JPH07109406B2 - Method and apparatus for measuring coating weight of plated steel sheet and plating film composition - Google Patents

Method and apparatus for measuring coating weight of plated steel sheet and plating film composition

Info

Publication number
JPH07109406B2
JPH07109406B2 JP1079964A JP7996489A JPH07109406B2 JP H07109406 B2 JPH07109406 B2 JP H07109406B2 JP 1079964 A JP1079964 A JP 1079964A JP 7996489 A JP7996489 A JP 7996489A JP H07109406 B2 JPH07109406 B2 JP H07109406B2
Authority
JP
Japan
Prior art keywords
intensity
plating
plated steel
ray
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1079964A
Other languages
Japanese (ja)
Other versions
JPH02257045A (en
Inventor
勝之 西藤
清隆 今井
宏晴 加藤
忠昭 服部
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP1079964A priority Critical patent/JPH07109406B2/en
Priority to US07/476,251 priority patent/US5081658A/en
Priority to CA002009698A priority patent/CA2009698C/en
Priority to DE69026748T priority patent/DE69026748T2/en
Priority to EP90102910A priority patent/EP0389774B1/en
Publication of JPH02257045A publication Critical patent/JPH02257045A/en
Publication of JPH07109406B2 publication Critical patent/JPH07109406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、メッキ鋼板のメッキ付着量およびメッキ被膜
組成をオンラインで測定するメッキ鋼板のメッキ付着量
およびメッキ被膜組成の測定方法およびその測定装置に
係わり、特にメッキ被膜が下地金属と同じ成分を含む場
合の分析に有効なメッキ鋼板のメッキ付着量およびメッ
キ被膜組成の測定方法およびその測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method and apparatus for measuring the coating amount and the coating composition of a plated steel sheet for online measuring the coating amount and the coating composition of the plated steel sheet. In particular, the present invention relates to a method for measuring a coating amount of a plated steel sheet and a composition of a plating film, which is effective for an analysis when the plating film contains the same component as a base metal, and a measuring apparatus therefor.

〔従来の技術〕[Conventional technology]

この種のメッキ鋼板のメッキ付着量やメッキ被膜組成を
測定する場合、蛍光X線分析法が用いられている。この
蛍光X線分析法はZnメッキ鋼板やZn−Niメッキ鋼板の如
くメッキ被膜が下地金属を含まないものについてはオン
ラインでメッキ付着量やメッキ被膜組成を測定すること
が可能である。
A fluorescent X-ray analysis method is used to measure the amount of coating adhered and the composition of a coating film on a plated steel sheet of this type. With this fluorescent X-ray analysis method, it is possible to online measure the amount of plating adhered and the composition of the plating film for those whose plating film does not contain a base metal, such as Zn-plated steel plate and Zn-Ni plated steel plate.

しかし、近年,Zn−Fe合金メッキ鋼板が耐食性,加工性
等で優れた特性を有することが注目されてきているが、
蛍光X線分析法ではメッキ被膜中のFeによる蛍光X線と
下地のFeによる蛍光X線との区別がつけ難く、ひいては
蛍光X線強度とメッキ付着量,メッキ被膜組成との関係
を対応づけることが困難であり、オンラインで分析する
ことが難しい。
However, in recent years, it has been noted that Zn-Fe alloy plated steel sheet has excellent properties such as corrosion resistance and workability.
In the fluorescent X-ray analysis method, it is difficult to distinguish between fluorescent X-rays due to Fe in the plating film and fluorescent X-rays due to the underlying Fe. Consequently, the relationship between the fluorescent X-ray intensity, the amount of plating adhered, and the composition of the plating film should be associated. Difficult to analyze online.

そこで、従来,以上のような不具合を解決する方法とし
て、次の2つの分析法が提案されている。
Therefore, conventionally, the following two analysis methods have been proposed as methods for solving the above problems.

その1つは、Zn−Fe合金メッキ鋼板上に多数の波長をも
った,いわゆる白色X線を照射した後、そのメッキ鋼板
の下地金属からの蛍光X線がX線侵入深さの点から実質
的に検出されない第1の測定角と、下地金属からの蛍光
X線が検出できる第2の測定角とにおいてそれぞれk系
列の蛍光X線の強度を測定し、この両測定値に基づいて
メッキ付着量およびメッキ被膜組成を求めるオンライン
分析法である(特開昭58−223047号公報)。
One of them is that, after irradiating Zn-Fe alloy plated steel sheet with so-called white X-rays having many wavelengths, the fluorescent X-rays from the underlying metal of the plated steel sheet are substantially in terms of the X-ray penetration depth. The intensity of the k-series fluorescent X-rays is measured at a first measurement angle that is not detected as a result and a second measurement angle at which the fluorescent X-rays from the underlying metal can be detected, and plating adhesion is performed based on these two measurement values. This is an online analysis method for determining the amount and the plating film composition (JP-A-58-223047).

他の1つは、Zn−Fe合金メッキ鋼板において、被膜によ
る吸収を利用して下地のα−Feの回折X線からメッキ付
着量を求め、さらにメッキ被膜中のZn−Fe合金相および
η相から選ばれた1つ以上の相の回折X線強度からメッ
キ被膜組成を求める方法である(特開昭60−169553号公
報)。
The other one is the Zn-Fe alloy-plated steel sheet, in which the amount of coating adhered is determined from the diffracted X-rays of the underlying α-Fe using absorption by the coating, and the Zn-Fe alloy phase and η phase in the plated coating are further determined. It is a method of determining the plating film composition from the diffracted X-ray intensities of one or more phases selected from (JP-A-60-169553).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、以上のように2つの測定角を用いた蛍光X線分
析法は、入射X線として白色X線を用いているために次
のような問題が指摘されている。
However, as described above, the fluorescent X-ray analysis method using two measurement angles uses the white X-rays as incident X-rays, and therefore the following problems have been pointed out.

先ず、前者の蛍光X線分析法では、 −1 白色X線中の高エネルギーのX線は、メッキ被
膜中での減衰が小さいために侵入深さが大きいといった
性質を有しており、そのため下地金属からの蛍光X線が
検出されない第1の測定角は5゜以内と非常に小さくす
る必要があるので、鋼板面の上下動,つまりバタツキに
よる測定距離の変動および測定角の変動の影響を受けや
すい問題がある。
First, in the former fluorescent X-ray analysis method, −1 High-energy X-rays in white X-rays have the property that the penetration depth is large because the attenuation in the plating film is small, and therefore The first measurement angle, where fluorescent X-rays from metal are not detected, must be very small, within 5 °, so it is affected by vertical movements of the steel plate surface, that is, fluctuations in the measurement distance and fluctuations in the measurement angle. There is an easy problem.

−2 また、メッキ付着量及びメッキ被膜組成は、メ
ッキ鋼板に実際にX線を入射して得られる実測強度と予
め周知の理論強度計算式に与えて得られる理論強度とを
比較演算して求めることが考えられるが、理論強度の計
算の際,X線管の経時変化などによる入射X線のスペクト
ル変動の影響を受けるので測定精度が低下する問題があ
る。
-2. Further, the plating adhesion amount and the plating film composition are obtained by comparing and calculating the actually measured strength obtained by actually injecting X-rays on the plated steel sheet and the theoretical strength obtained by giving a known theoretical strength calculation formula in advance. However, when calculating the theoretical intensity, there is a problem that the measurement accuracy is lowered because it is affected by the spectrum variation of the incident X-ray due to the change with time of the X-ray tube.

−3 また、分析値を求めるに際して測定された実測
蛍光X線強度と、周知の理論強度計算式から計算される
理論蛍光X線強度との比較演算により分析値を求める場
合、理論強度の計算において波長積分が必要なために計
算時間が長くなり、ひいては測定時間の増加は否めな
い。
-3 Further, when the analytical value is calculated by comparing the actually measured fluorescent X-ray intensity measured when obtaining the analytical value with the theoretical fluorescent X-ray intensity calculated from the well-known theoretical intensity calculation formula, in the calculation of the theoretical intensity Since the wavelength integration is required, the calculation time becomes long, and the measurement time cannot be denied.

−4 さらに、前記−3で指摘した問題を回避する
ために、校正曲線を用いる方法があるが、この方法はマ
トリクス効果を考慮したモデルの作成に20〜30種類の標
準試料が必要となり、非常に煩雑な分析法とならざるを
得ない。
-4 Furthermore, in order to avoid the problem pointed out in -3 above, there is a method of using a calibration curve, but this method requires 20 to 30 types of standard samples to create a model considering the matrix effect, This is a complicated analysis method.

一方、後者の回折X線による分析法では、 −1 下地のα−Feの回折X線強度は、メッキ付着量
だけでなく、鋼板の鋼種や板厚,メッキ鋼板の製造条件
等により異なる集合組織やメッキ被膜組成に依存し、測
定精度の面で問題がある。
On the other hand, in the latter analysis method using diffracted X-rays, the diffracted X-ray intensity of α-Fe of the −1 base differs depending on not only the amount of plating adhered but also the steel type and thickness of the steel plate, the manufacturing conditions of the plated steel plate, etc. However, there is a problem in terms of measurement accuracy, depending on the plating film composition.

−2 一方、合金相の回折X線強度はメッキ条件によ
り異なり、また溶融メッキ材と電気メッキ材では合金の
構造や組成が異なり、この場合にも同様に十分な測定精
度が得られない。
On the other hand, the diffraction X-ray intensity of the alloy phase differs depending on the plating conditions, and the structure and composition of the alloy differ between the hot-dip plated material and the electroplated material, and in this case also sufficient measurement accuracy cannot be obtained.

本発明は以上のような問題を解決するためになされたも
ので、メッキ鋼板表面の変動の影響を低減化でき、か
つ、分析精度の向上および分析時間の短縮化が図れ、少
ない標準試料を用いて確実にメッキ付着量およびメッキ
被膜組成を取得しうるメッキ鋼板のメッキ付着量および
メッキ被膜組成の測定方法を提供することを目的とす
る。
The present invention has been made to solve the above problems, it is possible to reduce the influence of fluctuations of the surface of the plated steel sheet, and improve the analysis accuracy and shorten the analysis time, and use a small number of standard samples. An object of the present invention is to provide a method for measuring the amount of plating adherence and the composition of plating coat of a plated steel sheet that can reliably obtain the amount of plating adherence and the composition of plating coat.

また、他の発明であるメッキ鋼板のメッキ付着量および
メッキ被膜組成の測定装置の目的とするところは、簡単
な構成を用いてオンラインでメッキ付着量およびメッキ
被膜組成を精度良く測定することにある。
Further, another object of the apparatus for measuring the amount of plating adhered on a plated steel sheet and the composition of the coating film is to accurately measure the amount of coating adhesion and the composition of the coating film online with a simple structure. .

〔課題を解決するための手段および作用〕[Means and Actions for Solving the Problems]

本発明方法は上記課題を解決するために、メッキ鋼板に
所定の入射角で単色のX線を入射した場合に得られる,2
種類の所定の測定角での分析目的元素のk系列の2次以
上の励起効果も考慮した一般的な蛍光X線強度(以下単
に、蛍光X線強度という)又は強度比の理論計算式のほ
か、メッキ付着量およびメッキ被膜組成を既知とする標
準試料を用いて前記理論計算式を求めたと同じ条件で蛍
光X線強度又は強度比を実測し、この実測値と前記理論
計算式とに基づいて実測値を理論計算値に換算するため
の変換係数を予め求めておく。
In order to solve the above problems, the method of the present invention is obtained when a monochromatic X-ray is incident on a plated steel sheet at a predetermined incident angle.
In addition to the theoretical calculation formula of general fluorescent X-ray intensity (hereinafter simply referred to as fluorescent X-ray intensity) or intensity ratio in consideration of the second or higher-order excitation effect of the k-series of the analysis target element at a predetermined measurement angle of various types , The fluorescent X-ray intensity or intensity ratio was measured under the same conditions as the theoretical calculation formula was obtained using a standard sample with known plating adhesion amount and plating film composition, and based on this measured value and the theoretical calculation formula A conversion coefficient for converting an actually measured value into a theoretical calculated value is obtained in advance.

以上のようにして理論計算式および変換係数を求めた
後、メッキ付着量およびメッキ被膜組成を未知とする被
測定メッキ鋼板に対し、前記理論計算式を求めたのと同
じ測定条件を用いて当該被測定メッキ鋼板から得られる
蛍光X線強度又は強度比を測定し、その後、この蛍光X
線強度又は強度比を変換係数を用いて理論強度又は強度
比に変換する。そして、前記理論計算式より得られる理
論強度又は強度比を、前記変換された理論強度又は強度
比に最も近づける、理論計算式中のパラメーターである
メッキ付着量およびメッキ被膜組成をもって前記被測定
メッキ鋼板のメッキ付着量およびメッキ被膜組成とする
ものである。
After obtaining the theoretical calculation formula and the conversion coefficient as described above, for the plated steel sheet to be measured whose plating adhesion amount and plating film composition are unknown, using the same measurement conditions as those for which the theoretical calculation formula was obtained, The fluorescent X-ray intensity or intensity ratio obtained from the plated steel sheet to be measured is measured, and then this fluorescent X-ray is used.
The line intensity or intensity ratio is converted into a theoretical intensity or intensity ratio using a conversion factor. Then, the theoretical strength or strength ratio obtained from the theoretical calculation formula is closest to the converted theoretical strength or strength ratio, and the measured plated steel sheet with the plating adhesion amount and the plating film composition which are parameters in the theoretical calculation formula. The coating amount and the plating film composition of

また、他の発明方法においては、予めメッキ鋼板に所定
の入射角で単色のX線を入射した場合に得られる、2種
類の所定の測定角での分析目的元素のk系列の蛍光X線
強度又は強度比の検量線をメッキ付着量およびメッキ被
膜組成をパラメータとして求めておき、しかる後、メッ
キ付着量およびメッキ被膜組成を未知とする被測定メッ
キ鋼板に対し、前記検量線を求めたのと同じ測定条件で
当該被測定メッキ鋼板から得られる蛍光X線強度又は強
度比を測定する。さらに、検量線より得られる蛍光X線
強度又は強度比を、前記測定された蛍光X線強度又は強
度比に最も近づける、検量線中のパラメータであるメッ
キ付着量およびメッキ被膜組成をもって前記被測定鋼板
のメッキ付着量およびメッキ被膜組成とするものであ
る。
In another method of the invention, the intensity of k-series fluorescent X-rays of the analysis target element at two kinds of predetermined measurement angles, which is obtained when monochromatic X-rays are incident on the plated steel sheet at a predetermined incidence angle in advance. Or, the calibration curve of the strength ratio is obtained in advance by using the plating adhesion amount and the plating coating composition as parameters, and thereafter, for the measured plated steel sheet in which the plating adhesion amount and the plating coating composition are unknown, the calibration curve was determined. The fluorescent X-ray intensity or intensity ratio obtained from the measured plated steel sheet is measured under the same measurement conditions. Further, the measured steel sheet has a fluorescent X-ray intensity or intensity ratio obtained from a calibration curve that is the closest to the measured fluorescent X-ray intensity or intensity ratio, and has the amount of adhered plating and the composition of the plating film which are parameters in the calibration curve. The coating amount and the plating film composition of

本発明装置においては、X線を発生するX線発生部と、
このX線発生部から発生するX線を単色化するモノクロ
メータと、X線のパスラインを決めメッキ鋼板に所定の
入射角で投射し所定の受光角で受光するスリット系と、
メッキ鋼板から発生する分析目的元素のk系列蛍光X線
強度を異なる角度で測定する2個の検出器と、これらの
測定系で得られるべき2次以上の励起効果も考慮した一
般的な理論強度(以下単に、理論強度という)又は強度
比の理論計算式を記憶する手段と、実際に測定された蛍
光X線強度又は強度比を理論強度又は強度比に変換する
手段と、この変換された理論強度又は強度比と理論計算
式より得られる理論強度又は強度比の差を最小にするメ
ッキ付着量およびメッキ被膜組成を求める手段とを備え
たものである。
In the device of the present invention, an X-ray generator that generates X-rays,
A monochromator for monochromaticizing the X-rays generated from the X-ray generator, a slit system for determining a pass line of the X-rays, projecting the X-rays on a plated steel plate at a predetermined incident angle and receiving light at a predetermined light receiving angle,
Two detectors that measure the k-series fluorescent X-ray intensity of the target element of analysis generated from the plated steel sheet at different angles, and a general theoretical intensity that also takes into account the secondary or higher excitation effect that should be obtained by these measurement systems. (Hereinafter simply referred to as theoretical intensity) or means for storing a theoretical calculation formula of intensity ratio, means for converting the actually measured fluorescent X-ray intensity or intensity ratio to theoretical intensity or intensity ratio, and this converted theory It is provided with means for determining the amount of deposited plating and the composition of the plated coating film that minimizes the difference between the strength or strength ratio and the theoretical strength or strength ratio obtained from the theoretical calculation formula.

従って、このような手段を講じたことにより、X線発生
部から発生されたX線をスリットを通してモノクロメー
タで単色化し所定の入射角で被測定メッキ鋼板へ入射
し、これによって被測定メッキ鋼板から発生する分析目
的元素のk系列蛍光X線強度を2個の検出器を用いて異
なる所定の受光角で検出する。
Therefore, by taking such a measure, the X-ray generated from the X-ray generator is monochromaticized by the monochromator through the slit and is incident on the plated steel sheet to be measured at a predetermined incident angle. The generated k-series fluorescent X-ray intensity of the element to be analyzed is detected by using two detectors at different predetermined light receiving angles.

そして、この2個の検出器で測定した蛍光X線強度又は
強度比を理論強度又は強度比に変換し、またメッキ付着
量およびメッキ被膜組成を可変パラメータとして理論計
算式により理論強度又は強度比を計算し、この計算値が
前記変換値に最も近づくパラメータから被測定メッキ鋼
板のメッキ付着量およびメッキ被膜組成を得るものであ
る。
Then, the fluorescent X-ray intensity or intensity ratio measured by these two detectors is converted into a theoretical intensity or intensity ratio, and the theoretical intensity or intensity ratio is calculated by a theoretical calculation formula using the plating adhesion amount and the plating film composition as variable parameters. The calculated value is the parameter closest to the above-mentioned converted value, and the plating adhesion amount and the plating film composition of the plated steel sheet to be measured are obtained.

また、他の本発明装置においては、X線発生部、モノク
ロメータ、スリット系および2個の検出器等からなる測
定系のほか、これらの測定系で得られるべき理論強度又
は強度比の検量線を記憶する記憶手段と、実際に測定さ
れる蛍光X線強度又は強度比と検量線より得られる蛍光
X線強度又は強度比の差を最小にするメッキ付着量およ
びメッキ被膜組成を求める手段とを備えたものである。
Further, in another apparatus of the present invention, in addition to a measurement system including an X-ray generator, a monochromator, a slit system, two detectors, etc., a calibration curve of theoretical intensity or intensity ratio to be obtained by these measurement systems. And a means for determining a plating adhesion amount and a plating film composition that minimize the difference between the actually measured fluorescent X-ray intensity or intensity ratio and the fluorescent X-ray intensity or intensity ratio obtained from the calibration curve. Be prepared.

この装置では、理論計算式に代えて検量線を用いて上記
とほぼ同一の信号処理手段により、被測定メッキ鋼板の
メッキ付着量およびメッキ被膜組成を測定する。
In this apparatus, a calibration curve is used in place of the theoretical calculation formula, and the amount of adhered plating and the composition of the plating film of the plated steel sheet to be measured are measured by almost the same signal processing means as described above.

〔実施例〕〔Example〕

以下、本発明の実施例を説明するに先立ち、オンライン
測定に適したものとするため、次のような条件を満たす
測定系で構成するものとする。
Prior to the description of the embodiments of the present invention, in order to make it suitable for on-line measurement, it is assumed that the measurement system satisfies the following conditions.

(イ) 入射X線は市販のX線管を用いて十分な蛍光X
線強度が得られること。
(B) The incident X-ray is a sufficient X-ray fluorescence using a commercially available X-ray tube.
Obtaining line strength.

(ロ) X線入射角,蛍光X線取出角等の測定角はオン
ラインで実現可能な測定角,つまり5゜以上とするこ
と。
(B) The measurement angles such as the X-ray incident angle and the fluorescent X-ray extraction angle should be the measurement angles that can be realized online, that is, 5 ° or more.

また、メッキ鋼板から発生する蛍光X線の強度は放射線
検出器で測定するが、望ましくは半導体検出器を用いて
測定する。
Further, the intensity of the fluorescent X-ray generated from the plated steel sheet is measured with a radiation detector, but preferably with a semiconductor detector.

以下、Zn−Fe合金メッキ鋼板のメッキ付着量およびメッ
キ被覆組成(Fe%)を測定する方法の実施例について説
明する。
Hereinafter, examples of a method for measuring the coating amount and the coating composition (Fe%) of a Zn-Fe alloy plated steel sheet will be described.

すなわち、この測定方法は、第1図および第2図に示す
如く、先ず、メッキ鋼板に対して単色化処理した波長λ
1のX線を入射角φ1で照射し、このときメッ
キ鋼板から発生する2種類の蛍光X線強度Fekα線の強
度およびZnkα線の強度を受光角ψ1をもって測定
する測定条件を理論計算式を設定した後、メッキ付着量
およびメッキ皮膜組成が既知である標準試料に対して、
前記測定条件と同じ測定条件を用いて蛍光X線強度又は
強度比を実測し、この実測値と前記理論計算式とから当
該実測値を理論強度又は強度比に換算することにより、
後記する予め理論強度又は強度比などの理論値に変換す
る際の変換係数a1,a2,b1,b2を求めて記憶しておく(S
1)。
That is, as shown in FIG. 1 and FIG. 2, this measuring method is as follows.
The X-rays of 1 and λ 2 are irradiated at incident angles of φ 1 and φ 2 , and the two types of fluorescent X-ray intensities Fekα-ray intensity and Znkα-ray intensity generated from the plated steel plate at this time are detected at the acceptance angles ψ 1 and ψ 2. After setting the theoretical calculation formula for the measurement conditions to be measured with, for the standard sample with known coating amount and plating film composition,
By measuring the fluorescent X-ray intensity or intensity ratio using the same measurement conditions as the measurement conditions, and converting the measured value to the theoretical intensity or intensity ratio from this measured value and the theoretical calculation formula,
The conversion coefficients a 1 , a 2 , b 1 , b 2 for converting to theoretical values such as theoretical intensity or intensity ratio are obtained in advance and stored (S
1).

すなわち、この変換係数a1,a2,b1,b2は、予め標準試料
のメッキ付着量およびメッキ被覆組成を用いて理論計算
式によって求めた値と、同じく標準試料を用いたときの
実測蛍光X線強度から計算した値との間に後記するステ
ップS3の式が成立するように、回帰分析等によって求め
たものである。
That is, the conversion coefficients a 1 , a 2 , b 1 and b 2 are the values obtained by a theoretical calculation formula using the plating adhesion amount and plating coating composition of the standard sample in advance, and the actual measurement when the standard sample is also used. It is obtained by regression analysis or the like so that the equation of step S3 described later is established between the value calculated from the fluorescent X-ray intensity and the value.

このように理論計算式を使用し、実際の測定系との差を
標準試料を使用して校正する方法を採用すれば、少ない
数の標準試料を用いて、メッキ付着量およびメッキ被膜
組成と蛍光X線強度又は強度比の関係式を求めることが
可能となる。
By using a theoretical calculation formula and calibrating the difference from the actual measurement system using a standard sample in this way, it is possible to use a small number of standard samples, It is possible to obtain a relational expression of X-ray intensity or intensity ratio.

しかる後、被測定メッキ鋼板11に対して前述と同様な測
定条件,つまり単色化処理した波長λ1のX線を入
射角φ1で照射し、このとき被測定メッキ鋼板11か
ら発生するFekα線の強度およびZnkα線の強度を受光角
ψ1で測定する。そこで、この測定角(φ1
の条件下で測定したFekα線強度,Znkα線強度をそれぞ
れ▲I1 Fe▼,▲I1 Zn▼とし、また測定角(φ2
の条件下で測定したFekα線強度,Znkα線強度を▲I2 Fe
▼,▲I2 Zn▼とし なる演算を行う(ステップS2)。さらに、このX1,X2
用いて理論値Y1,Y2に変換する。ここで、X1,X2を理論値
Y1,Y2に変換するに際し、理論値とは測定条件と同じX
線波長、X線強度、幾何学的条件で測定した場合に得ら
れる蛍光X線強度を、メッキ鋼板のメッキ付着量および
メッキ被膜組成をパラメータとして理論計算式により計
算し、この値に基づいて前記X1,X2に対応する値として
求めたものである。実際の測定値は検出器の感度特性、
スリット系の影響等によりこれらの理論強度とは異なっ
た値となる。
Thereafter, the measured plated steel sheet 11 is irradiated with the same measurement conditions as described above, that is, monochromatic X-rays having wavelengths λ 1 and λ 2 at incident angles φ 1 and φ 2 , and at this time, the measured plated steel sheet is measured. The intensity of the Fekα ray and the intensity of the Znkα ray generated from 11 are measured at the acceptance angles ψ 1 and ψ 2 . Therefore, this measurement angle (φ 1 , ψ 1 )
The Fekα-ray intensity and the Znkα-ray intensity measured under the conditions of 〈I 1 Fe ▼ and ▲ I 1 Zn ▼, respectively, and the measurement angles (φ 2 , ψ 2 ).
The Fek α-ray intensity and Znk α-ray intensity measured under the conditions of ▲ I 2 Fe
▼, ▲ I 2 Zn Is performed (step S2). Further, using these X 1 and X 2 , they are converted into theoretical values Y 1 and Y 2 . Where X 1 and X 2 are theoretical values
When converting to Y 1 and Y 2 , the theoretical value is the same as the measurement condition X
The line wavelength, the X-ray intensity, and the fluorescent X-ray intensity obtained when measured under geometric conditions were calculated by a theoretical calculation formula using the coating amount of the plated steel sheet and the plating film composition as parameters, and based on this value, It is obtained as a value corresponding to X 1 and X 2 . The actual measured value is the sensitivity characteristic of the detector,
Due to the influence of the slit system, etc., the value differs from these theoretical strengths.

そこで、本発明方法では、以下の換算式を用いて実測値
X1,X2を理論値Y1,Y2に変換する(ステップS3) Y1=a1X1+b1 Y2=a2X2+b2 なお、a1,a2,b1,b2としては、ステップS1で求めた変換
係数a1,a2,b1,b2が用いられる。
Therefore, in the method of the present invention, the measured value is calculated using the following conversion formula.
Convert X 1 , X 2 to theoretical values Y 1 , Y 2 (step S3) Y 1 = a 1 X 1 + b 1 Y 2 = a 2 X 2 + b 2 where a 1 , a 2 , b 1 , b As 2 , the conversion coefficients a 1 , a 2 , b 1 , b 2 obtained in step S1 are used.

以上のようにしてステップS3において理論値Y1,Y2を求
めたならば、引き続き、メッキ付着量およびFe%を可変
したパラメータPk(k=1)を用いて、既存の蛍光X線
強度計算式から上記Y1,Y2に対応するY1′,Y2′を求める
(ステップS4,S5)。しかる後、ステップS6に移行し、
ここでは、 なる演算を行い、さらにパラメータPkを変えて同様な演
算を行い(ステップS7,S5,S6)、これら演算値の中で最
も小さくなる演算値のときのパラメータの値を決定し
(ステップS8)、この決定パラメータ値をもってメッキ
付着量およびFe%とすることにより、被測定メッキ鋼板
11のメッキ付着量およびメッキ被覆組成を得るものであ
る。
After the theoretical values Y 1 and Y 2 are obtained in step S3 as described above, the existing fluorescent X-ray intensity calculation is subsequently performed using the parameter Pk (k = 1) in which the plating adhesion amount and Fe% are changed. Y 1 corresponding the formula above Y 1, Y 2 ', Y 2' Request (step S4, S5). After that, move to step S6,
here, Then, the same calculation is performed by changing the parameter Pk (steps S7, S5, S6), and the value of the parameter at the smallest calculated value among these calculated values is determined (step S8). By determining the plating amount and Fe% with this determined parameter value, the measured plated steel sheet
This is to obtain the plating adhesion amount and plating coating composition of 11.

次に、以上のような測定方法を用いたときの分析結果に
ついて具体的に説明する。今、X1の測定条件として例え
ば入射X線の波長λ=1.28Å、測定角(φ1)=
(15゜,45゜)とし、X2の測定条件として例えば入射X
線の波長λ=0.71Å、測定角(φ2)=(75゜,6
0゜)とする。なお、X1に対してはタングステンターゲ
ットを持つX線管を、X2に対してはモリブデンターゲッ
トを持つX線管を用いれば、波長λ1はそれぞれWL
β線,Mokα線近傍の波長となり、前述した条件(イ)を
満足させることができる。
Next, the analysis results when the above measuring method is used will be specifically described. Now, as the measurement conditions of X 1 , for example, the wavelength of incident X-ray λ 1 = 1.28Å, the measurement angle (φ 1 , ψ 1 ) =
(15 °, 45 °), and X 2 measurement conditions are, for example, incident X
Line wavelength λ 2 = 0.71Å, measurement angle (φ 2 , ψ 2 ) = (75 °, 6
0 °). If an X-ray tube with a tungsten target is used for X 1 and an X-ray tube with a molybdenum target is used for X 2 , the wavelengths λ 1 and λ 2 are WL
The wavelength is in the vicinity of β rays and Mok α rays, and the above-mentioned condition (a) can be satisfied.

一方、2つの測定角のうち低角度側の測定角(φ1,
ψ)は、亜鉛の吸収端より少しだけ短い波長で、メッ
キ被膜に対する減衰が大きく侵入深さが小さい波長λ
=1.28Åを用いているために(15゜,45゜)となり、前
述した条件(ロ)を十分に満足する測定角とすることが
でき、その結果、メッキ鋼板11面のバタツキによる測定
距離変動および測定角度変動の影響を小さくできる。
On the other hand, of the two measurement angles, the measurement angle (φ 1 ,
ψ 1 ) is a wavelength that is slightly shorter than the absorption edge of zinc, and has a large attenuation for the plating film and a small penetration depth λ 1
= 1.28Å is used, it becomes (15 °, 45 °), and the measurement angle that satisfies the above condition (b) can be sufficiently satisfied. As a result, the variation of the measurement distance due to the flapping of 11 surfaces of the plated steel sheet. And the influence of the measurement angle fluctuation can be reduced.

なお、X1とX2で、メッキ付着量およびFe%に対する特性
に差があるほど精度は向上するので、λはλに比べ
てメッキ被膜に対する減衰が小さい波長とし、測定角
(φ2)も(φ1)に比べて大きい角度とし、
蛍光X線を検出できる最大深さ,つまり分析深さを大き
くした。さらに、測定距離変動を小さくするためには、
入射X線のビーム径を小さくし、かつ、検出器の視野を
大きくし、測定距離変動に拘らず入射X線を照射してい
る全ての部分からの蛍光X線を検出することが望まし
い。そこで、入射側はφ2.0〜5.0mmのピンホールコリメ
ータ、受光側は検出器の窓を開放とすることにより実現
できる。
Note that the accuracy improves as the characteristics of X 1 and X 2 with respect to the coating amount and Fe% differ. Therefore, λ 2 is a wavelength with less attenuation to the plating film than λ 1 , and the measurement angle (φ 2 , ψ 2 ) also has a larger angle than (φ 1 , ψ 1 ),
The maximum depth at which fluorescent X-rays can be detected, that is, the analysis depth, was increased. Furthermore, in order to reduce the fluctuation of the measurement distance,
It is desirable to reduce the beam diameter of the incident X-ray, increase the field of view of the detector, and detect the fluorescent X-rays from all the portions irradiating the incident X-ray regardless of the measurement distance variation. Therefore, it can be achieved by opening a pinhole collimator of φ2.0 to 5.0 mm on the incident side and opening the detector window on the light receiving side.

さらに、もう1つの本発明方法としては、多数の標準試
料を使用することが可能な場合、前記理論計算式に代え
て、標準試料を使用してメッキ付着量およびメッキ被膜
組成と蛍光X線強度又は強度比の関係式すなわち検量線
を用いて、被測定メッキ鋼板11のメッキ付着量およびメ
ッキ被膜組成を求めてもよい。
Further, as another method of the present invention, when it is possible to use a large number of standard samples, the standard sample is used instead of the theoretical calculation formula, and the standard sample is used to deposit the plating amount, the composition of the plating film, and the fluorescent X-ray intensity. Alternatively, the relation between the strength ratios, that is, the calibration curve may be used to determine the amount of adhered plating and the coating composition of the plated steel sheet 11 to be measured.

次に、本発明装置の実施例について第3図を参照して説
明する。同図において11は被測定メッキ鋼板であって、
このメッキ鋼板11の上部に測定系12が設置されている。
この測定系12には所定の方向にX線を発生する2個のX
線管21,31と、このX線管21,31からコリメータ22,32を
介して入射される白色X線を単色化し、かつ、この単色
化処理したX線を所望の入射角度で被測定メッキ鋼板11
へ入射するモノクロメータ23,33と、被測定メッキ鋼板1
1から得られた蛍光X線強度を幅可変の平板スリット24,
34を介して測定する検出器25,35とによって構成されて
いる。26,36はコリメータである。このコリメータ26に
は測定距離および測定角の変動の影響を小さくするため
にピンホールコリメータとすることが望ましい。また、
これらX線管21,31、モノクロメータ23,33、コリメータ
22,26,32,36、検出器25,35、スリット24,34等は駆動制
御部13からの駆動制御信号で位置調整可能となってい
る。
Next, an embodiment of the device of the present invention will be described with reference to FIG. In the figure, 11 is a plated steel plate to be measured,
A measuring system 12 is installed on the plated steel plate 11.
The measurement system 12 has two X-rays that generate X-rays in a predetermined direction.
The X-ray tubes 21 and 31 and the white X-rays incident from the X-ray tubes 21 and 31 through the collimators 22 and 32 are monochromaticized, and the monochromatic X-rays are plated at a desired incident angle to be measured. Steel plate 11
Monochromators 23, 33 incident on the and plated steel plate 1 to be measured
Flat fluorescent slit X-ray intensity obtained from 1
It is constituted by detectors 25 and 35 which measure via 34. 26 and 36 are collimators. The collimator 26 is preferably a pinhole collimator in order to reduce the influence of variations in the measurement distance and the measurement angle. Also,
These X-ray tubes 21,31, monochromators 23,33, collimators
The positions of 22, 26, 32, 36, detectors 25, 35, slits 24, 34, etc. can be adjusted by a drive control signal from the drive control unit 13.

14は信号処理手段であって、これは2個の検出器25,35
で測定された蛍光X線強度又は強度比を理論強度又は強
度比,つまり理論値に変換する理論値変換手段15、メッ
キ付着量およびFe%を可変パラメータとして既存の蛍光
X線強度計算式により理論値を計算する理論値計算手段
16、前記理論値変換手段15で得た理論値と理論値計算手
段16で得られた理論値とが等しくなるパラメータを決定
する決定するパラメータ値決定手段17等によって構成さ
れ、このパラメータ値をメッキ付着量およびメッキ被膜
組成とすることにより、被測定メッキ鋼板のメッキ付着
量およびメッキ被膜組成を得るものである。
14 is a signal processing means, which comprises two detectors 25, 35
The theoretical value conversion means 15 for converting the fluorescent X-ray intensity or intensity ratio measured in step 1 into a theoretical intensity or intensity ratio, that is, a theoretical value, a theoretical X-ray intensity calculation formula using the plating adhesion amount and Fe% as variable parameters. Theoretical value calculation means to calculate the value
16, the theoretical value obtained by the theoretical value conversion means 15 and the theoretical value obtained by the theoretical value calculation means 16 is constituted by a parameter value determining means 17 for determining a parameter for equalization, the parameter value is plated By determining the adhesion amount and the plating film composition, the plating adhesion amount and the plating film composition of the plated steel sheet to be measured are obtained.

次に、以上のように構成された装置の動作を説明する。
2つのX線管21,31から白色X線を発生すると、この白
色X線はコリメータ22,32を通り、モノクロメータ23,33
で単色化された後、被測定メッキ鋼板11にそれぞれ入射
角φ=10〜30゜,φ=45〜90゜なる角度で照射され
る。なお、X線管21としてタングステンターゲットを用
い、これによりモノクロメータ23からメッキ被膜に対し
て減衰が大きい亜鉛の吸収端より少しだけ短いWLβ線を
含むWLβ線近傍の波長のX線を取出して被測定メッキ鋼
板11への入射X線とし、一方、X線管31側ではモリブデ
ンターゲットを用い、これによりモノクロメータ33から
WLβ線に比べてメッキ被膜に対して減衰がはるかに小さ
いMokα線を含むMokα線近傍の波長のX線を取出して被
測定メッキ鋼板11への入射X線とする。
Next, the operation of the apparatus configured as described above will be described.
When white X-rays are generated from the two X-ray tubes 21 and 31, the white X-rays pass through the collimators 22 and 32 and the monochromators 23 and 33.
After being monochromatized, the plated steel sheet 11 to be measured is irradiated with angles of incidence φ 1 = 10 to 30 ° and φ 2 = 45 to 90 °, respectively. A tungsten target is used as the X-ray tube 21. With this, X-rays having a wavelength in the vicinity of WLβ-rays including a WLβ-ray slightly shorter than the absorption edge of zinc, which has a large attenuation with respect to the plating film, are extracted from the monochromator 23 to obtain a target. The incident X-rays to the plated steel sheet 11 were measured. On the other hand, a molybdenum target was used on the X-ray tube 31 side.
X-rays having a wavelength in the vicinity of Mokα rays including Mokα rays whose attenuation is much smaller than that of the WLβ rays are extracted and used as incident X-rays on the plated steel sheet 11 to be measured.

そして、以上のように単色化処理されたX線を照射後、
被測定メッキ鋼板11から発生するZn,Feのkα線強度を
それぞれ受光角ψ=30〜60゜,ψ=45〜90゜の角度
をもって検出器25,35で検出する。しかる後、理論値変
換手段15を用いて両検出器25,35で得られた蛍光X線強
度等に基づいて前記X1,X2を求めた後これを理論値に変
換し、パラメータ値決定手段17に送出する。一方、理論
値計算手段16ではメッキ付着量およびFe%を順次可変パ
ラメータとしながら既存の蛍光X線強度計算式により理
論値を求めながらパラメータ値決定手段17に送出する。
そこで、このパラメータ値決定手段17では、理論値変換
手段15から送られてくる理論値と順次理論値計算手段16
でパラメータを変えて得られる理論値とを用いて所定の
演算を実行し、両理論値が等しくなるときのパラメータ
値を決定し、このパラメータ値から被測定メッキ鋼板11
のメッキ付着量およびメッキ被膜組成を得るものであ
る。
After irradiation with the monochromatic X-rays as described above,
The intensities of Zn and Fe kα rays generated from the plated steel sheet 11 to be measured are detected by detectors 25 and 35 at angles of acceptance angles ψ 1 = 30 to 60 ° and ψ 2 = 45 to 90 °, respectively. After that, the theoretical value converting means 15 is used to obtain the X 1 and X 2 based on the fluorescent X-ray intensities obtained by both detectors 25 and 35, and then these are converted to theoretical values to determine the parameter values. To the means 17. On the other hand, the theoretical value calculating means 16 sends the amount to the parameter value determining means 17 while sequentially obtaining the theoretical value by the existing fluorescent X-ray intensity calculation formula while making the amount of deposited plating and Fe% variable parameters.
Therefore, in this parameter value determining means 17, the theoretical value sent from the theoretical value converting means 15 and the theoretical value calculating means 16
By performing a predetermined calculation using the theoretical value obtained by changing the parameter in, to determine the parameter value when both theoretical values are equal, from the parameter value to be measured plated steel sheet 11
The amount of plating adhered and the composition of the plating film are obtained.

因みに、第4図および第5図は第3図の装置を用いて得
られた分析結果を示す図である。この第4図および第5
図は上記装置を用いてモノクロメーター23,33で波長λ
=1.28Å、λ=0.71Åとし、かつ、それぞれの測定
角を(φ1)=(15゜,45゜)、(φ2)=(7
5゜,60゜)とした例であって、そのうち第4図はメッキ
付着量、第5図はメッキ被膜組成を示す。従って、これ
らの図から明らかなように、測定距離変動、測定角度変
動および温湿度変動等を加わる実ラインであるにも拘ら
ず、測定時間10秒という短い時間で高精度に測定でき
る。また、この分析値はFeまたはZnの蛍光X線強度では
なく、FeおよびZnの蛍光X線の強度比から求めたが、こ
の強度比をとることにより温湿度変動,経時変化の影響
を低減できる。
Incidentally, FIGS. 4 and 5 are diagrams showing the analysis results obtained using the apparatus of FIG. Figures 4 and 5
The figure shows the wavelength λ in monochromators 23 and 33 using the above equipment.
1 = 1.28Å, and lambda 2 = 0.71 Å, and each of the measurement angle (φ 1, ψ 1) = (15 °, 45 °), (φ 2, ψ 2 ) = (7
5 °, 60 °), of which FIG. 4 shows the amount of plating deposited and FIG. 5 shows the composition of the plating film. Therefore, as is clear from these figures, the measurement can be performed with high accuracy in a short time of 10 seconds, despite the fact that the measurement distance variation, the measurement angle variation, the temperature and humidity variation, etc. are added to the actual line. Further, this analysis value was obtained not from the fluorescent X-ray intensity of Fe or Zn, but from the intensity ratio of the fluorescent X-rays of Fe and Zn. By taking this intensity ratio, the effects of temperature and humidity fluctuations and changes over time can be reduced. .

なお、本発明装置は理論計算式を用いて行ったか、この
理論計算式に代えて検量線を用いて行ってもよい。
The device of the present invention may be performed by using a theoretical calculation formula, or by using a calibration curve instead of this theoretical calculation formula.

その他、本発明はその要旨を逸脱しない範囲で種々変形
して実施できる。
In addition, the present invention can be modified in various ways without departing from the scope of the invention.

〔発明の効果〕 以上説明したように本発明によれば次のような種々の効
果を奏する。
[Effects of the Invention] As described above, according to the present invention, the following various effects are achieved.

先ず、請求項1,2においては、単色化処理によってメッ
キ被膜による吸収の大きな波長のX線を取りだして被測
定メッキ鋼板に照射するので、従来に比べて大きな測定
角で蛍光X線強度を測定でき、被測定メッキ鋼板のバタ
ツキによる測定距離変動および測定角変動の影響を低減
でき、かつ、入射X線のスペクトル変動の影響が少な
く、かつ、波長積分を必要としないので測定精度の向上
および測定時間の短縮化を図ることができる。また、測
定上必要な標準試料は実測値から理論値への変換パラメ
ータを求めるために数種類でよく、オンラインに適する
ものである。
First, in claims 1 and 2, since X-rays having a large absorption wavelength by the plating film are extracted by the monochromatic treatment and irradiated onto the plated steel sheet to be measured, the fluorescent X-ray intensity is measured at a larger measurement angle than the conventional one. It is possible to reduce the influence of the measurement distance variation and the measurement angle variation due to the flapping of the plated steel sheet to be measured, the influence of the spectrum variation of the incident X-ray is small, and the wavelength integration is not required, so the measurement accuracy is improved and the measurement is performed. The time can be shortened. Further, the number of standard samples required for measurement may be several in order to obtain the conversion parameter from the actual measurement value to the theoretical value, and it is suitable for online.

次に、請求項3,4においては、非常に簡単な構成で、か
つ、オンラインで被測定メッキ鋼板のメッキ付着量およ
びメッキ被膜組成を高精度に測定でき、メッキ製品の品
質向上に大きく貢献させることができる。
Next, in claims 3 and 4, with a very simple structure, the amount of plating adhered and the plating film composition of the plated steel sheet to be measured can be measured with high accuracy online, which greatly contributes to the improvement of the quality of plated products. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を用いたときのX線と被測定メッキ
鋼板との関係を表す図、第2図は同じく本発明方法によ
る分析動作を説明する図、第3図は本発明装置の一実施
例を示す構成図、第4図および第5図は本発明装置を用
いて得られた分析結果図である。 11……被測定メッキ鋼板、12……測定系、21,31……X
線管、23,33……モノクロメータ、25,35……検出器、13
……駆動制御部、14……信号処理手段、15……理論値変
換手段、16……理論値計算手段、17……パラメータ値決
定手段。
FIG. 1 is a diagram showing a relationship between X-rays and a steel plate to be measured when the method of the present invention is used, FIG. 2 is a diagram for explaining an analysis operation by the method of the present invention, and FIG. FIG. 4 is a configuration diagram showing one embodiment, FIGS. 4 and 5 are analysis result diagrams obtained by using the apparatus of the present invention. 11 …… Measured plated steel sheet, 12 …… Measuring system, 21,31 …… X
Wire tube, 23,33 …… monochromator, 25,35 …… detector, 13
...... Drive control section, 14 ...... Signal processing means, 15 ...... Theoretical value conversion means, 16 ...... Theoretical value calculation means, 17 ...... Parameter value determination means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 服部 忠昭 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (56)参考文献 特開 昭61−84511(JP,A) 特開 昭59−195146(JP,A) 特開 昭58−223047(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadaaki Hattori 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (56) Reference JP-A-61-84511 (JP, A) JP-A-SHO 59-195146 (JP, A) JP-A-58-223047 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】以下の(a)、(b)、(c)、(d)の
工程を有してなるメッキ鋼板のメッキ付着量およびメッ
キ被膜組成の測定方法。 (a) 予めメッキ鋼板に1種類または2種類の所定の
入射角で単色のX線を入射した場合に得られる、2種類
の所定の測定角における分析目的元素のk系列の蛍光X
線強度又は強度比を求める測定条件に基づく理論計算式
が設定され、メッキ付着量およびメッキ被膜組成が既知
の標準試料に対して、前記測定条件と同じ測定条件を用
いて蛍光X線強度又は強度比を実測し、この実測値と前
記理論計算式とから当該実測値を理論計算値に換算する
変換係数を求めて記憶しておく工程、 (b) メッキ付着量およびメッキ被膜組成が未知の被
測定メッキ鋼板に対して、前記測定条件と同じ測定条件
を用いて前記2種類の所定の測定角における分析目的元
素のk系列の蛍光X線強度又は強度比を測定する工程、 (c) この(b)工程で得られる蛍光X線強度又は強
度比と前記(a)工程で求めた変換係数とを用いて理論
強度又は強度比に変換する工程、 (d) 前記理論計算式より得られる理論強度又は強度
比を、前記(c)工程で変換された理論強度又は強度比
の近傍に近づく、理論計算式中のパラメータであるメッ
キ付着量およびメッキ被膜組成を、前記被測定メッキ鋼
板のメッキ付着量およびメッキ被膜組成とする工程。
1. A method for measuring the amount of plating adhered to a plated steel sheet and the composition of a plating film, which comprises the following steps (a), (b), (c) and (d). (A) Fluorescence X of the k-series of the analysis target element at two kinds of predetermined measurement angles, which is obtained when monochromatic X-rays are incident on the plated steel plate in advance at one or two kinds of predetermined incident angles.
A theoretical calculation formula based on the measurement conditions for obtaining the line intensity or the intensity ratio is set, and the fluorescent X-ray intensity or the intensity is applied to the standard sample with the known plating adhesion amount and plating film composition using the same measurement conditions as the above measurement conditions. A step of actually measuring the ratio and storing a conversion coefficient for converting the measured value into a theoretical calculated value from the measured value and the theoretical calculation formula, and storing the converted coefficient. A step of measuring the fluorescent X-ray intensity or intensity ratio of the k-series of the element to be analyzed at the above-mentioned two predetermined measurement angles using the same measurement conditions as the measurement conditions for the measurement plated steel sheet, (c) b) a step of converting into a theoretical intensity or an intensity ratio using the fluorescent X-ray intensity or intensity ratio obtained in the step and the conversion coefficient obtained in the step (a), (d) a theoretical intensity obtained from the theoretical calculation formula Or intensity ratio The plating adhesion amount and the plating film composition, which are parameters in the theoretical calculation formula, which approach the theoretical strength or strength ratio converted in the step (c), are defined as the plating adhesion amount and the plating film composition of the measured plated steel sheet. The process of doing.
【請求項2】以下の(a)、(b)、(c)の工程を有
してなるメッキ鋼板のメッキ付着量およびメッキ被膜組
成の測定方法。 (a) 予めメッキ鋼板に1種類または2種類の所定の
入射角で単色のX線を入射した場合に得られる、2種類
の所定の測定角における分析目的元素のk系列の蛍光X
線強度又は強度比を求める測定条件に基づく検量線をメ
ッキ付着量およびメッキ被膜組成をパラメータとして求
めて記憶する工程、 (b) メッキ付着量およびメッキ被膜組成が未知の被
測定メッキ鋼板に対して、前記測定条件と同じ測定条件
を用いて前記2種類の所定の測定角における分析目的元
素のk系列の蛍光X線強度又は強度比を測定する工程、 (c) 前記検量線より得られる蛍光X線強度又は強度
比を、前記(b)工程で測定される蛍光X線強度又は強
度比の近傍に近づく、検量線中のパラメータであるメッ
キ付着量およびメッキ被膜組成を、前記被測定メッキ鋼
板のメッキ付着量およびメッキ被膜組成とする工程。
2. A method for measuring the amount of plating adhered on a plated steel sheet and the composition of a plating film, which comprises the following steps (a), (b) and (c): (A) Fluorescence X of the k-series of the analysis target element at two kinds of predetermined measurement angles, which is obtained when monochromatic X-rays are incident on the plated steel plate in advance at one or two kinds of predetermined incident angles.
A step of memorizing the calibration curve based on the measurement conditions for obtaining the line strength or the strength ratio by obtaining the plating adhesion amount and the plating coating composition as parameters, and (b) for the plated steel sheet whose plating adhesion and the plating coating composition are unknown. A step of measuring the fluorescence X-ray intensity or intensity ratio of the k-series of the analysis target element at the two kinds of predetermined measurement angles using the same measurement conditions as those described above, (c) the fluorescence X obtained from the calibration curve The line strength or intensity ratio approaches the vicinity of the fluorescent X-ray intensity or intensity ratio measured in the step (b), and the plating adhesion amount and plating coating composition, which are the parameters in the calibration curve, are calculated as follows. The step of setting the plating adhesion amount and plating coating composition.
【請求項3】X線を発生するX線発生部と、このX線発
生部から発生するX線を単色化するモノクロメータと、
X線のパスラインを定めてメッキ鋼板に所定の入射角で
投射し所定の受光角で受光するスリット系と、メッキ鋼
板から発生する分析目的元素のk系列蛍光X線強度を異
なる角度で測定する2個の検出器と、これらの測定系で
得られるべき理論強度又は強度比の理論計算式を記憶す
る手段と、実際に測定される蛍光X線強度又は強度比を
理論強度又は強度比に変換する手段と、この変換された
理論強度又は強度比と理論計算式より得られる理論強度
又は強度比との差を最小にするメッキ付着量およびメッ
キ被膜組成を求める手段とを有してなるメッキ鋼板のメ
ッキ付着量およびメッキ被膜組成の測定装置。
3. An X-ray generation unit for generating X-rays, and a monochromator for converting the X-rays generated from the X-ray generation unit into a single color.
A slit system that determines the X-ray pass line and projects it on the plated steel sheet at a predetermined incident angle and receives it at a predetermined light-receiving angle, and the k-series fluorescent X-ray intensity of the analysis target element generated from the plated steel sheet are measured at different angles. Two detectors, means for storing a theoretical calculation formula of theoretical intensity or intensity ratio to be obtained by these measurement systems, and conversion of fluorescent X-ray intensity or intensity ratio actually measured to theoretical intensity or intensity ratio And a means for determining a plating adhesion amount and a plating film composition that minimize the difference between the converted theoretical strength or strength ratio and the theoretical strength or strength ratio obtained from a theoretical calculation formula. Measuring device for the amount of plating adhered and the composition of plating film.
【請求項4】X線を発生するX線発生部と、このX線発
生部から発生するX線を単色化するモノクロメータと、
X線のパスラインを定めてメッキ鋼板に所定の入射角で
投射し所定の受光角で受光するスリット系と、メッキ鋼
板から発生する分析目的元素のk系列蛍光X線強度を異
なる角度で測定する2個の検出器と、これらの測定系で
得られるべき理論強度又は強度比の検量線を記憶する手
段と、実際に測定される蛍光X線強度又は強度比と検量
線より得られる蛍光X線強度又は強度比との差を最小に
するメッキ付着量およびメッキ被膜組成を求める手段と
を有してなるメッキ鋼板のメッキ付着量およびメッキ被
膜組成の測定装置。
4. An X-ray generation unit for generating X-rays, and a monochromator for converting the X-rays generated from the X-ray generation unit into a single color.
A slit system that determines the X-ray pass line and projects it on the plated steel sheet at a predetermined incident angle and receives it at a predetermined light-receiving angle, and the k-series fluorescent X-ray intensity of the analysis target element generated from the plated steel sheet are measured at different angles. Two detectors, means for storing a calibration curve of theoretical intensity or intensity ratio to be obtained by these measurement systems, and fluorescent X-ray intensity or intensity ratio actually measured and fluorescent X-ray obtained from the calibration curve An apparatus for measuring the plating adhesion amount and plating coating composition of a plated steel sheet, which comprises means for determining the plating adhesion amount and plating coating composition that minimize the difference between strength and strength ratio.
【請求項5】スリット系は、入射側にピンホールコリメ
ータ、受光側に幅可変の平板スリットを有してなる請求
項3又は請求項4に記載のメッキ鋼板のメッキ付着量お
よびメッキ被膜組成の測定装置。
5. The slit system comprises a pinhole collimator on the incident side and a flat slit having a variable width on the light receiving side, and the coating amount of the plated steel sheet and the coating composition of the plated steel sheet according to claim 4 or 5. measuring device.
JP1079964A 1989-03-30 1989-03-30 Method and apparatus for measuring coating weight of plated steel sheet and plating film composition Expired - Fee Related JPH07109406B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1079964A JPH07109406B2 (en) 1989-03-30 1989-03-30 Method and apparatus for measuring coating weight of plated steel sheet and plating film composition
US07/476,251 US5081658A (en) 1989-03-30 1990-02-07 Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
CA002009698A CA2009698C (en) 1989-03-30 1990-02-09 Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
DE69026748T DE69026748T2 (en) 1989-03-30 1990-02-14 Method of measuring the plating rate and the composition of a plating layer of a plated steel sheet, and apparatus therefor
EP90102910A EP0389774B1 (en) 1989-03-30 1990-02-14 Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1079964A JPH07109406B2 (en) 1989-03-30 1989-03-30 Method and apparatus for measuring coating weight of plated steel sheet and plating film composition

Publications (2)

Publication Number Publication Date
JPH02257045A JPH02257045A (en) 1990-10-17
JPH07109406B2 true JPH07109406B2 (en) 1995-11-22

Family

ID=13704994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1079964A Expired - Fee Related JPH07109406B2 (en) 1989-03-30 1989-03-30 Method and apparatus for measuring coating weight of plated steel sheet and plating film composition

Country Status (1)

Country Link
JP (1) JPH07109406B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613511B2 (en) * 1991-10-23 1997-05-28 株式会社堀場製作所 X-ray fluorescence analyzer
JP4262734B2 (en) 2005-09-14 2009-05-13 株式会社リガク X-ray fluorescence analyzer and method

Also Published As

Publication number Publication date
JPH02257045A (en) 1990-10-17

Similar Documents

Publication Publication Date Title
EP0389774B1 (en) Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
EP0197157B1 (en) Method of determining thickness and composition of alloy film
JP4262734B2 (en) X-ray fluorescence analyzer and method
US2897371A (en) Spectroscopy
KR20020060741A (en) Quantitative measuring method and apparatus of metal phase using x-ray diffraction method, and method for making plated steel sheet using them
US5113421A (en) Method and apparatus for measuring the thickness of a coating on a substrate
US5185773A (en) Method and apparatus for nondestructive selective determination of a metal
US8011830B2 (en) Method and system for calibrating an X-ray photoelectron spectroscopy measurement
EP0348574A2 (en) Method of simultaneously measuring thickness and composition of film and apparatus therefor
US5579362A (en) Method of and apparatus for the quantitative measurement of paint coating
JPH07109406B2 (en) Method and apparatus for measuring coating weight of plated steel sheet and plating film composition
JPH0933455A (en) Method for measuring alloyed degree of alloying plated layer
JPH0335149A (en) Method and instrument for measuring plating deposition and plating film composition of plated steel sheet
JPH0375549A (en) Method and apparatus for measuring amount of plated material of plated steel plate and composition of plated film
JPS61132847A (en) Method and instrument for fluorescent x-ray analysis of two-layered plating film
JPS6014109A (en) Measuring device of buld-up quantity of plating of galvanized steel plate
JPH02302654A (en) Method and appratus for measuring plated amount of double-layer plated steel plate and composition of plated film
JPH06331576A (en) Analysis of iron zinc alloy plating layer on iron
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
JP2002168811A (en) Method and apparatus for measuring alloy phase adhesion in plated layer using x-ray diffraction method
JPH0237539B2 (en)
JP2002098656A (en) On-line measurement method and device of amount of adhesion of metal phase contained in plated layer
JP2947404B2 (en) X-ray fluorescence analysis method
JPH07167804A (en) Online analysis method of two-layer plated steel plate, and online analyzer therefor
JPH0435028B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees