casting structure is Ti and B
It is made finer by the combined addition of. As the cast structure becomes finer, impurities and shrinkages precipitated at the grain boundaries are finely dispersed, and the mechanical properties are improved. In order to obtain such effects, it is necessary to contain 0.01% by weight or more of Ti and 0.0001% by weight or more of B. But,
When the Ti content and the B content exceed 0.2% by weight and 0.01% by weight, respectively, the amount of inclusions precipitated increases, and rather the toughness, strength, elongation, etc. deteriorate.

【0009】Fe:原料から混入する不純物であり、多
量に含まれるとFe系金属間化合物を晶出し、伸びを低
下させる。Fe系晶出物に起因する悪影響は、Fe含有
量を0.2重量%以下に規制することによって抑制され
る。 Ca:共晶Siを微細化して伸び,衝撃値等を向上させ
る上で、有効な合金元素である。共晶Siの微細化作用
は、0.005重量%以下のCaを含有させることによ
り得られる。Caは、P/Caの重量比が1.0以下の
条件で添加したときに共晶Siの微細化に効果を発揮す
る。しかし、0.005重量%を超えて過剰のCaを含
有させると、鋳造性,靭性等に悪影響を与える。Ca含
有量は、P含有量との間でP/Ca≦1.0の関係を満
足していることが好ましい。P/Ca≦1.0の条件
は、本発明者等の実験によって見出されたものであり、
特にNa,Sr,Sb等が10ppm以下のとき効果的
に適用される。他方、Na,Sr,Sb等が本発明で規
定した範囲まで増加した場合、Caによる微細化作用が
打ち消され、P/Ca≦1.0の条件に有意性がみられ
なくなる。
Fe: Impurity mixed from the raw material. If contained in a large amount, Fe-based intermetallic compound crystallizes and elongation is reduced. The adverse effect caused by the Fe-based crystallized substance is suppressed by controlling the Fe content to 0.2% by weight or less. Ca: An alloying element effective in refining eutectic Si to improve elongation, impact value and the like. The effect of refining eutectic Si is obtained by containing 0.005% by weight or less of Ca. Ca exerts an effect of refining eutectic Si when added under the condition that the weight ratio of P / Ca is 1.0 or less. However, if excess Ca is contained in excess of 0.005% by weight, castability, toughness, etc. are adversely affected. The Ca content preferably satisfies the relationship of P / Ca ≦ 1.0 with the P content. The condition of P / Ca ≦ 1.0 was found by an experiment by the present inventors,
Particularly, it is effectively applied when Na, Sr, Sb, etc. are 10 ppm or less. On the other hand, when Na, Sr, Sb, etc. are increased to the range specified in the present invention, the refining effect of Ca is canceled and the condition of P / Ca ≦ 1.0 becomes insignificant.

【0010】Na,Sr,Sb:Caと同様に共晶Si
を微細化して伸び,衝撃値等を向上させるため、必要に
応じて添加される合金元素である。共晶Siの微細化作
用は、0.001重量%以上のNa,0.001重量%
以上のSr或いは0.03重量%以下にSbを規制する
ことにより得られる。これら合金元素のうち、Sbは、
Pのみが含まれる合金系においては共晶Siを微細化す
る作用を呈し、10×Sb≧Pで共晶Siの平均粒径が
30μm以下になる。しかし、Sbは、Ca,Na,S
r等の1種以上が共存するとき、Pと同様に共晶Siを
粗大化させる元素として働く。そこで、P共存下でN
a,Sr,Sb等を添加するとき、共晶Siの平均長さ
を30μm以下にする上で、Ca+Na+2×Sr≧×
P+0.3×Sbの関係を成立させることが好ましい。
Eutectic Si as well as Na, Sr, Sb: Ca
Is an alloying element added as necessary in order to refine the alloy to improve elongation, impact value and the like. The effect of refining eutectic Si is 0.001% by weight or more of Na, 0.001% by weight
It can be obtained by controlling the above Sr or Sb to 0.03 wt% or less. Of these alloy elements, Sb is
In an alloy system containing only P, the eutectic Si is refined, and the average grain size of eutectic Si becomes 30 μm or less when 10 × Sb ≧ P. However, Sb is Ca, Na, S
When one or more of r and the like coexist, it acts as an element for coarsening eutectic Si similarly to P. Therefore, under P coexistence, N
When adding a, Sr, Sb, etc., in order to make the average length of eutectic Si 30 μm or less, Ca + Na + 2 × Sr ≧ ×
It is preferable to establish the relationship of P + 0.3 × Sb.

【0011】Na,Sr,Sb等の添加元素は、ガスの
吸収及び化合物の生成を促進させると共に、引け性を変
化させる傾向を呈する。その結果、多量にNa,Sr,
Sb等を添加すると、アルミニウム合金の靭性が劣化す
る。この点で、Na,Sr及びSb含有量の上限を、そ
れぞれ0.01重量%,0.05重量%及び0.03重
量%に設定した。Ca,Na,Sr,Sb等は、一般的
に合金の副原料やスクラップから混入してくる元素であ
る。そこで、これら元素の含有量が上限値を超えている
場合、Cl2 ガス処理,フラックス処理等によって合金
中に含まれている各元素を減少させる。他方、元素含有
量が少ない場合には、アルミニウム母合金やフラックス
等として必要量が添加される。
Additive elements such as Na, Sr and Sb have a tendency to promote absorption of gas and formation of compounds, and to change shrinkage. As a result, a large amount of Na, Sr,
Addition of Sb or the like deteriorates the toughness of the aluminum alloy. In this respect, the upper limits of the Na, Sr and Sb contents were set to 0.01% by weight, 0.05% by weight and 0.03% by weight, respectively. Ca, Na, Sr, Sb and the like are elements generally mixed from the alloy sub-materials and scraps. Therefore, when the content of these elements exceeds the upper limit value, each element contained in the alloy is reduced by Cl 2 gas treatment, flux treatment or the like. On the other hand, when the element content is small, a necessary amount is added as an aluminum master alloy, a flux, or the like.

【0012】P:Na,Sr,Sb,Ca等の添加元素
は、合金中のPと反応し、共晶Siの微細化に有効に作
用しなくなる。そのため、本発明においては、微細化効
果を阻害するPを0.005重量%以下に規制して、N
a,Sr,Sb,Ca等の作用を効率よく発揮させる。
特にCaとの関係では、P/Caの重量比を1.0以下
にすることが必要である。 Cu:アルミニウム合金の強度を向上させる上で、必要
に応じて添加される元素である。0.2〜0.5重量%
のCuをMgと併用添加するとき、十分な伸びを確保で
きる範囲で耐力の向上が図られる。
Additive elements such as P: Na, Sr, Sb and Ca react with P in the alloy and do not act effectively on the refinement of eutectic Si. Therefore, in the present invention, P that inhibits the miniaturization effect is regulated to 0.005% by weight or less, and N
The action of a, Sr, Sb, Ca, etc. is efficiently exhibited.
Particularly in relation to Ca, it is necessary to set the weight ratio of P / Ca to 1.0 or less. Cu: An element that is added as needed to improve the strength of the aluminum alloy. 0.2-0.5% by weight
When Cu is added together with Mg, the yield strength can be improved within a range where sufficient elongation can be secured.

【0013】Zr,Mn,Cr:加工時におけるアルミ
ニウム合金の再結晶を防止するため、必要に応じて添加
される元素である。再結晶防止を図る上で、0.01重
量%以上のZr,0.02重量%以上のMn或いは0.
01重量%以上のCrを含有させることが必要である。
しかし、これら元素を多量に添加すると、マトリックス
の硬度が上昇し、却って加工性が低下する。そこで、Z
r含有量,Mn含有量及びCr含有量の上限を、それぞ
れ0.2重量%,0.5重量%及び0.3重量%に規定
した。 共晶Siの粒径:本発明のアルミニウム合金は、平均長
さで30μm以下の小さな共晶Siが晶出した鋳造組織
をもつ。この微細化された共晶Siのため、鋳造材にあ
っては、T6 処理後に伸びが大きくなり、且つ良好な切
削性を呈し、所定形状の製品に切削仕上げされる。ま
た、展延性や鍛造性が良好であることから、亀裂等の欠
陥を発生することなく押出し材や鍛造材に加工される。
特に鍛造材にあっては、強度及び伸びの高い製品が得ら
れる。
Zr, Mn, Cr: Elements added as necessary to prevent recrystallization of the aluminum alloy during processing. In order to prevent recrystallization, 0.01% by weight or more of Zr, 0.02% by weight or more of Mn or 0.
It is necessary to contain Cr in an amount of 01% by weight or more.
However, when these elements are added in a large amount, the hardness of the matrix increases and the workability deteriorates. So Z
The upper limits of the r content, the Mn content and the Cr content are specified to be 0.2% by weight, 0.5% by weight and 0.3% by weight, respectively. Grain size of eutectic Si: The aluminum alloy of the present invention has a cast structure in which small eutectic Si having an average length of 30 μm or less is crystallized. Because of the refined eutectic Si, the cast material has a large elongation after the T 6 treatment, exhibits good machinability, and is cut and finished into a product having a predetermined shape. Further, since it has good spreadability and forgeability, it can be processed into an extruded material or a forged material without causing defects such as cracks.
Especially in the case of forged materials, products with high strength and elongation can be obtained.

【0014】鋳造条件:所定の組成に調製されたアルミ
ニウム合金溶湯は、金型鋳造,DC鋳造等によって鋳塊
に鋳造される。このとき、鋳造組織を微細化するため、
冷却速度0.1℃/秒以上の速度で凝固させることが必
要である。鋳造組織は、共晶Siが十分に微細化された
状態になっている。他方、0.1℃/秒未満の緩慢な冷
却速度で鋳造した場合には、粒径30μmを超える大き
な共晶Siが晶出した鋳造組織となる。このような粗い
鋳造組織は、伸びの低下をもたらし、切削性,展延性,
鍛造性に有害である。
Casting conditions: An aluminum alloy melt prepared to have a predetermined composition is cast into an ingot by die casting, DC casting or the like. At this time, in order to refine the casting structure,
It is necessary to solidify at a cooling rate of 0.1 ° C./sec or more. The cast structure is in a state where eutectic Si is sufficiently refined. On the other hand, when casting is performed at a slow cooling rate of less than 0.1 ° C./sec, a large cast eutectic Si having a grain size of more than 30 μm is crystallized. Such a rough cast structure results in a decrease in elongation, machinability, spreadability,
Harmful to forgeability.

【0015】鋳塊の均質化熱処理:得られた鋳塊は、押
出し材又は鍛造材として使用する場合、共晶Siの球状
化及び合金成分の均質化を図るため、均質化熱処理を施
すことが好ましい。共晶Siが球状化したものでは、材
料の伸びが増大し、鍛造時に割れ等の欠陥が発生しな
い。そのため、鍛造速度を上昇させることが可能にな
り、生産性が向上する。均質化熱処理の条件は、特に本
発明を制約するものではないが、たとえば500〜55
0℃×1〜24時間に設定される。一般的にいって、熱
処理温度が高くなるほど共晶Siの球状化が促進され
る。しかし、過度に高い熱処理温度では、共晶組織がバ
ーニングし易く、鍛造時に割れを発生させる原因とな
る。また、鋳塊を均質化温度に昇温するとき、450℃
以上の温度領域における昇温速度を50℃/時間以下に
することが好ましい。この温度領域における昇温速度が
50℃/時間を超えると、共晶組織がバーニングし易く
なる。しかし、450℃未満の温度領域においては、昇
温速度の如何によってバーニングが影響されることはな
い。この点、450℃までを急速に昇温し、次いで50
℃/時間以下の速度で500〜550℃の均質化温度に
加熱することが実際的である。
Homogenization heat treatment of ingot: When the obtained ingot is used as an extruded material or a forged material, it is subjected to a homogenization heat treatment in order to spheroidize eutectic Si and homogenize alloy components. preferable. When the eutectic Si is spheroidized, the elongation of the material is increased, and defects such as cracks do not occur during forging. Therefore, the forging speed can be increased and the productivity is improved. The conditions of the homogenizing heat treatment are not particularly limited to the present invention, but are, for example, 500 to 55.
It is set to 0 ° C. × 1 to 24 hours. Generally speaking, as the heat treatment temperature increases, the spheroidization of eutectic Si is promoted. However, if the heat treatment temperature is excessively high, the eutectic structure tends to burn, which causes cracking during forging. When the ingot is heated to the homogenization temperature, 450 ° C
It is preferable that the temperature rising rate in the above temperature range is 50 ° C./hour or less. If the rate of temperature increase in this temperature range exceeds 50 ° C./hour, the eutectic structure is likely to burn. However, in the temperature range below 450 ° C., the burning is not affected by the heating rate. At this point, the temperature was rapidly raised to 450 ° C, and then 50
It is practical to heat to a homogenization temperature of 500-550 ° C. at a rate of ≦ ° C./hour.

【0016】鍛造後の熱処理:鍛造された亜共晶Al−
Si系合金は、均質化処理後の冷却過程でα−晶内に析
出したSi粒子を再固溶させるために溶体化される。溶
体化処理の条件は、本発明を制約するものではないが、
たとえば鋳造材に対する熱処理と同様に500〜550
℃×0.5〜10時間が採用される。溶体化処理後の亜
共晶Al−Si系合金は、固溶Siの析出を防止するた
め水焼入れされる。このようにしてSi粒子の析出を抑
えることにより、亜共晶Al−Si系合金の強度が改善
される。亜共晶Al−Si系合金は、水焼入れしたまま
の状態に維持されると、MgSiを自然に析出させ、
強度が低下する。そこで、水焼入れ後6時間以内に、1
40〜200℃×1〜12時間の戻し処理を亜共晶Al
−Si系合金に施し、所定の強度を確保することが好ま
しい。水焼入れから戻し処理までの時間が6時間を超え
ると、Mg Siの過剰析出に起因して強度が低下す
る場合がある。本発明の亜共晶Al−Si系合金は、T
6 処理後の鋳造材として30kgf/mm2 以上の引張
り強さ及び10%以上の伸び率を示す。また、鍛造材に
6 処理を施した状態では、30kgf/mm2 以上の
引張り強さ及び12%以上の伸びを示す。
Heat treatment after forging: Forged hypoeutectic Al-
The Si-based alloy is solution-treated in order to re-solidify the Si particles precipitated in the α-crystal in the cooling process after the homogenization treatment. Although the conditions of the solution treatment do not limit the present invention,
For example, 500 to 550 as in the case of heat treatment for cast materials
℃ × 0.5-10 hours is adopted. The solution-treated hypoeutectic Al-Si alloy is water-quenched to prevent precipitation of solid solution Si. By suppressing the precipitation of Si particles in this manner, the strength of the hypoeutectic Al-Si alloy is improved. When the hypoeutectic Al-Si alloy is maintained in a state of being water-quenched, Mg 2 Si spontaneously precipitates,
Strength is reduced. Therefore, within 6 hours after water quenching, 1
40-200 ℃ × 1-12 hours of re-treatment with hypoeutectic Al
It is preferably applied to a -Si alloy to secure a predetermined strength. If the time from the water quenching to the returning treatment exceeds 6 hours, the strength may decrease due to excessive precipitation of Mg 2 Si. The hypoeutectic Al-Si alloy according to the present invention is T
6 As a cast material after treatment, it exhibits a tensile strength of 30 kgf / mm 2 or more and an elongation of 10% or more. Further, when the forged material is subjected to T 6 treatment, it exhibits a tensile strength of 30 kgf / mm 2 or more and an elongation of 12% or more.

【0017】[0017]

【実施例】【Example】

実施例1:鋳造材 表1に示した合金成分の素材をJIS 4号の舟形鋳型
を使用し、型温150℃で鋳造した。このときの冷却速
度は、1.5℃/秒であった。得られた鋳造材から、引
張り試験用の試験片を切り出した。切削時に発生した切
り粉は小さく、良好な切削性を呈するものであった。切
り出された試験片に、535℃×3時間→水冷→150
℃×6時間→室温に冷却のT6 処理を施した。T6 処理
後の機械的特性を、共晶Siの平均長さと共に表2に併
せ示す。
Example 1: Cast material The alloy components shown in Table 1 were cast at a mold temperature of 150 ° C using a JIS 4 boat-shaped mold. The cooling rate at this time was 1.5 ° C./sec. A test piece for a tensile test was cut out from the obtained cast material. The chips generated during cutting were small and exhibited good machinability. For the cut out test piece, 535 ° C x 3 hours → water cooling → 150
° C. × 6 hours → subjected to T 6 treatment at room temperature for cooling. The mechanical properties after T 6 treatment are also shown in Table 2 together with the average length of eutectic Si.

【0018】[0018]

【表1】 [Table 1]

【0019】Si含有量が少ない組成(試料番号1)で
は、鋳造性が悪く、鋳造割れを評価するリングテストで
割れが入っていた。しかし、舟型鋳込みでは割れは入ら
ず、試験片が採取できた。Si含有量が多すぎる場合
(試料番号4)も、伸びが減少した。過剰のFe含有量
も、伸びを低下させる(試料番号8)。P/Ca比が大
きく且つP量も多い鋳造材(試料番号9)では、共晶S
iの平均長さが大きいことから、伸びが小さくなってい
た。P/Ca比が大きいと、P含有量が本発明範囲にあ
る鋳造材(試料番号11)でも、共晶Siの平均長さが
大きく、伸びが小さくなっていた。Mg含有量に関して
は、少なすぎても(試料番号5)、多すぎても(試料番
号7)、必要とする強度或いは伸びが得られなかった。
Ca含有量が多い(試料番号10)は、鋳巣が発生し、
鋳造材として使用することはできなかった。これに対
し、各合金成分及びP/Ca比が本発明で規定した要件
を満足する試料番号2,3,6の鋳造材は、何れも高い
引張り強さ及び伸びを示した。このことから、各合金成
分及びP/Ca比に対する条件設定が機械的特性の改善
に必要であることが判る。
With the composition having a low Si content (Sample No. 1), the castability was poor, and cracks were found in the ring test for evaluating casting cracks. However, the boat-type casting did not cause cracks and the test pieces could be collected. The elongation was also reduced when the Si content was too high (Sample No. 4). Excessive Fe content also reduces elongation (Sample No. 8). In the cast material with a large P / Ca ratio and a large amount of P (Sample No. 9), the eutectic S
The elongation was small because the average length of i was large. When the P / Ca ratio was large, the average length of eutectic Si was large and the elongation was small even in the cast material having a P content within the range of the present invention (Sample No. 11). Regarding the Mg content, the required strength or elongation was not obtained when the content was too low (Sample No. 5) or too high (Sample No. 7).
If the Ca content is high (Sample No. 10), cavities are generated,
It could not be used as a casting material. On the other hand, the cast materials of Sample Nos. 2, 3 and 6 in which the respective alloy components and the P / Ca ratio satisfy the requirements specified in the present invention all showed high tensile strength and elongation. From this, it is understood that setting of conditions for each alloy component and P / Ca ratio is necessary for improving mechanical properties.

【0020】実施例2:試料番号6と同じ組成をもつア
ルミニウム合金溶湯を、JIS 4号の舟形鋳型を使用
して鋳造した。冷却速度による影響を調査するため、鋳
型を400℃の温度に保持する冷却条件1及び塗型材を
塗布した鋳型を400℃の温度に保持する冷却条件2を
採用した。冷却条件1は試料番号6の冷却速度より小さ
い0.5℃/秒であり、冷却条件2は更に遅い冷却速度
0.05℃/秒であった。鋳造材の機械的特性を実施例
1と同様に調査した結果を、表2に示す。この場合、共
晶Siの平均長さが大きい鋳造組織になっているため、
6 処理後の伸びが小さかった。
Example 2 A molten aluminum alloy having the same composition as sample No. 6 was cast using a JIS 4 boat-shaped mold. In order to investigate the influence of the cooling rate, cooling condition 1 for holding the mold at a temperature of 400 ° C. and cooling condition 2 for holding the mold coated with the mold coating material at a temperature of 400 ° C. were adopted. Cooling condition 1 was 0.5 ° C./sec, which was lower than the cooling rate of sample No. 6, and cooling condition 2 was a slower cooling rate, 0.05 ° C./sec. Table 2 shows the results of investigating the mechanical properties of the cast material in the same manner as in Example 1. In this case, since the cast structure has a large average length of eutectic Si,
The elongation after T 6 treatment was small.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例3:試料番号6と同じ組成のアルミ
ニウム合金溶湯にMn,Cr,Zr,Cu等を添加し、
実施例1と同様に鋳造した後でT6 処理を施した。得ら
れた鋳造材の機械的特性を示す表3から明らかなよう
に、合金元素の添加によって強度が上昇した。また、伸
びの低下は、僅かなものであった。
Example 3: Mn, Cr, Zr, Cu, etc. were added to an aluminum alloy melt having the same composition as sample No. 6,
After casting in the same manner as in Example 1, T 6 treatment was performed. As is clear from Table 3 showing the mechanical properties of the obtained cast material, the strength was increased by the addition of the alloying element. Further, the decrease in elongation was slight.

【0023】[0023]

【表3】 [Table 3]

【0024】実施例4:試料番号6と同じ組成のアルミ
ニウム合金溶湯にSb,Na,Sr等を添加し、P及び
Caが共存している状態で共晶Siの微細化に与える影
響を調査した。なお、冷却速度及び鋳造後のT6 処理
は、実施例1と同じ条件に設定した。得られた鋳造材の
機械的特性を示す表4から明らかなように、Ca+Na
+2×Sr≧3×P+0.3×Sbの関係式が成立して
いるものにあっては、何れも30kgf/mm2 以上の
引張り強さ及び10%以上の伸びを示した。
Example 4: Sb, Na, Sr, etc. were added to an aluminum alloy melt having the same composition as that of sample No. 6, and the effect on the refinement of eutectic Si in the presence of P and Ca was investigated. . The cooling rate and the T 6 treatment after casting were set to the same conditions as in Example 1. As is clear from Table 4 showing the mechanical properties of the obtained cast material, Ca + Na
In the case where the relational expression of + 2 × Sr ≧ 3 × P + 0.3 × Sb is satisfied, the tensile strength of 30 kgf / mm 2 or more and the elongation of 10% or more were shown in each case.

【0025】[0025]

【表4】 [Table 4]

【0026】実施例5:実施例4で30kgf/mm2
以上の引張り強さ及び10%以上の伸びを示した組成
に、更にMn,Cr,Zr及びCuを添加し、これら合
金元素の影響を調査した。本実施例においても、実施例
1と同じ鋳造材に対するT6 処理を採用した。調査結果
を示す表5から明らかなように、Mn,Cr,Zr,C
u等の添加によって強度の改善が図られている。
Example 5: 30 kgf / mm 2 in Example 4
Mn, Cr, Zr and Cu were further added to the above composition showing tensile strength and elongation of 10% or more, and the influence of these alloying elements was investigated. Also in this example, the same T 6 treatment as in Example 1 was adopted. As is clear from Table 5 showing the investigation results, Mn, Cr, Zr, C
The strength is improved by adding u or the like.

【0027】[0027]

【表5】 [Table 5]

【0028】実施例6:次の工程で製造した押出し材に
6 処理を施し、合金成分が基体的特性に与える影響を
調査した。試料番号32の組成をもつアルミニウム合金
溶湯を冷却速度約5℃/秒でDC鋳造し、500℃×1
0時間の均質化熱処理を施した後、ビレットを直径27
3mm及び長さ600mmの円柱状に切断し、押出し速
度1.0m/分,押出し圧力85kgf/cm2 及びビ
レット温度410℃の条件下で断面50mm×3mmの
板材を押し出した。得られた板材に、535℃×3時間
→水冷→170℃×5時間→室温に冷却のT6 処理を施
した後、機械的特性を測定した。その結果、引張り強さ
σB =32.7kgf/mm2 及び伸びδ=18.2%
で、目標値をクリアーする材料であることが判った。
Example 6 The extruded material produced in the next step was subjected to T 6 treatment, and the influence of the alloy components on the basic properties was investigated. A molten aluminum alloy having the composition of sample No. 32 was DC cast at a cooling rate of about 5 ° C./sec and 500 ° C. × 1
After the homogenization heat treatment for 0 hours, the billet is
It was cut into a cylindrical shape having a length of 3 mm and a length of 600 mm, and a plate material having a cross section of 50 mm × 3 mm was extruded under the conditions of an extrusion speed of 1.0 m / min, an extrusion pressure of 85 kgf / cm 2 and a billet temperature of 410 ° C. The plate material thus obtained was subjected to T 6 treatment of 535 ° C. × 3 hours → water cooling → 170 ° C. × 5 hours → cooling to room temperature, and then mechanical properties were measured. As a result, the tensile strength σ B = 32.7 kgf / mm 2 and the elongation δ = 18.2%.
It turned out that it is a material that clears the target value.

【0029】実施例7:鋳造で得られた合金材料は、凝
固速度の違いにより鋳塊のデンドライトアームスペーシ
ングが異なる。デンドライトアームスペーシングが大き
すぎると、共晶Siが30μmを超えるようになり、材
料の伸びが低下する。また、荷重が加わったとき、共晶
Siとマトリックスとの界面を起点として破断等が発生
する。この点、本発明合金においては、共晶Siが30
μm以下の微細な晶出物として分散されているため、鍛
造によって亀裂を発生させることなく、伸び率が大きな
中実の製品にすることが可能である。得られた鍛造材に
6 処理を施すことにより、目標値(引張り強さ30k
gf/mm2 以上及び伸び10%以上)をクリアーする
鍛造材となる。
Example 7: The alloy material obtained by casting has different dendrite arm spacing of the ingot due to the difference in solidification rate. If the dendrite arm spacing is too large, the eutectic Si will exceed 30 μm and the elongation of the material will decrease. Further, when a load is applied, breakage or the like occurs starting from the interface between the eutectic Si and the matrix. In this respect, in the alloy of the present invention, eutectic Si is 30
Since it is dispersed as fine crystallized substances of μm or less, it is possible to make a solid product having a large elongation rate without generating cracks by forging. By subjecting the obtained forged material to T 6 treatment, the target value (tensile strength 30 k
It is a forged material that clears gf / mm 2 or more and elongation of 10% or more).

【0030】たとえば、試料番号32と同じ組成をもつ
アルミニウム合金溶湯をJIS 4号の舟型鋳型に鋳込
み、鋳塊から断面30mm×20mm及び長さ150m
mの試験片を切り出し、400℃×2時間の熱処理を施
した後、据込み率20%及び鍛造温度400℃の条件で
据込み鍛造した。鍛造材に、535℃×3時間→水冷→
170℃×5時間→室温に冷却のT6 処理を施した後、
機械的特性を測定した。その結果、引張り強さσB =3
0.8kgf/mm2 及び伸びδ=17.1%で、目標
値をクリアーする材料であることが判った。
For example, a molten aluminum alloy having the same composition as sample No. 32 is cast into a JIS 4 boat-shaped mold, and a cross section of 30 mm × 20 mm and a length of 150 m is obtained from the ingot.
A test piece of m was cut out, subjected to heat treatment at 400 ° C. for 2 hours, and then upset forged under the conditions of an upset rate of 20% and a forging temperature of 400 ° C. Forging material, 535 ℃ x 3 hours → water cooling →
170 ° C. × 5 hours → After cooling T 6 treatment at room temperature,
The mechanical properties were measured. As a result, the tensile strength σ B = 3
It was found that the material was 0.8 kgf / mm 2 and the elongation δ = 17.1%, and was a material that cleared the target value.

【0031】[0031]

【発明の効果】以上に説明したように、本発明の亜共晶
Al−Si系合金は、結晶粒や晶出物の微細化によって
機械的強度を確保している。この亜共晶Al−Si合金
は、鋳造材として優れた特性を呈することは勿論、押出
し材,鍛造材としても使用されるため、広範囲な用途に
適合した材料となる。
As described above, the hypoeutectic Al-Si alloy according to the present invention secures mechanical strength by refining crystal grains and crystallized substances. This hypoeutectic Al-Si alloy exhibits excellent properties as a casting material and is also used as an extruded material and a forged material, and thus is a material suitable for a wide range of applications.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北岡 山治 東京都港区三田3丁目13番12号 日本軽金 属株式会社内 (72)発明者 滑川 洋児 東京都港区三田3丁目13番12号 日本軽金 属株式会社内 (72)発明者 高木 潔 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 吉岡 英夫 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 金指 研 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Sanji Kitaoka 3-13-12 Mita, Minato-ku, Tokyo Within Japan Light Metals Co., Ltd. (72) Inventor Yoko Namegawa 3-13-12 Mita, Minato-ku, Tokyo No. Japan Light Metals Co., Ltd. (72) Inventor Kiyoshi Takagi 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Hideo Yoshioka 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Inventor Kinshiken 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Si:3.3〜5.5重量%,Mg:
0.2〜0.7重量%,Ti:0.01〜0.2重量
%,B:0.0001〜0.01重量%,Fe:0.2
重量%以下,P:0.005重量%以下及びCa:0.
005重量%以下を含み、P/Caの重量比が1.0以
下である機械的特性に優れた亜共晶Al−Si系合金。
1. Si: 3.3 to 5.5% by weight, Mg:
0.2-0.7 wt%, Ti: 0.01-0.2 wt%, B: 0.0001-0.01 wt%, Fe: 0.2
Wt% or less, P: 0.005 wt% or less and Ca: 0.
A hypoeutectic Al-Si alloy containing 005% by weight or less and having a P / Ca weight ratio of 1.0 or less and having excellent mechanical properties.
【請求項2】 Si:3.3〜5.5重量%,Mg:
0.2〜0.7重量%,Ti:0.01〜0.2重量
%,B:0.0001〜0.01重量%,Fe:0.2
重量%以下,P:0.005重量%以下及びCa:0.
005重量%以下を含み、更にMn:0.02〜0.5
重量%,Cr:0.01〜0.3重量%,Zr:0.0
1〜0.2重量%及びCu:0.2〜0.5重量%の一
種又は二種以上を含み、P/Caの重量比が1.0以下
である機械的特性に優れた亜共晶Al−Si系合金。
2. Si: 3.3 to 5.5% by weight, Mg:
0.2-0.7 wt%, Ti: 0.01-0.2 wt%, B: 0.0001-0.01 wt%, Fe: 0.2
Wt% or less, P: 0.005 wt% or less and Ca: 0.
005% by weight or less, and further Mn: 0.02-0.5
% By weight, Cr: 0.01 to 0.3% by weight, Zr: 0.0
1-0.2 wt% and Cu: 0.2-0.5 wt%, one or more, and a P / Ca weight ratio of 1.0 or less is a hypoeutectic crystal having excellent mechanical properties. Al-Si alloy.
【請求項3】 Si:3.3〜5.5重量%,Mg:
0.2〜0.7重量%,Ti:0.01〜0.2重量
%,B:0.0001〜0.01重量%,Fe:0.2
重量%以下,P:0.005重量%以下及びCa:0.
005重量%以下を含み、更にCa+Na+2×Sr≧
3×P+0.3×Sbの条件下でSb:0.03重量%
以下,Na:0.001〜0.01重量%及びSr:
0.001〜0.05重量%の一種又は二種以上を含む
機械的特性に優れた亜共晶Al−Si系合金。
3. Si: 3.3 to 5.5% by weight, Mg:
0.2-0.7 wt%, Ti: 0.01-0.2 wt%, B: 0.0001-0.01 wt%, Fe: 0.2
Wt% or less, P: 0.005 wt% or less and Ca: 0.
Includes 005 wt% or less, and further Ca + Na + 2 × Sr ≧
Sb under the condition of 3 × P + 0.3 × Sb: 0.03% by weight
Hereinafter, Na: 0.001 to 0.01% by weight and Sr:
A hypoeutectic Al-Si-based alloy excellent in mechanical properties containing 0.001 to 0.05% by weight of one or more.
【請求項4】 Si:3.3〜5.5重量%,Mg:
0.2〜0.7重量%,Ti:0.01〜0.2重量
%,B:0.0001〜0.01重量%,Fe:0.2
重量%以下,P:0.005重量%以下及びCa:0.
005重量%以下を含み、更にMn:0.02〜0.5
重量%,Cr:0.01〜0.3重量%,Zr:0.0
1〜0.2重量%及びCu:0.2〜0.5重量%の一
種又は二種以上と、Ca+Na+2×Sr≧3×P+
0.3×Sbの条件下でSb:0.03重量%以下,N
a:0.001〜0.01重量%及びSr:0.001
〜0.05重量%の一種又は二種以上を含む機械的特性
に優れた亜共晶Al−Si系合金。
4. Si: 3.3 to 5.5% by weight, Mg:
0.2-0.7 wt%, Ti: 0.01-0.2 wt%, B: 0.0001-0.01 wt%, Fe: 0.2
Wt% or less, P: 0.005 wt% or less and Ca: 0.
005% by weight or less, and further Mn: 0.02-0.5
% By weight, Cr: 0.01 to 0.3% by weight, Zr: 0.0
1 to 0.2% by weight and Cu: 0.2 to 0.5% by weight and one or more kinds, and Ca + Na + 2 × Sr ≧ 3 × P +
Under the condition of 0.3 × Sb, Sb: 0.03 wt% or less, N
a: 0.001 to 0.01% by weight and Sr: 0.001
A hypoeutectic Al-Si-based alloy excellent in mechanical properties and containing one or more of 0.05 to 0.05% by weight.
【請求項5】 平均長さ30μm以下の共晶Siが分散
した鋳造組織をもつ請求項1〜4の何れかに記載の亜共
晶Al−Si合金。
5. The hypoeutectic Al-Si alloy according to claim 1, which has a cast structure in which eutectic Si having an average length of 30 μm or less is dispersed.
【請求項6】 請求項1〜4の何れかに記載の組成をも
つ溶湯を調製し、冷却速度0.1℃/秒以上で鋳造する
亜共晶Al−Si合金の鋳造法。
6. A method for casting a hypoeutectic Al—Si alloy, which comprises preparing a molten metal having the composition according to claim 1 and casting it at a cooling rate of 0.1 ° C./sec or more.
JP25435993A 1993-10-12 1993-10-12 Hypoeutectic Al-Si alloy and casting method thereof Expired - Fee Related JP3335732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25435993A JP3335732B2 (en) 1993-10-12 1993-10-12 Hypoeutectic Al-Si alloy and casting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25435993A JP3335732B2 (en) 1993-10-12 1993-10-12 Hypoeutectic Al-Si alloy and casting method thereof

Publications (2)

Publication Number Publication Date
JPH07109537A true JPH07109537A (en) 1995-04-25
JP3335732B2 JP3335732B2 (en) 2002-10-21

Family

ID=17263899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25435993A Expired - Fee Related JP3335732B2 (en) 1993-10-12 1993-10-12 Hypoeutectic Al-Si alloy and casting method thereof

Country Status (1)

Country Link
JP (1) JP3335732B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096039A (en) * 1996-09-24 1998-04-14 Sumitomo Light Metal Ind Ltd Wear resistant aluminum alloy material excellent in cutting workability and corrosion resistance
FR2827305A1 (en) * 2001-07-10 2003-01-17 Pechiney Aluminium Ductile aluminum alloy destined for casting under pressure of structural and security components for motor vehicles
FR2827306A1 (en) * 2001-07-10 2003-01-17 Pechiney Aluminium Ductile aluminum alloy, used for casting under pressure of structural and security components for motor vehicles, comprises alloying additions of silicon, element for reducing adherence on mold, and element for eutectic modification
WO2003010349A1 (en) * 2001-07-25 2003-02-06 Showa Denko K. K. Aluminum alloy excellent in machinability, and aluminum alloy material and method for production thereof
JP2005133112A (en) * 2003-10-28 2005-05-26 Aisin Seiki Co Ltd Aluminum alloy member and its manufacturing method
JP2006322062A (en) * 2005-04-19 2006-11-30 Daiki Aluminium Industry Co Ltd Aluminum alloy for casting, and aluminum alloy casting thereby
JP2007031788A (en) * 2005-07-27 2007-02-08 Aisin Aw Co Ltd Aluminum alloy for casting, manufacturing method therefor, and method for manufacturing cast product of aluminum alloy
WO2007025528A2 (en) 2005-08-31 2007-03-08 Ksm Castings Gmbh Aluminium casting alloy
JP2008111195A (en) * 2007-11-22 2008-05-15 Sumitomo Electric Ind Ltd Rolled aluminum alloy material with excellent machinability, and its manufacturing method
WO2010007484A1 (en) * 2008-07-14 2010-01-21 Toyota Jidosha Kabushiki Kaisha Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
EP2152923A1 (en) * 2007-05-31 2010-02-17 Alcan International Ltd. Aluminum alloy formulations for reduced hot tear susceptibility
US8302979B2 (en) 2007-11-08 2012-11-06 Ksm Castings Gmbh Front-axle bracket for motor vehicles
KR101362645B1 (en) * 2009-07-03 2014-02-12 쇼와 덴코 가부시키가이샤 Process for production of roughly shaped material for engine piston
JP2014037622A (en) * 2012-07-17 2014-02-27 Sankyotateyama Inc Continuously cast rod and forging
US20140360712A1 (en) * 2012-01-27 2014-12-11 Uacj Corporation Aluminum alloy material for heat exchanger fin, manufacturing method for same, and heat exchanger using the aluminum alloy material
JP2015045033A (en) * 2013-08-27 2015-03-12 日信工業株式会社 Aluminum alloy casting
JP2015124403A (en) * 2013-12-26 2015-07-06 本田技研工業株式会社 Al ALLOY CASTING PRODUCT AND MANUFACTURING METHOD THEREFOR
CN105473747A (en) * 2014-07-31 2016-04-06 株式会社神户制钢所 Aluminium alloy extruded material with superior machinability and production method therefor
FR3038242A1 (en) * 2015-07-02 2017-01-06 Constellium Neuf-Brisach ALUMINUM ALLOY FOR WIRELESS LASER WELDING
US20180127859A1 (en) * 2016-11-08 2018-05-10 GM Global Technology Operations LLC Increasing strength of an aluminum alloy
CN110578077A (en) * 2018-06-07 2019-12-17 上海汇众汽车制造有限公司 Cast aluminum alloy

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096039A (en) * 1996-09-24 1998-04-14 Sumitomo Light Metal Ind Ltd Wear resistant aluminum alloy material excellent in cutting workability and corrosion resistance
FR2827305A1 (en) * 2001-07-10 2003-01-17 Pechiney Aluminium Ductile aluminum alloy destined for casting under pressure of structural and security components for motor vehicles
FR2827306A1 (en) * 2001-07-10 2003-01-17 Pechiney Aluminium Ductile aluminum alloy, used for casting under pressure of structural and security components for motor vehicles, comprises alloying additions of silicon, element for reducing adherence on mold, and element for eutectic modification
WO2003006698A1 (en) * 2001-07-10 2003-01-23 Aluminium Pechiney High-ductility aluminium alloy part cast under pressure
WO2003010349A1 (en) * 2001-07-25 2003-02-06 Showa Denko K. K. Aluminum alloy excellent in machinability, and aluminum alloy material and method for production thereof
JP2005133112A (en) * 2003-10-28 2005-05-26 Aisin Seiki Co Ltd Aluminum alloy member and its manufacturing method
JP2006322062A (en) * 2005-04-19 2006-11-30 Daiki Aluminium Industry Co Ltd Aluminum alloy for casting, and aluminum alloy casting thereby
JP4623372B2 (en) * 2005-07-27 2011-02-02 アイシン・エィ・ダブリュ株式会社 Aluminum alloy for casting, method for producing the same, and method for producing aluminum alloy cast product
JP2007031788A (en) * 2005-07-27 2007-02-08 Aisin Aw Co Ltd Aluminum alloy for casting, manufacturing method therefor, and method for manufacturing cast product of aluminum alloy
WO2007025528A2 (en) 2005-08-31 2007-03-08 Ksm Castings Gmbh Aluminium casting alloy
WO2007025528A3 (en) * 2005-08-31 2007-05-03 Ksm Castings Gmbh Aluminium casting alloy
EP2152923A4 (en) * 2007-05-31 2012-03-28 Alcan Int Ltd Aluminum alloy formulations for reduced hot tear susceptibility
EP2152923A1 (en) * 2007-05-31 2010-02-17 Alcan International Ltd. Aluminum alloy formulations for reduced hot tear susceptibility
US8302979B2 (en) 2007-11-08 2012-11-06 Ksm Castings Gmbh Front-axle bracket for motor vehicles
US8567801B2 (en) 2007-11-08 2013-10-29 Ksm Castings Group Gmbh Front-axle bracket for motor vehicles
JP4719731B2 (en) * 2007-11-22 2011-07-06 住友電気工業株式会社 Aluminum alloy rolled material with excellent machinability and method for producing the same
JP2008111195A (en) * 2007-11-22 2008-05-15 Sumitomo Electric Ind Ltd Rolled aluminum alloy material with excellent machinability, and its manufacturing method
WO2010007484A1 (en) * 2008-07-14 2010-01-21 Toyota Jidosha Kabushiki Kaisha Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
CN102089450A (en) * 2008-07-14 2011-06-08 丰田自动车株式会社 Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
KR101362645B1 (en) * 2009-07-03 2014-02-12 쇼와 덴코 가부시키가이샤 Process for production of roughly shaped material for engine piston
US10024611B2 (en) * 2012-01-27 2018-07-17 Uacj Corporation Aluminum alloy material for heat exchanger fin, manufacturing method for same, and heat exchanger using the aluminum alloy material
US20140360712A1 (en) * 2012-01-27 2014-12-11 Uacj Corporation Aluminum alloy material for heat exchanger fin, manufacturing method for same, and heat exchanger using the aluminum alloy material
JP2014037622A (en) * 2012-07-17 2014-02-27 Sankyotateyama Inc Continuously cast rod and forging
JP2015045033A (en) * 2013-08-27 2015-03-12 日信工業株式会社 Aluminum alloy casting
JP2015124403A (en) * 2013-12-26 2015-07-06 本田技研工業株式会社 Al ALLOY CASTING PRODUCT AND MANUFACTURING METHOD THEREFOR
CN105473747A (en) * 2014-07-31 2016-04-06 株式会社神户制钢所 Aluminium alloy extruded material with superior machinability and production method therefor
EP3176274A4 (en) * 2014-07-31 2018-01-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminium alloy extruded material with superior machinability and production method therefor
FR3038242A1 (en) * 2015-07-02 2017-01-06 Constellium Neuf-Brisach ALUMINUM ALLOY FOR WIRELESS LASER WELDING
US10661389B2 (en) 2015-07-02 2020-05-26 Constellium Neuf-Brisach Method for the laser welding of monolithic semi-finished products made from aluminium alloy, without filler wire, and corresponding structural component and tailored blank
US20180127859A1 (en) * 2016-11-08 2018-05-10 GM Global Technology Operations LLC Increasing strength of an aluminum alloy
CN108070754A (en) * 2016-11-08 2018-05-25 通用汽车环球科技运作有限责任公司 Improve the intensity of aluminium alloy
CN110578077A (en) * 2018-06-07 2019-12-17 上海汇众汽车制造有限公司 Cast aluminum alloy

Also Published As

Publication number Publication date
JP3335732B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
JPH07109537A (en) Hypo-eutectic al-si alloy and casting method therefor
JP3194742B2 (en) Improved lithium aluminum alloy system
JP3301919B2 (en) Aluminum alloy extruded material with excellent chip breaking performance
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
WO1998037251A1 (en) Process for producing aluminium alloy sheet
JP2001115226A (en) Malleable aluminum alloy
JP3982849B2 (en) Aluminum alloy for forging
JPH11293363A (en) Manufacture of aluminum alloy for automobile member, and automobile member obtained thereby
JPH07145440A (en) Aluminum alloy forging stock
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
EP1260600B1 (en) Aluminum alloy sheet material and method for producing the same
JPH04341546A (en) Production of high strength aluminum alloy-extruded shape material
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JPH08144003A (en) High strength aluminum alloy excellent in heat resistance
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JPH08232053A (en) Production of high strength aluminum alloy extruded material
JPH0517845A (en) Hypereutectic aluminum-silicon alloy powder and production thereof
JP2907389B2 (en) Aluminum alloy material for wear resistance processing with excellent toughness
JPH083675A (en) Aluminum alloy for forging
JP2003034835A (en) Aluminum alloy sheet and manufacturing method therefor
JPS649388B2 (en)
JP2551882B2 (en) Aluminum alloy for forging

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees