JPH07109355A - Production of ultraviolet-curing coating material and abrasion-resistant coating composition containing the same - Google Patents

Production of ultraviolet-curing coating material and abrasion-resistant coating composition containing the same

Info

Publication number
JPH07109355A
JPH07109355A JP5278844A JP27884493A JPH07109355A JP H07109355 A JPH07109355 A JP H07109355A JP 5278844 A JP5278844 A JP 5278844A JP 27884493 A JP27884493 A JP 27884493A JP H07109355 A JPH07109355 A JP H07109355A
Authority
JP
Japan
Prior art keywords
coating material
weight
solid content
reaction
colloidal silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5278844A
Other languages
Japanese (ja)
Other versions
JP3545439B2 (en
Inventor
Hiroshi Fukushima
洋 福島
Misao Tamura
操 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP27884493A priority Critical patent/JP3545439B2/en
Publication of JPH07109355A publication Critical patent/JPH07109355A/en
Application granted granted Critical
Publication of JP3545439B2 publication Critical patent/JP3545439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Silicon Polymers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To produce a coating material excellent in curability, exhibiting an excellent improving effect on abrasion resistance, etc., and useful, e.g. for a lens cover for an automotive front light by reacting colloidal silica with a radically polymerizable silane compound under a specified condition. CONSTITUTION:This coating material is produced by conducting a condensation reaction between (A) 40 to 90wt.% colloidal silica fine particles (solid matter) and (B) 60 to 10wt.% hydrolyzed substance (solid matter) of a monomer of the formula [X is CH2CHCOO, CH2=C(CH3)COO or CH2=CH; R1 is a 0 to 8C alkylene; R2 and R3 are each a 0 to 8C alkyl; (a) is 1 to 3 and (b) is a positive integer of 0 to 2. (a)+(b) is an integer of 1 to 3] in the presence of a polar solvent, substituting the dispersion medium for colloidal silica with a non-polar solvent at a point of time when the dehydrated amount reaches 30 to 80wt.% based on the theoretical value and continuing the condensation reaction in the non-polar solvent under a condition of 30 to 90wt.% solid matter content. In addition, an abrasion-resistant coating material can be prepared by using this coating material in an amount of 5 to 50 pts.wt. together with 95 to 50 pts.wt. (meth)acryloyloxy-containing polyfunctional monomer and 0.01 to 5 pts.wt. photopolymerization initiator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外線硬化性被覆材の
製法、及びそれを用いた紫外線照射により、基材表面
に、耐摩耗性、表面平滑性、耐熱性、耐薬品性、耐久
性、耐候性及び基材との密着性に優れた架橋硬化被膜を
形成しうる被覆材組成物に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing a UV-curable coating material, and UV irradiation using the same, whereby abrasion resistance, surface smoothness, heat resistance, chemical resistance, and durability can be obtained on the surface of a substrate. The present invention relates to a coating material composition capable of forming a crosslinked cured coating having excellent weather resistance and adhesion to a substrate.

【0002】[0002]

【従来の技術】ポリメチルメタクリレート樹脂、ポリメ
タクリルイミド樹脂、ポリカーボネート樹脂、ポリスチ
レン樹脂、AS樹脂などから製造された合成樹脂成形品
は、ガラス製品に比べて軽量で耐衝撃性に優れるばかり
でなく、透明性も良好で成形加工が容易であるなどの種
々の利点を生かして、近年、自動車用プラスチック材料
等、種々の分野で利用されている。
2. Description of the Related Art Synthetic resin moldings made of polymethylmethacrylate resin, polymethacrylimide resin, polycarbonate resin, polystyrene resin, AS resin and the like are not only lighter in weight and superior in impact resistance than glass products, but also In recent years, it has been used in various fields such as plastic materials for automobiles by taking advantage of various advantages such as good transparency and easy molding process.

【0003】しかし反面、これらの合成樹脂成形品は、
その表面の耐摩耗性が不足しているため、他の硬い物体
との接触、摩擦、ひっかきなどによって表面に損傷を受
けやすく、表面に発生した損傷はその商品価値を著しく
低下させたり、短期間で使用不能にさせたりするので表
面の耐摩耗性を改良することが強く要求されている。ま
た、上記した自動車用材料として使用される場合には、
その耐候性も重要な性能となる。
However, on the other hand, these synthetic resin molded products are
Due to lack of abrasion resistance of the surface, the surface is apt to be damaged by contact with other hard objects, friction, scratching, etc., and the damage generated on the surface remarkably reduces its commercial value, Therefore, it is strongly required to improve the wear resistance of the surface because it may render it unusable. When used as the above-mentioned material for automobiles,
Its weather resistance is also an important performance.

【0004】このような合成樹脂成形品の欠点を改良す
る方法については、従来より種々検討されてきており、
例えば、アルキルトリアルコキシシランを主成分とした
シラン混合物の部分加水分解縮合物とコロイダルシリカ
とからなる塗料を成形品表面に塗布し、次いでこれを加
熱処理することによって架橋硬化被膜を形成させ、耐摩
耗性を改良する方法が開示されている(米国特許第4,
006,271号明細書)。この方法によって、高度な
耐摩耗性は得られるが、成形品表面との密着性が不十分
な場合が多く、この密着性を改良するためにアクリル系
又はシリコン系等からなるポリマーをプライマーとして
用いる必要があり、処理工程が複雑となる問題点があ
る。また硬化時間が長いため、経済的にも不利であり、
生産性も劣る。この欠点を改善するものとして、コロイ
ダルシリカとメタクリロイル又はグリシジル基の官能基
を有するアルコキシシラン、非シリルアクリレートから
なる紫外線硬化性塗料を成形品表面に塗布し、次いでこ
れに紫外線を照射し、耐摩耗性合成樹脂成形品を得る方
法(特公表昭57−500984号公報)、及びコロイ
ダルシリカとシリルアクリレートの加水分解物、多官能
アクリレート及び光重合開始剤とからなる実質的に有機
溶剤を含有しない被覆材組成物及びその製法(特開昭5
8−1756号公報)が開示されている。これらの方法
は、紫外線を用いて硬化させる方法であり、従来問題で
あったシリコン系被膜の硬化時間を大幅に短縮できる利
点があり、また合成樹脂成形品の耐摩耗性改良について
も有利な方法である。
Various methods have been hitherto studied for improving the drawbacks of such synthetic resin molded articles.
For example, a coating composed of a partial hydrolysis-condensation product of a silane mixture containing alkyltrialkoxysilane as a main component and colloidal silica is applied to the surface of a molded article, and then this is heat-treated to form a crosslinked cured coating, A method of improving wear is disclosed (US Pat.
006,271). Although high abrasion resistance is obtained by this method, adhesion to the surface of the molded product is often insufficient, and a polymer made of acrylic or silicone is used as a primer to improve this adhesion. However, there is a problem that the processing steps are complicated. It also has a long curing time, which is economically disadvantageous.
The productivity is also poor. To improve this defect, UV curable coating consisting of colloidal silica and an alkoxysilane having a functional group of methacryloyl or glycidyl group, a non-silyl acrylate is applied to the surface of the molded article, and then it is irradiated with ultraviolet rays to improve abrasion resistance. For obtaining a synthetic resin molded article (Japanese Patent Publication No. 57-500984), and a coating substantially free of organic solvent, which comprises colloidal silica and a hydrolyzate of silyl acrylate, a polyfunctional acrylate and a photopolymerization initiator. Material composition and its production method
No. 8-1756) is disclosed. These methods are methods of curing using ultraviolet rays, and have the advantage that the curing time of the silicon-based coating, which has been a problem in the past, can be greatly reduced, and are also advantageous methods for improving the wear resistance of synthetic resin molded products. Is.

【0005】しかし、上記の方法の内、前者の方法で
は、生産性は向上できるものの、硬化被膜の耐久性や耐
候性に関して満足できるものではないという問題点があ
り、さらに、被覆材組成物を塗布する前に合成樹脂成形
品の表面をプライマー組成物で下塗りするという点で、
複雑な処理工程を改善できないという問題点がある。ま
た、後者の方法では、実質的に有機溶剤を含まないた
め、合成樹脂成形品表面に塗布した際の被膜の表面平滑
性に劣り、はじき、ピンホール等の表面欠陥が発生しや
すい。また、硬化性が十分でないために、過度の紫外線
エネルギーを必要とし、得られた硬化品は熱水テストや
サーマルサイクルテスト、耐候性テストにより性能低下
が起こる。
However, of the above-mentioned methods, the former method has a problem in that although the productivity can be improved, the durability and weather resistance of the cured film are not satisfactory, and the coating material composition is used. In terms of undercoating the surface of the synthetic resin molded product with the primer composition before coating,
There is a problem that complicated processing steps cannot be improved. Further, in the latter method, since the organic solvent is not substantially contained, the surface smoothness of the coating film when applied to the surface of the synthetic resin molded product is inferior, and surface defects such as cissing and pinholes are likely to occur. Further, since the curability is not sufficient, excessive ultraviolet energy is required, and the obtained cured product undergoes a performance drop due to the hot water test, thermal cycle test, and weather resistance test.

【0006】以上のように、コロイダルシリカのような
無機成分とアクリルモノマーのような有機成分とを組み
合わせた被覆材組成物は、耐摩耗性改良と硬化被膜の耐
久性や耐候性を両立できないのが現状であった。
As described above, a coating material composition in which an inorganic component such as colloidal silica and an organic component such as an acrylic monomer are combined cannot achieve both improvement in wear resistance and durability and weather resistance of a cured coating. Was the current situation.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述の背景
になされたものであり、その目的とするところは、硬化
性に優れ、かつ基材表面に耐摩耗性、表面平滑性、耐熱
性、耐薬品性、耐久性、耐候性及び基材との密着性に優
れた架橋硬化被膜を形成しうる被覆材組成物及びそれに
用いる紫外線硬化性被覆材の製法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in the background described above, and its object is to have excellent curability and to have abrasion resistance, surface smoothness and heat resistance on the surface of a substrate. Another object of the present invention is to provide a coating material composition capable of forming a crosslinked cured coating having excellent chemical resistance, durability, weather resistance and adhesion to a substrate, and a method for producing an ultraviolet curable coating material used therein.

【0008】[0008]

【課題を解決するための手段】本発明者らは鋭意検討し
た結果、コロイダルシリカとラジカル重合性シラン化合
物を特定な条件下で反応させることによって得られた紫
外線硬化性被覆材と特定な単量体及び光重合開始剤から
なる被覆材組成物を合成樹脂成形品に塗布した後、紫外
線を照射し硬化させることにより、耐摩耗性、耐候性及
び硬化性に優れた合成樹脂成形品が得られることを見出
し本発明を完成した。本発明は、(a−1)コロイダル
シリカ微粒子(固形分)40〜90重量%と、(a−
2)下記の一般式(I)
Means for Solving the Problems As a result of intensive investigations by the present inventors, the ultraviolet curable coating material obtained by reacting a colloidal silica and a radically polymerizable silane compound under specific conditions and a specific unit amount. A synthetic resin molded product having excellent wear resistance, weather resistance and curability can be obtained by applying a coating material composition comprising a body and a photopolymerization initiator to a synthetic resin molded product, and then irradiating and curing the composition with ultraviolet rays. It was found that the present invention has been completed. The present invention comprises (a-1) 40 to 90% by weight of colloidal silica fine particles (solid content), and (a-
2) The following general formula (I)

【化2】 (式中、XはCH2 =CH−COO−基、CH2 =C
(CH3 )−COO−基、又はCH2 =CH−基、R1
は炭素数0〜8のアルキレン基、R2 ,R3 は炭素数1
〜8のアルキル基、aは1〜3の正の整数、bは0〜2
の正の整数、a+bは1〜3の整数を表わす。)で示さ
れる単量体の加水分解物(固形分)60〜10重量%
(合計100重量%)とを極性溶媒の存在下に、脱水量
が理論値の30〜80%となった時点でコロイダルシリ
カの分散媒を非極性溶媒で置換し、さらに非極性溶媒
中、固形分30〜90重量%の状態で、縮合反応させる
ことを特徴とする紫外線硬化性被覆材の製法である。ま
た、本発明は、(A)請求項1記載の紫外線硬化性被覆
材(固形分)5〜50重量部、(B)1分子中に2個以
上の(メタ)アクリロイルオキシ基を有する多官能性単
量体又は単量体混合物95〜50重量部、及び(C)光
重合開始剤0.01〜5重量部(上記(A)成分と上記
(B)成分との合計100重量部に対して)からなるこ
とを特徴とする耐摩耗性被覆材組成物である。
[Chemical 2] (In the formula, X is a CH 2 ═CH—COO— group, CH 2 ═C
(CH 3) -COO- group, or CH 2 = CH- group, R 1
Is an alkylene group having 0 to 8 carbon atoms, R 2 and R 3 are 1 carbon atoms
To 8 alkyl groups, a is a positive integer from 1 to 3, b is 0 to 2
Is a positive integer, and a + b is an integer of 1 to 3. ) Monomer hydrolyzate (solid content) 60 to 10% by weight
(Total 100% by weight) and in the presence of a polar solvent, when the dehydration amount is 30 to 80% of the theoretical value, the dispersion medium of the colloidal silica is replaced with a nonpolar solvent, and further, in a nonpolar solvent, It is a method for producing an ultraviolet-curable coating material, which is characterized in that a condensation reaction is carried out at a content of 30 to 90% by weight. The present invention also provides (A) 5 to 50 parts by weight of the ultraviolet curable coating material (solid content) according to claim 1, and (B) a polyfunctional compound having two or more (meth) acryloyloxy groups in one molecule. 95 to 50 parts by weight of the polymerizable monomer or monomer mixture, and 0.01 to 5 parts by weight of the (C) photopolymerization initiator (based on 100 parts by weight of the total of the components (A) and (B)). The present invention is a wear-resistant coating material composition.

【0009】以下に本発明を詳細に説明する。まず、最
初に本発明の紫外線硬化性被覆材の製法に用いる各成分
について説明する。 (a−1)成分について (a−1)成分であるコロイダルシリカ微粒子は、一次
粒子径が1〜200mμの無水ケイ酸の超微粒子を水又
は有機溶媒に分散させたものである。コロイダルシリカ
に使用される分散媒としては、水、メタノール、エタノ
ール、イソプロパノール、n−プロパノール、イソブタ
ノール、n−ブタノールなどのアルコール系溶剤、エチ
レングリコールなどの多価アルコール系溶剤、エチルセ
ロソルブ、ブチルセロソルブなどの多価アルコール誘導
体、メチルエチルケトン、メチルイソブチルケトン、ジ
アセトンアルコールなどのケトン系溶剤、2−ヒドロキ
シエチルアクリレート、2−ヒドロキシプロピルアクリ
レート、テトラヒドロフルフリルアクリレートなどのモ
ノマー類があるが、中でも炭素数3以下のアルコール系
溶剤が(a−2)成分との反応工程上特に好ましい。こ
れらのコロイダルシリカは、公知の方法で製造され、市
販をされている。粒子径は1〜200mμのものが好ま
しく、5〜80mμのものが特に好ましい。粒子径が1
mμに満たないものは(a−2)成分との反応工程にお
いてゲル化が起こりやすく、また、粒子径が200mμ
を超えるものは、被膜の透明性が低下する。
The present invention will be described in detail below. First, each component used in the method for producing the ultraviolet curable coating material of the present invention will be described. About Component (a-1) The colloidal silica fine particles as the component (a-1) are ultrafine particles of silicic acid anhydride having a primary particle diameter of 1 to 200 mμ dispersed in water or an organic solvent. As a dispersion medium used for colloidal silica, water, methanol, ethanol, isopropanol, n-propanol, isobutanol, alcohol solvents such as n-butanol, polyhydric alcohol solvents such as ethylene glycol, ethyl cellosolve, butyl cellosolve, etc. Polyhydric alcohol derivatives, methyl ethyl ketone, methyl isobutyl ketone, ketone solvents such as diacetone alcohol, and monomers such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and tetrahydrofurfuryl acrylate. The alcoholic solvent (1) is particularly preferable in the reaction step with the component (a-2). These colloidal silicas are manufactured by known methods and are commercially available. The particle size is preferably 1 to 200 mμ, and particularly preferably 5 to 80 mμ. Particle size is 1
If it is less than mμ, gelation is likely to occur in the reaction step with the component (a-2), and the particle size is 200 mμ.
If it exceeds, the transparency of the coating film will decrease.

【0010】コロイダルシリカは、硬化被膜の耐摩耗性
を著しく改善でき、特に、ケイ砂等の微粒子に対する耐
摩耗性の改善効果が大きい。しかし、コロイダルシリカ
を単独で硬化被膜とした場合には、合成樹脂成形品表面
に対する密着性が劣る。
Colloidal silica can remarkably improve the wear resistance of the cured film, and particularly has a great effect of improving the wear resistance against fine particles such as silica sand. However, when the colloidal silica alone is used as a cured coating, the adhesion to the surface of the synthetic resin molded product is poor.

【0011】(a−2)成分について (a−2)成分である一般式(I)で示される単量体の
加水分解物は、(a−1)成分であるコロイダルシリカ
と被覆材組成物の(B)成分である1分子中に2個以上
の(メタ)アクリロイルオキシ基を有する多官能(メ
タ)アクリレートとの相溶性を向上させる成分である。
紫外線照射により重合活性を示すアクリロイル基、メタ
クリロイル基又はビニル基を有するシラン化合物を用い
ることで、(B)成分の多官能(メタ)アクリレートと
の化学結合形成が可能であり、硬化被膜に強靱性を付与
することができる。さらに、コロイダルシリカと併用す
ることで硬化被膜の耐摩耗性をさらに向上でき、特に、
スチールウール等の金属繊維に対する耐摩耗性の改善効
果が大きい。
Component (a-2) The hydrolyzate of the monomer represented by the general formula (I), which is the component (a-2), is composed of the colloidal silica as the component (a-1) and the coating material composition. The component (B) is a component for improving the compatibility with the polyfunctional (meth) acrylate having two or more (meth) acryloyloxy groups in one molecule.
By using a silane compound having an acryloyl group, a methacryloyl group, or a vinyl group that exhibits polymerization activity upon irradiation with ultraviolet rays, it is possible to form a chemical bond with the polyfunctional (meth) acrylate of the component (B), and toughen the cured film. Can be given. Furthermore, by using together with colloidal silica, it is possible to further improve the wear resistance of the cured film, and in particular,
Greatly improves the wear resistance of steel wool and other metal fibers.

【0012】(a−2)成分の具体例としては、3−メ
タクリロキシプロピルトリメトキシシラン、3−アクリ
ロキシプロピルトリメトキシシラン、2−メタクリロキ
シエチルトリメトキシシラン、2−アクリロキシエチル
トリメトキシシラン、3−メタクリロキシプロピルトリ
エトキシシラン、3−アクリロキシプロピルトリエトキ
シシラン、2−メタクリロキシエチルトリエトキシシラ
ン、2−アクリロキシエチルトリエトキシシラン、3−
メタクリロキシプロピルメチルジメトキシシラン、3−
アクリロキシプロピルメチルジメトキシシラン、ビニル
トリメトキシシラン、ビニルトリエトキシシランなどか
ら選択される少なくとも1種のシラン化合物である。
Specific examples of the component (a-2) include 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 2-methacryloxyethyltrimethoxysilane and 2-acryloxyethyltrimethoxysilane. , 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltriethoxysilane, 2-methacryloxyethyltriethoxysilane, 2-acryloxyethyltriethoxysilane, 3-
Methacryloxypropylmethyldimethoxysilane, 3-
It is at least one silane compound selected from acryloxypropylmethyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, and the like.

【0013】次に、紫外線硬化性シリコンの製法につい
て説明する。この製法における最初の工程は(a−2)
成分である一般式(I)で示されるるシラン化合物を加
水分解させる工程である。この工程におけるシラン化合
物の加水分解は、 (1)シラン化合物1モルに対してアルコール溶媒等の
有機溶媒の存在下又は非存在下において、0.5〜6モ
ルの0.001〜0.1規定塩酸又は酢酸水溶液等の加
水分解触媒を加え、常温又は加熱下で攪拌し加水分解し
た後コロイダルシリカを加える方法。 (2)(a−1)成分のコロイダルシリカ及び(a−
2)成分のシラン化合物に、加水分解触媒を加え常温又
は還流下で攪拌するなどの常法によって得ることができ
る。
Next, a method for producing the ultraviolet curable silicon will be described. The first step in this manufacturing method is (a-2)
This is a step of hydrolyzing the silane compound represented by the general formula (I) as a component. The hydrolysis of the silane compound in this step is performed by (1) 0.5 to 6 mol of 0.001 to 0.1 N with respect to 1 mol of the silane compound in the presence or absence of an organic solvent such as an alcohol solvent. A method in which a hydrolysis catalyst such as hydrochloric acid or an acetic acid aqueous solution is added, and the mixture is stirred and hydrolyzed at room temperature or under heating and then colloidal silica is added. (2) Colloidal silica of component (a-1) and (a-
It can be obtained by a conventional method such as adding a hydrolysis catalyst to the silane compound of component 2) and stirring at room temperature or under reflux.

【0014】このようにして得られたシラン化合物の加
水分解物とコロイダルシリカ微粒子との反応は、常圧下
又は減圧下で水、アルコール等の揮発分(極性溶媒)を
留出させ、脱水量が理論留出量(理論値)の30〜80
%となった時点でコロイダルシリカの分散媒を常圧又は
減圧下で非極性溶媒とともに共沸留出させ、分散媒を非
極性溶媒に置換する。次いで、分散媒を非極性溶媒に置
換した後、60〜150℃、好ましくは80〜130℃
の温度で固形分を30〜90重量%、好ましくは50〜
80重量%に保ちながら、脱水量が理論値の30〜80
%となるまで、0.5〜10時間攪拌して縮合反応させ
る。なお、この縮合反応においては、必要により反応を
促進させる目的で酸、塩基、塩等の触媒を添加してもよ
い。
In the reaction between the hydrolyzate of the silane compound thus obtained and the colloidal silica fine particles, volatile components (polar solvent) such as water and alcohol are distilled out under normal pressure or reduced pressure, and the dehydration amount is reduced. 30-80 of theoretical distillation amount (theoretical value)
At the time when the content becomes%, the dispersion medium of colloidal silica is azeotropically distilled together with the nonpolar solvent under normal pressure or reduced pressure, and the dispersion medium is replaced with the nonpolar solvent. Then, after the dispersion medium is replaced with a nonpolar solvent, the temperature is 60 to 150 ° C, preferably 80 to 130 ° C.
Solid content at a temperature of 30 to 90% by weight, preferably 50 to
While maintaining 80% by weight, the dehydration amount is 30 to 80 of the theoretical value.
The condensation reaction is carried out by stirring for 0.5 to 10 hours until the content becomes%. In this condensation reaction, if necessary, a catalyst such as an acid, a base or a salt may be added for the purpose of promoting the reaction.

【0015】上記の反応において、脱水量が理論値の3
0%未満では、非極性溶媒中での脱水縮合を十分に行わ
せることが難しく、このような縮合物を用いた被覆材か
らは耐候性、耐摩耗性の良好な塗膜を形成することが難
しい。一方極性溶媒中で(a−1)成分のコロイダルシ
リカと(a−2)成分のシラン化合物との縮合を脱水量
が理論値の80%を越えて行わせることは極めて難し
い。
In the above reaction, the dehydration amount is 3 which is the theoretical value.
When it is less than 0%, it is difficult to sufficiently perform dehydration condensation in a non-polar solvent, and a coating material using such a condensation product can form a coating film having good weather resistance and abrasion resistance. difficult. On the other hand, it is extremely difficult to cause the condensation of the colloidal silica as the component (a-1) and the silane compound as the component (a-2) to be carried out in a polar solvent with the dehydration amount exceeding 80% of the theoretical value.

【0016】本発明に用いられる非極性溶媒とは、誘電
率、双極子能率あるいは水素結合パラメータを基準とし
て選ばれるものであり、広義には、中程度の極性を有す
る溶媒も本発明に含まれるものである。例えば、20℃
の誘電率が2〜10の範囲の非極性溶媒が本発明におい
ては特に好ましい溶媒である。
The nonpolar solvent used in the present invention is selected on the basis of the dielectric constant, the dipole efficiency or the hydrogen bonding parameter, and in a broad sense, a solvent having a medium polarity is also included in the present invention. It is a thing. For example, 20 ℃
A nonpolar solvent having a dielectric constant of 2 to 10 is a particularly preferred solvent in the present invention.

【0017】非極性溶媒の具体例としては、ベンゼン、
トルエン、キシレン、エチルベンゼン、シクロヘキサン
等の炭化水素類;トリクロルエチレン、テトラクロルエ
チレン等のハロゲン化炭化水素類;1,4−ジオキサ
ン、ジブチルエーテル等のエーテル類;メチルイソブチ
ルケトン等のケトン類;酢酸n−ブチル、酢酸イソブチ
ル、プロピオン酸エチル等のエステル類;エチレングリ
コールモノブチルエーテル等の多価アルコール誘導体を
挙げることができる。また、不飽和エチレン性化合物、
例えば、1分子中に1個以上の(メタ)アクリロイルオ
キシ基を有する単量体を非極性溶媒として用いることも
できる。これらの非極性溶媒の中でも芳香族炭化水素類
が好ましく、特に好ましい非極性溶媒としてトルエンを
挙げることができる。
Specific examples of the nonpolar solvent include benzene and
Hydrocarbons such as toluene, xylene, ethylbenzene, and cyclohexane; halogenated hydrocarbons such as trichloroethylene and tetrachloroethylene; ethers such as 1,4-dioxane and dibutyl ether; ketones such as methyl isobutyl ketone; acetic acid n -Esters such as butyl, isobutyl acetate, ethyl propionate; and polyhydric alcohol derivatives such as ethylene glycol monobutyl ether. Also, unsaturated ethylenic compounds,
For example, a monomer having one or more (meth) acryloyloxy groups in one molecule can be used as the nonpolar solvent. Among these non-polar solvents, aromatic hydrocarbons are preferable, and toluene is particularly preferable as the non-polar solvent.

【0018】非極性溶媒中でシラン化合物の加水分解物
とコロイダルシリカ微粒子とを反応させることで硬化性
が改善され、比較的厚膜下で紫外線吸収剤等の光安定剤
存在下においても透明な硬化被膜の形成が可能となる。
本発明以外の方法で製造された紫外線硬化性被覆材は硬
化性が十分ではなく、厚膜になると透明性の低下やクラ
ックの発生等外観欠陥が起こりやすく、また、硬化被膜
の耐摩耗性や耐久性、耐候性に問題がある。
By reacting the hydrolyzate of the silane compound with the colloidal silica fine particles in a non-polar solvent, the curability is improved, and it is transparent even in the presence of a light stabilizer such as an ultraviolet absorber under a relatively thick film. A cured film can be formed.
The ultraviolet curable coating material produced by a method other than the present invention is not sufficiently curable, and appearance defects such as a decrease in transparency and the occurrence of cracks are likely to occur when a thick film is formed, and the abrasion resistance of the cured coating and There is a problem with durability and weather resistance.

【0019】本発明の紫外線硬化性被覆材を用いた被覆
材組成物は、硬化性に優れるばかりでなく、硬化被膜の
耐摩耗性や耐久性、さらには耐候性においても優れるも
のである。
The coating material composition using the ultraviolet curable coating material of the present invention is not only excellent in curability, but also excellent in abrasion resistance, durability and weather resistance of the cured coating.

【0020】縮合反応での固形分濃度、すなわち(a−
2)成分の固形分(シラノールとして換算)と(a−
1)成分の固形分の合計量は30〜90重量%となる範
囲である。固形分濃度が30重量%未満、すなわち非極
性溶媒が70重量%を超える場合、反応が不十分なこと
があり、厚膜下での硬化被膜の透明性に劣る。逆に、固
形分濃度が90重量%を超えると、急激な反応が起こる
場合があり、ゲルの生成等の問題が生じる。
The solid content concentration in the condensation reaction, that is, (a-
2) Solid content of component (calculated as silanol) and (a-
The total solid content of the component 1) is in the range of 30 to 90% by weight. When the solid content concentration is less than 30% by weight, that is, when the nonpolar solvent exceeds 70% by weight, the reaction may be insufficient and the transparency of the cured film under a thick film is poor. On the contrary, when the solid content concentration exceeds 90% by weight, a rapid reaction may occur, which causes a problem such as gel formation.

【0021】また、縮合反応での温度は、60〜150
℃の範囲が好ましい。反応温度が60℃未満の場合、反
応が不十分なことがあり、反応に長時間を要する。逆に
反応温度が150℃を超えるとシリコンの縮合以外の反
応が生じたり、又はゲルの生成等の問題が生じる。
The temperature in the condensation reaction is 60 to 150.
The range of ° C is preferred. When the reaction temperature is lower than 60 ° C, the reaction may be insufficient and the reaction requires a long time. On the other hand, if the reaction temperature exceeds 150 ° C., reactions other than condensation of silicon may occur, or problems such as gel formation may occur.

【0022】縮合反応での(a−1)成分の固形分と
(a−2)成分の固形分(シラノールとして換算)との
使用割合は、(a−1)/(a−2)=40〜90/6
0〜10重量%(合計100重量%)、好ましくは50
〜80/50〜20重量%である。使用割合が上記の範
囲をはずれた場合、例えば、(a−1)成分が90重量
%を超えると反応系が白濁したり、ゲルの生成等の問題
が生じ、逆に、40重量%未満の場合は、反応が不十分
なことがあり、被膜を厚く形成した場合、硬化被膜の透
明性が低下することがある。また、(a−1)成分が9
0重量%を超えると硬化被膜にクラックが発生しやすく
なったり、逆に、40重量%未満の場合は、硬化被膜の
耐摩耗性や透明性が低下する。
The ratio of the solid content of the component (a-1) and the solid content of the component (a-2) (calculated as silanol) in the condensation reaction is (a-1) / (a-2) = 40. ~ 90/6
0 to 10% by weight (total 100% by weight), preferably 50
-80 / 50-20% by weight. When the use ratio is out of the above range, for example, when the amount of the component (a-1) exceeds 90% by weight, the reaction system becomes cloudy or a gel is generated. In this case, the reaction may be insufficient, and when the coating is formed thick, the cured coating may have reduced transparency. Further, the component (a-1) is 9
If it exceeds 0% by weight, cracks are likely to occur in the cured coating, and conversely, if it is less than 40% by weight, abrasion resistance and transparency of the cured coating deteriorate.

【0023】次に本発明の被覆材組成物について説明す
る。
Next, the coating material composition of the present invention will be described.

【0024】(A)成分について (A)成分である紫外線硬化性被覆材は、上記の製法に
よって得られるものであり、硬化皮膜の耐摩耗性、耐候
性、耐久性を改善する成分である。(A)成分の使用割
合(固形分)は(A)成分及び(B)成分からなる被覆
材組成物100重量部中5〜50重量部、好ましくは1
0〜40重量部である。(A)成分の使用割合が被覆材
組成物中5重量部未満の場合、十分な耐摩耗性、耐候性
及び耐久性の改善硬化が得られず、逆に、50重量部を
超えるときは硬化皮膜にクラックの発生が認められる。
About Component (A) The ultraviolet-curable coating material as component (A) is obtained by the above-mentioned manufacturing method and is a component for improving the wear resistance, weather resistance and durability of the cured film. The proportion (solid content) of the component (A) is 5 to 50 parts by weight, preferably 1 to 100 parts by weight of the coating material composition comprising the components (A) and (B).
It is 0 to 40 parts by weight. When the use ratio of the component (A) is less than 5 parts by weight in the coating material composition, sufficient abrasion resistance, weather resistance and durability are not improved and cured. Conversely, when it exceeds 50 parts by weight, the composition is cured. Occurrence of cracks in the film.

【0025】(B)成分について (B)成分である1分子中に2個以上の(メタ)アクリ
ロイルオキシ基を有する多官能単量体又は単量体混合物
は、耐摩耗性を低下させることなく、硬化被膜の強靱
性、密着性を改善する成分である。(A)成分のみから
形成される硬化被膜は、耐摩耗性は優れるものの密着性
が十分でなく、またクラック等が発生し易く、実用的な
硬化被膜の形成は困難である。
Component (B) The component (B), which is a polyfunctional monomer or monomer mixture having two or more (meth) acryloyloxy groups in one molecule, does not deteriorate the abrasion resistance. , A component that improves the toughness and adhesion of the cured film. A cured coating formed from only the component (A) has excellent wear resistance but insufficient adhesion, and cracks and the like easily occur, making it difficult to form a practical cured coating.

【0026】(B)成分の具体例としては、ビス(2−
アクリロキシエチル)−ヒドロキシエチル−イソシアヌ
レート、1,6−ヘキサンジオールジアクリレート、
1,4−ブタンジオールジアクリレート、1,9−ノナ
ンジオールジアクリレート、ネオペンチルグリコールジ
アクリレート、ヒドロキシピバリン酸ネオペンチルグリ
コールジアクリレート、ウレタンアクリレートなどの2
官能性単量体;トリメチロールプロパントリアクリレー
ト、ペンタエリスリトールトリアクリレート、トリス
(アクリロキシエチル)イソシアヌレート、ジトリメチ
ロールプロパンテトラアクリレート、ペンタエリスリト
ールテトラアクリレート、ジペンタエリスリトールヘキ
サアクリレート、ウレタンアクリレート、多価アルコー
ルと多塩基酸及び(メタ)アクリル酸とから合成される
エステル化合物、例えばトリメチロールエタン/コハク
酸/アクリル酸=2/1/4モルから合成されるエステ
ル化合物等の3官能以上の多官能単量体等が挙げられ
る。他には、UV.EB硬化ハンドブック−原料編(高
分子刊行会)に記載してあるものを挙げることができ
る。
Specific examples of the component (B) include bis (2-
Acryloxyethyl) -hydroxyethyl-isocyanurate, 1,6-hexanediol diacrylate,
2,4-butanediol diacrylate, 1,9-nonanediol diacrylate, neopentyl glycol diacrylate, hydroxypivalic acid neopentyl glycol diacrylate, urethane acrylate, etc.
Functional monomers; trimethylolpropane triacrylate, pentaerythritol triacrylate, tris (acryloxyethyl) isocyanurate, ditrimethylolpropane tetraacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, urethane acrylate, polyhydric alcohol and Ester compound synthesized from polybasic acid and (meth) acrylic acid, for example, trifunctional or higher polyfunctional unit such as ester compound synthesized from trimethylolethane / succinic acid / acrylic acid = 2/1/4 mol The body etc. are mentioned. Besides, UV. The materials described in EB Curing Handbook-Raw Materials (Polymer Publishing) can be mentioned.

【0027】これらの多官能単量体の中でも、ビス(2
−アクリロキシエチル)−ヒドロキシエチルイソシアヌ
レート、トリス(アクリロキシエチル)イソシアヌレー
トが硬化被膜の強靱性、耐候性及び耐久性の改善効果が
大きいため特に好ましいものである。さらに、この両方
の多官能単量体に1,9−ノナンジオールジアクリレー
トの3種を併用した単量体混合物が耐候性、耐久性及び
基材との密着性に優れるため特に好ましい。
Among these polyfunctional monomers, bis (2
-Acryloxyethyl) -hydroxyethyl isocyanurate and tris (acryloxyethyl) isocyanurate are particularly preferable because they have a large effect of improving the toughness, weather resistance and durability of the cured film. Furthermore, a monomer mixture in which both of these polyfunctional monomers are used in combination with three kinds of 1,9-nonanediol diacrylate is particularly preferable because it is excellent in weather resistance, durability and adhesion to a substrate.

【0028】(B)成分の使用割合は(A)成分及び
(B)成分からなる被覆材組成物中100重量部中、9
5〜50重量部、好ましくは90〜60重量部である。
(B)成分の使用割合が被覆材組成物中、50重量部未
満では十分な強靱性、密着性、耐熱性及び耐候性を有す
る硬化被膜が得られず、逆に、95重量部を超えると耐
摩耗性が低下する。
The proportion of the component (B) used is 9 in 100 parts by weight of the coating material composition comprising the components (A) and (B).
It is 5 to 50 parts by weight, preferably 90 to 60 parts by weight.
If the proportion of the component (B) used in the coating material composition is less than 50 parts by weight, a cured coating having sufficient toughness, adhesion, heat resistance and weather resistance cannot be obtained. Conversely, if it exceeds 95 parts by weight. Abrasion resistance decreases.

【0029】(C)成分について 本発明の被覆材組成物には光重合開始剤(C)成分を配
合する。(C)成分の具体例としては、ベンゾイン、ベ
ンゾインメチルエーテル、ベンゾインエチルエーテル、
ベンゾインイソプロピルエーテル、ベンゾインイソブチ
ルエール、アセトイン、ブチロイン、トルオイン、ベン
ジル、ベンゾフェノン、p−メトキシベンゾフェノン、
ジエトキシアセトフェノン、α,α−ジメトキシ−α−
フェニルアセトフェノン、メチルフェニルグリオキシレ
ート、エチルフェニルグリオキシレート、4,4−ビス
(ジメチルアミノベンゾフェノン)、2−ヒドロキシ−
2−メチル−1−フェニルプロパン−1−オン、1−ヒ
ドロキシシクロヘキシルフェニルケトン、1−(4−イ
ソプロピルフェニル)−2−ヒドロキシ−2−メチルプ
ロパン−1−オン等のカルボニル化合物;テトラメチル
チウラムジスルフィド、テトラメチルチウラムジスルフ
ィド等の硫黄化合物;アゾビスイソブチロニトリル、ア
ゾビス−2,4−ジメチルバレロニトリル等のアゾ化合
物;ベンゾイルパーオキシド、ジターシャリーブチルパ
ーオキシド等のパーオキシド化合物;2,4,6−トリ
メチルベンゾイルジフェニルホスフィンオキサイド等の
ホスフィンオキサイド化合物を挙げることができる。
Component (C) A photopolymerization initiator (C) component is added to the coating material composition of the present invention. Specific examples of the component (C) include benzoin, benzoin methyl ether, benzoin ethyl ether,
Benzoin isopropyl ether, benzoin isobutyl ale, acetoin, butyroin, toluoin, benzyl, benzophenone, p-methoxybenzophenone,
Diethoxyacetophenone, α, α-dimethoxy-α-
Phenylacetophenone, methylphenylglyoxylate, ethylphenylglyoxylate, 4,4-bis (dimethylaminobenzophenone), 2-hydroxy-
Carbonyl compounds such as 2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one; tetramethylthiuram disulfide Sulfur compounds such as tetramethylthiuram disulfide; azo compounds such as azobisisobutyronitrile and azobis-2,4-dimethylvaleronitrile; peroxide compounds such as benzoyl peroxide and ditertiary butyl peroxide; 2,4,6 Examples thereof include phosphine oxide compounds such as trimethylbenzoyldiphenylphosphine oxide.

【0030】光重合開始剤(C)成分の中でも、2,
4,6−トリメチルベンゾイルジフェニルホスフィンオ
キサイドと他の光重合開始剤を併用して用いることが、
耐候性、耐久性の面で好ましい。
Among the photopolymerization initiator (C) components, 2,
Using 4,6-trimethylbenzoyldiphenylphosphine oxide in combination with another photopolymerization initiator,
It is preferable in terms of weather resistance and durability.

【0031】(C)成分の使用割合は、(A)成分と
(B)成分との合計100重量部に対して0.01〜5
重量部、好ましくは0.1〜3重量部である。(C)成
分の使用割合が5重量部を超えると硬化被膜の着色や耐
候性が低下する。
The proportion of the component (C) used is 0.01 to 5 per 100 parts by weight of the total of the components (A) and (B).
Parts by weight, preferably 0.1 to 3 parts by weight. When the use ratio of the component (C) exceeds 5 parts by weight, coloring and weather resistance of the cured coating deteriorate.

【0032】以上が本発明の被覆材組成物を構成する必
須な成分であるが、さらに、耐候性及び耐久性を改善す
る目的で本発明の被覆材組成物に紫外線吸収剤及び光安
定剤を添加することができる。使用される紫外線吸収剤
は特に限定されず、被覆材組成物に均一に溶解し、かつ
その耐候性が良好なものであれば使用可能であるが、被
覆材組成物に対する良好な溶解性及び耐候性改善効果と
いう点から、ベンゾフェノン系、ベンゾトリアゾール
系、サリチル酸フェニル系、安息香酸フェニル系から誘
導された化合物で、それらの最大吸収波長が240〜3
80nmの範囲である紫外線吸収剤が好ましい。特に、
被覆材組成物に多量に含有させることができるという点
からベンゾフェノン系の紫外線吸収剤が、またポリカー
ボネート等の基材の黄変を防ぐことができるという点か
ら、ベンゾトリアゾール系の紫外線吸収剤が好ましい。
Although the above are the essential components constituting the coating material composition of the present invention, an ultraviolet absorber and a light stabilizer are further added to the coating material composition of the present invention for the purpose of improving weather resistance and durability. It can be added. The ultraviolet absorber used is not particularly limited, and it can be used as long as it dissolves uniformly in the coating material composition and has good weather resistance, but it has good solubility and weather resistance in the coating material composition. From the viewpoint of the effect of improving the sex, a compound derived from a benzophenone type, a benzotriazole type, a phenyl salicylate type, and a phenyl benzoate type, and their maximum absorption wavelengths are 240 to 3
UV absorbers in the range of 80 nm are preferred. In particular,
A benzophenone-based UV absorber is preferred because it can be contained in a large amount in the coating material composition, and a benzotriazole-based UV absorber is preferred because it can prevent yellowing of a substrate such as polycarbonate. .

【0033】紫外線吸収剤の具体例としては、2−ヒド
ロキシベンゾフェノン、5−クロロ−2−ヒドロキシベ
ンゾフェノン、2,4−ジヒドロキシベンゾフェノン、
2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒ
ドロキシ−4−オクチロキシベンゾフェノン、4−ドデ
シロキシ−2−ヒドロキシベンゾフェノン、2−ヒドロ
キシ−4−オクタデシロキシベンゾフェノン、2,2′
−ジヒドロキシ−4−メトキシベンゾフェノン、2,
2′−ジヒドロキシ−4,4′−ジメトキシベンゾフェ
ノン、フェニルサリシレート、p−tert.−ブチル
フェニルサリシレート、p−(1,1,3,3−テトラ
メチルブチル)フェニルサリシレート、3−ヒドロキシ
フェニルベンゾエート、フェニレン−1,3−ジベンゾ
エート、2−(2−ヒドロキシ−5−メチルフェニル)
ベンゾトリアゾール、2−(2−ヒドロキシ−5−te
rt.−ブチルフェニル)ベンゾトリアゾール、2−
(2−ヒドロキシ−3,5−ジ−tert.−ブチルフ
ェニル)−5−クロロベンゾトリアゾール、2−(2−
ヒドロキシ−3,5−ジ−tert.−ブチルフェニ
ル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−
tert.−オクチルフェニル)ベンゾトリアゾール等
が挙げられる。これらは2種以上を組み合わせて使用し
てもよい。
Specific examples of the ultraviolet absorber include 2-hydroxybenzophenone, 5-chloro-2-hydroxybenzophenone, 2,4-dihydroxybenzophenone,
2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, 2-hydroxy-4-octadecyloxybenzophenone, 2,2 '
-Dihydroxy-4-methoxybenzophenone, 2,
2'-dihydroxy-4,4'-dimethoxybenzophenone, phenyl salicylate, p-tert. -Butylphenyl salicylate, p- (1,1,3,3-tetramethylbutyl) phenyl salicylate, 3-hydroxyphenylbenzoate, phenylene-1,3-dibenzoate, 2- (2-hydroxy-5-methylphenyl)
Benzotriazole, 2- (2-hydroxy-5-te
rt. -Butylphenyl) benzotriazole, 2-
(2-Hydroxy-3,5-di-tert.-butylphenyl) -5-chlorobenzotriazole, 2- (2-
Hydroxy-3,5-di-tert. -Butylphenyl) benzotriazole, 2- (2-hydroxy-5-
tert. -Octylphenyl) benzotriazole and the like. You may use these in combination of 2 or more types.

【0034】光安定剤としてヒンダードアミン系光安定
剤を使用することができる。この光安定剤は、紫外線吸
収剤と併用して用いることで、硬化被膜の耐候性をより
向上させる。ヒンダードアミン系光安定剤の具体例とし
ては、ビス(1,2,2,6,6−ペンタメチル−4−
ピペリジル)セバケート、ビス(2,2,6,6−テト
ラメチル−4−ピペリジル)セバケート、2−(3,5
−ジ−tert.−ブチル−4−ヒドロキシベンジル)
−2−n−ブチルマロン酸ビス(1,2,2,6,6−
ペンタメチル−4−ピペリジル)等が挙げられるが、こ
れらの内、ビス(1,2,2,6,6−ペンタメチル−
4−ピペリジル)セバケート、ビス(2,2,6,6−
テトラメチル−4−ピペリジル)セバケートが特に好ま
しい。
A hindered amine light stabilizer can be used as the light stabilizer. When this light stabilizer is used in combination with the ultraviolet absorber, the weather resistance of the cured film is further improved. Specific examples of the hindered amine light stabilizer include bis (1,2,2,6,6-pentamethyl-4-
Piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3,5
-Di-tert. -Butyl-4-hydroxybenzyl)
-2-n-butylmalonate bis (1,2,2,6,6-
Pentamethyl-4-piperidyl) and the like. Among these, bis (1,2,2,6,6-pentamethyl-
4-piperidyl) sebacate, bis (2,2,6,6-
Tetramethyl-4-piperidyl) sebacate is particularly preferred.

【0035】本発明の被覆材組成物には、さらに必要に
応じて、有機溶剤、酸化防止剤、黄変防止剤、ブルーイ
ング剤、顔料、レベリング剤、消泡剤、増粘剤、沈降防
止剤、帯電防止剤、防曇剤等の各種の添加剤が含まれて
いてもよい。
The coating material composition of the present invention may further contain, if necessary, an organic solvent, an antioxidant, an anti-yellowing agent, a bluing agent, a pigment, a leveling agent, an antifoaming agent, a thickener, and an anti-settling agent. Various additives such as agents, antistatic agents, antifogging agents and the like may be contained.

【0036】有機溶剤は被覆材組成物の均一溶解性、分
散安定性、さらには基材との密着性及び被膜の平滑性、
均一性などの面から、被覆材組成物中に配合して用いら
れ、有機溶剤として特に限定されるものではなく、上記
性能を満足するものであればよい。具体的には、アルコ
ール系、炭化水素系、ハロゲン化炭化水素系、エーテル
系、ケトン系、エステル系、多価アルコール誘導体等の
有機溶剤を挙げることができる。
The organic solvent has a uniform solubility and a dispersion stability of the coating material composition, and further, an adhesiveness with a substrate and a smoothness of a coating film,
From the viewpoint of uniformity and the like, the organic solvent is not particularly limited as an organic solvent, and it is used as long as it satisfies the above-mentioned properties. Specific examples include organic solvents such as alcohol-based, hydrocarbon-based, halogenated hydrocarbon-based, ether-based, ketone-based, ester-based and polyhydric alcohol derivatives.

【0037】本発明の被覆材組成物を基材に塗布するに
は、ハケ塗り、スプレーコート、ディップコート、スピ
ンコート、カーテンコートなどの方法が用いられる。
To apply the coating material composition of the present invention to a substrate, methods such as brush coating, spray coating, dip coating, spin coating and curtain coating are used.

【0038】被覆材組成物の塗布量としては、硬化被膜
の膜厚が3〜30μm、好ましくは5〜25μm、特に
好ましくは8〜20μmである。硬化被膜の膜厚が3μ
m未満では十分な耐摩耗性が得られず、30μmを超え
る場合は、基材との密着性が低下したり、被膜にクラッ
クが発生しやすくなったりする。
The coating amount of the coating material composition is such that the thickness of the cured coating is 3 to 30 μm, preferably 5 to 25 μm, and particularly preferably 8 to 20 μm. The thickness of the cured film is 3μ
If it is less than m, sufficient abrasion resistance cannot be obtained, and if it exceeds 30 μm, the adhesion to the base material is lowered, or cracks are easily generated in the coating.

【0039】基材に塗布された被膜を硬化させる手段と
しては、α,β及びγ線などの活性エネルギー線を照射
する公知の方法が用いられるが、本発明の被覆材組成物
を硬化させる手段としては紫外線を用いることが好まし
い。紫外線発生源としては実用的、経済性の面から紫外
線ランプが一般に用いられており、具体的には、低圧水
銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノ
ンランプ、メタルハライドランプなどが挙げられる。照
射する雰囲気は空気中でもよいし、窒素、アルゴン等の
不活性ガス中でもよい。
A known method of irradiating active energy rays such as α, β and γ rays is used as a means for curing the coating film applied to the substrate, but a means for curing the coating material composition of the present invention. It is preferable to use ultraviolet rays. As a source of ultraviolet rays, ultraviolet lamps are generally used from the viewpoint of practicality and economy, and specific examples thereof include a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp and a metal halide lamp. The atmosphere for irradiation may be air or an inert gas such as nitrogen or argon.

【0040】合成樹脂成形品表面に本発明の被覆材組成
物を塗布した後、紫外線放射エネルギーにて硬化させる
前に、硬化被膜の基材に対する密着性向上を目的とし
て、赤外線又は熱風乾燥炉を用いて、20℃〜120℃
で1分〜60分間の熱処理を行ってもよい。
After coating the coating material composition of the present invention on the surface of a synthetic resin molded article and before curing with ultraviolet radiation energy, an infrared ray or hot air drying oven is used for the purpose of improving the adhesion of the cured coating to the substrate. Use, 20 ℃ ~ 120 ℃
The heat treatment may be performed for 1 minute to 60 minutes.

【0041】本発明の被覆材組成物は、基材たる各種の
合成樹脂成形品の表面の改質に使用できるが、この合成
樹脂成形品としては、従来から耐摩耗性や耐候性等の改
善の要望のある各種の熱可塑性樹脂や熱硬化性樹脂が挙
げられる。具体例には、ポリメチルメタクリレート樹
脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエ
チレン樹脂、ABS樹脂、アクリロニトリル−スチレン
共重合樹脂、ポリアミド樹脂、ポリアリレート樹脂、ポ
リメタクリルイミド樹脂、ポリアリルジグリコールカー
ボネート樹脂などが挙げられる。なかんずく、ポリメチ
ルメタクリレート樹脂、ポリカーボネート樹脂、ポリス
チレン樹脂、ポリメタクリルイミド樹脂は、透明性に優
れ、かつ耐摩耗性改良要求も強いため、本発明の被覆材
組成物の基材として用いるのが特に有効である。また合
成樹脂成形品とは、これらの樹脂からなるシート状成形
品、フィルム状成形品、各種射出成形品などである。
The coating material composition of the present invention can be used for modifying the surface of various synthetic resin molded articles which are base materials. As the synthetic resin molded articles, conventionally, abrasion resistance and weather resistance are improved. Various thermoplastic resins and thermosetting resins that are required by Specific examples include polymethylmethacrylate resin, polycarbonate resin, polyester resin, polyethylene resin, ABS resin, acrylonitrile-styrene copolymer resin, polyamide resin, polyarylate resin, polymethacrylimide resin, polyallyl diglycol carbonate resin, and the like. To be Above all, polymethylmethacrylate resin, polycarbonate resin, polystyrene resin, polymethacrylimide resin are excellent in transparency, and since there is a strong demand for improvement in abrasion resistance, it is particularly effective to use as a base material of the coating material composition of the present invention. Is. Further, the synthetic resin molded product is a sheet-shaped molded product, a film-shaped molded product, various injection-molded products and the like made of these resins.

【0042】[0042]

【実施例】以下の実施例により、本発明をさらに詳しく
説明する。なお、実施例中の評価は次のような方法で行
った。なお、例中の部は重量部を表わす。
The present invention will be described in more detail by the following examples. The evaluations in the examples were performed by the following methods. The parts in the examples represent parts by weight.

【0043】1.耐摩耗性 (1)テーバー摩耗テスト ASTM D−1044に準拠し、摩耗輪CS−10
F、荷重500g、回転数500サイクルの条件で摩耗
テストを行った。摩耗した後、試料を中性洗剤を用いて
洗浄し、ヘーズメータで曇価を測定した。耐摩耗性は
(摩耗後の曇価−摩耗前の曇価)で示される。 (2)スチールウールテスト #000スチールウール(日本スチールウール(株)
製、ボンスター(登録商標))を1cm2 の円形パッド
に装着し、往復式摩耗試験機台上に保持された試料表面
にこのパッドを置いて荷重1,000g下で50サイク
ル摩耗した。この試料を中性洗剤を用いて洗浄し、ヘー
ズメータで曇価を測定した。耐摩耗性は(摩耗後の曇価
−摩耗前の曇価)で示される。
1. Abrasion resistance (1) Taber abrasion test According to ASTM D-1044, abrasion wheel CS-10
A wear test was conducted under the conditions of F, load of 500 g, and rotation speed of 500 cycles. After abrasion, the sample was washed with a neutral detergent and the haze value was measured with a haze meter. Abrasion resistance is indicated by (haze value after abrasion-haze value before abrasion). (2) Steel Wool Test # 000 Steel Wool (Japan Steel Wool Co., Ltd.)
Manufactured by Bonster (registered trademark) was mounted on a circular pad of 1 cm 2 , and the pad was placed on the surface of a sample held on a reciprocating abrasion tester table and subjected to 50 cycles of abrasion under a load of 1,000 g. The sample was washed with a neutral detergent and the haze value was measured with a haze meter. Abrasion resistance is indicated by (haze value after abrasion-haze value before abrasion).

【0044】2.密着性 試料表面にカミソリで縦及び横にそれぞれ11本の1.
5mm間隔で基材に達する傷を入れ、100個のます目
をつくり、セロハンテープ(巾25mm、ニチバン
(株)製)をます目に対して圧着させて上方に急激には
がす。密着性の評価は、残存ます目数/全ます目数(1
00)で示す。
2. Adhesion 11 pieces of 1 each in the vertical and horizontal directions with a razor on the sample surface.
Make scratches that reach the base material at intervals of 5 mm, make 100 squares, press cellophane tape (width 25 mm, Nichiban Co., Ltd.) against the squares, and peel off rapidly. Adhesion is evaluated by the number of remaining cells / total number of cells (1
00).

【0045】3.外観 (1)透明性 ASTM D−1003に準拠し、ヘーズメータを用い
て曇価で示す。 (2)クラック 目視で観察し、以下の判定基準とした。 ○…クラックの発生なし △…若干のクラックの発生あり ×…無数のクラックの発生あり
3. Appearance (1) Transparency According to ASTM D-1003, the haze value is shown using a haze meter. (2) Crack It was visually observed and used as the following criteria. ○: No cracks occurred △: Some cracks occurred ×: Countless cracks occurred

【0046】4.熱水性テスト 80℃の熱水に2時間浸漬し、次いで熱水から取り出し
た後、室温で1時間放置後、被膜の透明性とクラックに
ついて目視観察し、更に密着性について評価した。
4. Hot water test: Immersed in hot water at 80 ° C. for 2 hours, then taken out from the hot water, left at room temperature for 1 hour, and visually observed for transparency and cracks in the coating film, and further evaluated for adhesion.

【0047】5.耐候性テスト サンシャインウエザオメータ(スガ試験機(株)製、W
EL−SUN−DC型)を用い、ブラックパネル温度6
3℃、降雨12分/60分、サイクルの試験条件で2,
000時間加速暴露テストを行った。暴露終了サンプル
について透明性を曇価で示し、被膜のクラックについて
は目視にて観察し、さらに密着性について評価した。
5. Weather resistance test Sunshine Weather Ometer (Suga Test Instruments Co., Ltd., W
EL-SUN-DC type), black panel temperature 6
At 3 ℃, 12 minutes / 60 minutes rainfall, cycle test conditions 2,
A 000 hour accelerated exposure test was performed. The transparency of the exposed samples was shown by a haze value, and cracks in the coating film were visually observed to evaluate the adhesion.

【0048】実施例1 紫外線硬化性被覆材の調製(I) 攪拌棒、温度計及びコンデンサーを備えた3リットルの
4ツ口フラスコに、イソ−プロパノールシリカゾル(分
散媒:イソ−プロパノール,SiO2 濃度;30重量
%、一次粒子径;12mμ、商品名;IPA−ST、日
産化学工業(株)製)(以下、IPA−STと略称す
る。)2,000gと、3−メタクリロキシプロピルト
リメトキシシラン(商品名;A−174、日本ユニカー
(株)製)(以下、A−174と略称する。)382g
を入れ攪拌しながら昇温させ、揮発成分の還流が始まる
と同時に0.001規定の塩酸水溶液139gを徐々に
滴下させ、滴下終了後、還流下で2時間攪拌しながら加
水分解を行った。加水分解終了後、得られた液状物から
常圧下でアルコール及び水等の揮発成分を留出させ、脱
水量が理論値の70%となった時点でトルエン600g
を追加し共沸留出させた。更に、トルエン1,200g
を数回に分けて追加し、完全に溶媒置換を行い、トルエ
ンの分散系とした。このときの固形分(SiO2 600
gとA−174シラノール317gの合計量917g)
濃度は約60重量%であった。次に、反応系を昇温さ
せ、トルエンを留出させ脱水量が理論値の80%となっ
た時点で110℃で4時間反応を行った。なお、この反
応の過程で、固形分を約60重量%に保持するためにト
ルエンを数回に分けて追加し、固形分の調整を行った。
反応終了後、固形分量を高めるために、減圧下でトルエ
ン等揮発成分を留出させ、最終的な固形分を70重量%
とした。得られた紫外線硬化性被覆材(以下、反応液
(I)という。)は、濃褐色状でニュートン流体の透
明、粘稠な液体であり、25℃の粘度は8,000セン
チポイズであった。また、固形分濃度は、加熱残分
(%)で計算したところ71%であった。なお、加熱残
分(%)は、(加熱後の重量(g)/加熱前の重量
(g))×100(%)で示し、加熱条件は105℃で
3時間である。また、以下の実施例及び比較例における
固形分濃度は加熱残分(%)で示す。
Example 1 Preparation of UV-Curable Coating Material (I) Iso-propanol silica sol (dispersion medium: iso-propanol, SiO 2 concentration) was placed in a 3 liter 4-necked flask equipped with a stir bar, thermometer and condenser. 30% by weight, primary particle diameter; 12 mμ, trade name; IPA-ST, manufactured by Nissan Chemical Industries, Ltd. (hereinafter abbreviated as IPA-ST) 2,000 g and 3-methacryloxypropyltrimethoxysilane. (Trade name: A-174, manufactured by Nippon Unicar Co., Ltd.) (hereinafter, abbreviated as A-174) 382 g
Was added and the temperature was raised with stirring, and 139 g of a 0.001 N hydrochloric acid aqueous solution was gradually added dropwise at the same time when the reflux of the volatile components started, and after completion of the addition, hydrolysis was carried out with stirring under reflux for 2 hours. After completion of hydrolysis, volatile components such as alcohol and water were distilled out from the obtained liquid substance under normal pressure, and when the dehydration amount reached 70% of the theoretical value, 600 g of toluene was added.
Was added for azeotropic distillation. In addition, 1,200 g of toluene
Was added several times, and the solvent was completely replaced to obtain a toluene dispersion system. The solid content at this time (SiO 2 600
g and A-174 silanol 317g total amount 917g)
The concentration was about 60% by weight. Next, the temperature of the reaction system was raised, toluene was distilled off, and the reaction was carried out at 110 ° C. for 4 hours when the dehydration amount reached 80% of the theoretical value. In the course of this reaction, toluene was added in several batches to maintain the solid content at about 60% by weight, and the solid content was adjusted.
After the reaction was completed, in order to increase the solid content, volatile components such as toluene were distilled off under reduced pressure to obtain a final solid content of 70% by weight.
And The obtained ultraviolet curable coating material (hereinafter, referred to as reaction liquid (I)) was a dark brown, transparent, viscous liquid of Newtonian fluid, and had a viscosity at 25 ° C. of 8,000 centipoise. Further, the solid content concentration was 71% when calculated with the heating residue (%). The heating residue (%) is shown by (weight after heating (g) / weight before heating (g)) × 100 (%), and the heating condition is 105 ° C. for 3 hours. In addition, the solid content concentration in the following examples and comparative examples is indicated by the heating residue (%).

【0049】実施例2 紫外線硬化性被覆材の調製(II) 実施例1の組成及び反応条件を用いて加水分解を行っ
た。加水分解終了後、得られた液状物から常圧下でアル
コール及び水等の揮発成分を留出させ、脱水量が理論値
の70%となった時点で酢酸n−ブチル600gを追加
し共沸留出させた。さらに、酢酸n−ブチル1200g
を数回に分けて追加し、完全に溶媒置換を行い、酢酸n
−ブチルの分散系とした。このときの固形分濃度は約6
5重量%であった。次に、反応系を昇温させ、酢酸n−
ブチルを留出させ、脱水量が理論値80%となった時点
で126℃で3時間反応を行った。なお、この反応の過
程で、固形分を約65重量%に保持するために酢酸n−
ブチルを数回に分けて追加し、固形分の調整を行った。
反応終了後、固形分量を高めるために減圧下で酢酸n−
ブチル等揮発成分を留出させ、最終的な固形分を約68
重量%とした。得られた紫外線硬化性被覆材(以下、反
応液(II)という。)は、濃橙色状でニュートン流体の
透明、粘稠な液体であり、25℃の粘度が約4,000
センチポイズであった。また、固形分濃度は加熱残分で
68%であった。
Example 2 Preparation of UV curable coating material (II) Hydrolysis was carried out using the composition and reaction conditions of Example 1. After the completion of hydrolysis, volatile components such as alcohol and water were distilled out from the obtained liquid substance under normal pressure, and when the dehydration amount reached 70% of the theoretical value, 600 g of n-butyl acetate was added and azeotropic distillation was performed. I let it out. In addition, 1200 g of n-butyl acetate
Was added several times, and the solvent was completely replaced.
-Butyl dispersion system. The solid content concentration at this time is about 6
It was 5% by weight. Next, the temperature of the reaction system is raised to n-acetic acid.
Butyl was distilled off, and when the dehydration amount reached a theoretical value of 80%, the reaction was carried out at 126 ° C. for 3 hours. In the course of this reaction, acetic acid n- was added to maintain the solid content at about 65% by weight.
Butyl was added in several times to adjust the solid content.
After completion of the reaction, acetic acid n- was added under reduced pressure to increase the solid content.
Volatile components such as butyl are distilled off, and the final solid content is about 68
It was set to% by weight. The obtained UV-curable coating material (hereinafter referred to as the reaction solution (II)) is a dark orange transparent Newtonian fluid viscous liquid having a viscosity of about 4,000 at 25 ° C.
It was a centipoise. The solid content concentration was 68% in the heating residue.

【0050】実施例3 紫外線硬化性被覆材の調製(III ) 実施例1の組成及び反応条件を用いて加水分解を行っ
た。加水分解終了後、得られた液状物から常圧下でアル
コール及び水等の揮発成分を留出させ、脱水量が理論値
の70%となった時点でメチルイソブチルケトン600
gを追加し共沸留出させた。さらに、メチルイソブチル
ケトン1,200gを数回に分けて追加し、完全に溶媒
置換を行い、メチルイソブチルケトンの分散系とした。
このときの固形分濃度は約60重量%であった。次に、
反応系を昇温させ、メチルイソブチルケトンを留出さ
せ、脱水量が理論値80%となった時点で116℃で4
時間反応を行った。なお、この反応の過程で、固形分を
約60重量%に保持するためにメチルイソブチルケトン
を数回に分けて追加し、固形分の調整を行った。反応終
了後、固形分を高めるために、減圧下でメチルイソブチ
ルケトン等揮発成分を留出させ、最終的な固形分を約6
9重量%とした。得られた紫外線硬化性被覆材(以下、
反応液(III )という。)は、濃い橙色のニュートン流
体の透明、粘稠な液体であり、25℃の粘度は約2,5
00センチポイズであった。また、固形分濃度は加熱残
分で69%であった。
Example 3 Preparation of UV-Curable Coating (III) Hydrolysis was carried out using the composition and reaction conditions of Example 1. After completion of the hydrolysis, volatile components such as alcohol and water were distilled out from the obtained liquid material under normal pressure, and when the dehydration amount reached 70% of the theoretical value, methyl isobutyl ketone 600
g was added and azeotropic distillation was carried out. Further, 1,200 g of methyl isobutyl ketone was added several times, and the solvent was completely replaced to obtain a dispersion system of methyl isobutyl ketone.
The solid content concentration at this time was about 60% by weight. next,
The temperature of the reaction system is raised to distill off methyl isobutyl ketone, and when the dehydration amount reaches a theoretical value of 80%, the temperature is 4 ° C at 116 ° C.
The reaction was carried out over time. In the course of this reaction, methyl isobutyl ketone was added in several batches to maintain the solid content at about 60% by weight, and the solid content was adjusted. After completion of the reaction, in order to increase the solid content, volatile components such as methyl isobutyl ketone were distilled off under reduced pressure, and the final solid content was reduced to about 6%.
It was set to 9% by weight. The obtained ultraviolet curable coating material (hereinafter,
This is referred to as the reaction solution (III). ) Is a clear, viscous liquid of a dark orange Newtonian fluid and has a viscosity of about 2.5 at 25 ° C.
It was 00 centipoise. The solid content concentration was 69% in the heating residue.

【0051】比較例1 紫外線硬化性被覆材の調製(IV) IPA−ST1,000g、A−174 191g及び
0.001規定の塩酸水溶液69.5gを攪拌棒、温度
計及びコンデンサーを備えた2リットルの4ツ口フラス
コに入れ、常温で4時間攪拌しながら加水分解を行っ
た。加水分解後、この液状物を常温で2日間放置し、熟
成させた後、固形分濃度を調整するために、40℃の減
圧下においてアルコール及び水を留出させた。得られた
反応液(以下、反応液(IV)という。)は、淡い桃色の
透明液体で、25℃の粘度は約150センチポイズであ
り、固形分濃度は加熱残分で70%であった。
Comparative Example 1 Preparation of UV-curable coating material (IV) IPA-ST (1,000 g), A-174 (191 g) and 0.001N hydrochloric acid aqueous solution (69.5 g) were added to a 2 liter equipped with a stir bar, thermometer and condenser. The mixture was placed in a 4-necked flask, and hydrolyzed while stirring at room temperature for 4 hours. After the hydrolysis, this liquid was allowed to stand at room temperature for 2 days for aging, and then alcohol and water were distilled off under reduced pressure at 40 ° C. in order to adjust the solid content concentration. The obtained reaction liquid (hereinafter, referred to as reaction liquid (IV)) was a pale pink transparent liquid, had a viscosity of about 150 centipoise at 25 ° C., and had a solid content concentration of 70% in the heating residue.

【0052】比較例2 紫外線硬化性被覆材の調製(V) IPA−ST1,000g及びA−174 191gを
比較例1で使用したのと同一の4ツ口フラスコに入れ、
常温で4時間攪拌して加水分解を行った。加水分解後、
この液状物を常温で4日間放置して熟成させた。得られ
た反応液(以下、反応液(V)という。)は無色透明
で、25℃の粘度は5センチポイズであり、固形分濃度
は加熱残分で37%であった。
Comparative Example 2 Preparation of UV-curable coating material (V) 1,000 g of IPA-ST and 191 g of A-174 were placed in the same four-necked flask used in Comparative Example 1,
Hydrolysis was performed by stirring at room temperature for 4 hours. After hydrolysis,
The liquid was left to stand at room temperature for 4 days for aging. The obtained reaction liquid (hereinafter referred to as the reaction liquid (V)) was colorless and transparent, had a viscosity at 25 ° C. of 5 centipoise, and had a solid content concentration of 37% in the heating residue.

【0053】比較例3 紫外線硬化性被覆材の調製(VI) IPA−ST1,000g及びA−174 191gを
比較例1で使用したのと同一の4ツ口フラスコに入れ、
攪拌しながら昇温した。揮発成分の還流が始まると同時
に、0.001規定の塩酸水溶液69.5gを徐々に滴
下し、滴下終了後、攪拌を続けながら還流下で2時間加
水分解を行った。加水分解終了後、得られた液状物を常
圧下で水及びアルコール等の揮発成分を留出させ、脱水
量が理論値の40%となるまで留出させた。引続き残り
の揮発成分を還流下(80〜83℃)で還流させながら
2時間反応させた。得られた反応液(以下、反応液(V
I)という。)は、桃色の透明液体で、25℃の粘度は
100センチポイズであり、固形分濃度は加熱残分で6
6.5%であった。
Comparative Example 3 Preparation of UV-curable coating material (VI) 1,000 g of IPA-ST and 191 g of A-174 were placed in the same four-necked flask used in Comparative Example 1,
The temperature was raised with stirring. Simultaneously with the start of reflux of the volatile components, 69.5 g of a 0.001N hydrochloric acid aqueous solution was gradually added dropwise, and after completion of the addition, hydrolysis was carried out for 2 hours under reflux while continuing stirring. After the completion of hydrolysis, the obtained liquid material was distilled under normal pressure to remove volatile components such as water and alcohol until the dehydration amount reached 40% of the theoretical value. Subsequently, the remaining volatile components were reacted under reflux (80 to 83 ° C.) for 2 hours while refluxing. The obtained reaction solution (hereinafter, reaction solution (V
I). ) Is a pink transparent liquid, has a viscosity of 100 centipoise at 25 ° C, and has a solid content concentration of 6 after heating.
It was 6.5%.

【0054】比較例4 紫外線硬化性被覆材の調製(VII ) 比較例3の組成及び反応条件を用いて加水分解を行っ
た。加水分解終了後、得られた液状物から常圧下でアル
コール及び水等の揮発成分を留出させ、脱水量が理論値
の70%となった時点でトルエン300gを追加し共沸
留出させた。さらに、トルエン600gを数回に分けて
追加し、完全に溶媒置換を行い、トルエンの分散系とし
た。このときの固形分濃度は約65重量%であった。次
に、反応系を昇温させ、トルエンを留出させながら、1
10℃で反応を続けたところ、高粘度状態となり、最後
にゲル化した。この時の固形分濃度は加熱残分で96%
であった。
Comparative Example 4 Preparation of UV-Curable Coating Material (VII) Hydrolysis was carried out using the composition and reaction conditions of Comparative Example 3. After completion of hydrolysis, volatile components such as alcohol and water were distilled out from the obtained liquid substance under normal pressure, and when the dehydration amount reached 70% of the theoretical value, 300 g of toluene was additionally added and azeotropically distilled. . Further, 600 g of toluene was added in several times, and the solvent was completely replaced to obtain a toluene dispersion system. The solid content concentration at this time was about 65% by weight. Next, while heating the reaction system and distilling toluene, 1
When the reaction was continued at 10 ° C., a high-viscosity state was reached and finally gelation occurred. The solid content concentration at this time is 96% in the heating residue.
Met.

【0055】比較例5 紫外線硬化性被覆材の調製(VIII) IPA−ST300g、A−174 57.3g及び
0.001規定塩取水溶液12.5gを用いて、比較例
3と同様にして加水分解を行った。加水分解終了後、得
られた液状物から常圧下でアルコール及び水等の揮発成
分を留出させ、脱水量が理論値の70%となった時点で
酢酸n−ブチル200gを追加し共沸留出させた。さら
に、酢酸n−ブチル1500gを数回に分けて追加し、
完全に溶媒置換を行い、酢酸n−ブチルの分散系とし
た。このときの固形分濃度は約10重量%であった。次
に、反応系の温度を90℃に保持し、2時間反応させ
た。得られた反応液(以下、反応液(VIII)という。)
は、橙色の透明液体で25℃の粘度は2.5センチポイ
ズであった。また、固形分濃度は加熱残分で13.8%
であった。
Comparative Example 5 Preparation of UV-curable coating material (VIII) Hydrolysis was carried out in the same manner as in Comparative Example 3 using 300 g of IPA-ST, 57.3 g of A-174 and 12.5 g of 0.001N normal salt removal aqueous solution. I went. After completion of hydrolysis, volatile components such as alcohol and water were distilled out from the obtained liquid substance under normal pressure, and when the dehydration amount reached 70% of the theoretical value, 200 g of n-butyl acetate was added and azeotropic distillation was performed. I let it out. Furthermore, 1500 g of n-butyl acetate was added in several batches,
The solvent was completely replaced to obtain a dispersion system of n-butyl acetate. The solid content concentration at this time was about 10% by weight. Next, the temperature of the reaction system was maintained at 90 ° C. and the reaction was carried out for 2 hours. Obtained reaction solution (hereinafter referred to as reaction solution (VIII))
Was an orange transparent liquid and had a viscosity at 25 ° C. of 2.5 centipoise. Also, the solid content concentration is 13.8% in the heating residue.
Met.

【0056】比較例6 紫外線硬化性被覆材の調製(IX) 比較例3の組成及び反応条件を用いて加水分解を行っ
た。加水分解終了後、得られた液状物から常圧下でアル
コール及び水等の揮発成分を留出させ、脱水量が理論値
の70%となった時点でエチルセロソルブ300gを追
加し共沸留出させた。さらに、エチルセロソルブ600
gを数回に分けて追加し、完全に溶媒置換を行い、エチ
ルセロソルブの分散系とした。このときの固形分濃度は
約65重量%であった。次に、反応系を昇温させ、12
0℃で2時間反応を行った。得られた紫外線硬化性被覆
材(以下、反応液(IX)という。)は、橙色の透明液
で、25℃の粘度は80センチポイズであった。また、
固形分濃度は加熱残分で63%であった。
Comparative Example 6 Preparation of UV-curable coating material (IX) Hydrolysis was carried out using the composition and reaction conditions of Comparative Example 3. After the completion of hydrolysis, volatile components such as alcohol and water were distilled out from the obtained liquid substance under normal pressure, and when the dehydration amount reached 70% of the theoretical value, 300 g of ethyl cellosolve was added and azeotropically distilled. It was In addition, ethyl cellosolve 600
g was added several times and the solvent was completely replaced to obtain a dispersion system of ethyl cellosolve. The solid content concentration at this time was about 65% by weight. Next, the temperature of the reaction system is raised to 12
The reaction was carried out at 0 ° C for 2 hours. The obtained ultraviolet curable coating material (hereinafter referred to as the reaction liquid (IX)) was an orange transparent liquid and had a viscosity of 80 centipoise at 25 ° C. Also,
The solid content concentration was 63% in the heating residue.

【0057】比較例7 紫外線硬化性被覆材の調製(X) IPA−ST 250g(SiO2 75g)、A−17
4 361.2g及び0.001規定塩酸水溶液78.
6gを用いて、比較例3と同様にして加水分解を行っ
た。加水分解終了後、常圧下でアルコール及び水等の揮
発成分を留出させ、脱水量が理論値の70%となった時
点でトルエン300gを追加し共沸留出させた。さら
に、トルエン600gを数回に分けて追加し、完全に溶
媒置換を行い、トルエンの分散系とした。このときの固
形分濃度は約85重量%であった。次に、反応系を昇温
させ、90℃で4時間反応を行った。得られた紫外線硬
化性被覆材(以下、反応物(X)という。)は、淡褐色
透明液体で25℃の粘度は、250センチポイズであっ
た。また、固形分濃度は加熱残分で82%であった。
Comparative Example 7 Preparation of UV-curable coating material (X) IPA-ST 250 g (SiO 2 75 g), A-17
4 361.2 g and 0.001 N hydrochloric acid aqueous solution 78.
Hydrolysis was carried out in the same manner as in Comparative Example 3 using 6 g. After completion of the hydrolysis, volatile components such as alcohol and water were distilled off under normal pressure, and when the dehydration amount reached 70% of the theoretical value, 300 g of toluene was additionally added and azeotropically distilled. Further, 600 g of toluene was added in several times, and the solvent was completely replaced to obtain a toluene dispersion system. The solid content concentration at this time was about 85% by weight. Next, the temperature of the reaction system was raised and the reaction was carried out at 90 ° C. for 4 hours. The obtained ultraviolet curable coating material (hereinafter referred to as the reaction product (X)) was a light brown transparent liquid and had a viscosity of 250 centipoise at 25 ° C. Further, the solid content concentration was 82% in the heating residue.

【0058】実施例4 紫外線硬化性被覆材の調製(XI) 実施例1の4ツ口フラスコに、メタシリカゾル(分散
媒;メタノール、SiO2 濃度30重量%、一次粒子
径;12μm、商品名;メタノールシリカゾル、日産化
学工業(株)製)2,000g、A−174 382.
9gを入れ、実施例1の方法に準じて加水分解を行っ
た。加水分解終了後、得られた液状物から常圧下でアル
コール及び水等の揮発成分を留出させ、脱水量が理論値
の70%となった時点でトルエン600gを追加し共沸
留出させた。さらに、トルエン1200gを数回に分け
て追加し、完全に溶媒置換を行い、トルエンの分散系と
した。このときの固形分濃度は約70重量%であった。
次に、反応系を昇温させ、トルエンを留出させ、脱水量
が理論値の80%となった時点で85℃で4時間反応を
行った。なお、この反応の過程で、固形分を約70%に
保持するためにトルエンを数回に分けて追加し、固形分
の調整を行った。反応終了後、固形分を高めるために、
減圧下でトルエン等揮発成分を留出させ、最終的な固形
分を80重量%とした。得られた紫外線硬化性被覆材
(以下、反応液(XI)という。)は、橙色のニュートン
流体を示す透明液体であり、25℃の粘度は2,500
センチポイズであった。また、固形分濃度は加熱残分で
82%であった。
Example 4 Preparation of UV-Curable Coating Material (XI) In the four-necked flask of Example 1, metasilica sol (dispersion medium; methanol, SiO 2 concentration 30% by weight, primary particle diameter; 12 μm, trade name; Methanol silica sol, manufactured by Nissan Chemical Industries, Ltd.) 2,000 g, A-174 382.
9 g was added and hydrolysis was carried out according to the method of Example 1. After the completion of hydrolysis, volatile components such as alcohol and water were distilled out from the obtained liquid substance under normal pressure, and 600 g of toluene was additionally added and azeotropically distilled when the dehydration amount reached 70% of the theoretical value. . Further, 1200 g of toluene was added in several times, and the solvent was completely replaced to obtain a toluene dispersion system. The solid content concentration at this time was about 70% by weight.
Next, the temperature of the reaction system was raised to distill off toluene, and the reaction was carried out at 85 ° C. for 4 hours when the dehydration amount reached 80% of the theoretical value. In the course of this reaction, toluene was added in several times to maintain the solid content at about 70%, and the solid content was adjusted. After the reaction, in order to increase the solid content,
Volatile components such as toluene were distilled off under reduced pressure to obtain a final solid content of 80% by weight. The obtained ultraviolet curable coating material (hereinafter referred to as reaction liquid (XI)) is a transparent liquid showing an orange Newtonian fluid and has a viscosity of 2,500 at 25 ° C.
It was a centipoise. Further, the solid content concentration was 82% in the heating residue.

【0059】実施例5〜12、比較例8〜16 上記実施例及び比較例で得られた反応液を用いて、表1
に示すように組成を有する被覆材組成物を調製したた。
次いで、この被覆材組成物をポリカーボネート樹脂(商
品名レキサンLS−2、色調111クリヤー、G.
E.,社製)の射出成形板(100mm×100m×3
mm(厚さ))にスプレー塗布し、室温で10分間放置
した後、熱風乾燥機中65℃で5分間熱処理した。次い
で、これを空気雰囲気下において高圧水銀灯(アイグラ
フィック社製)を用い、2,000mJ/cm2 (波長
320〜380nmの紫外線積算エネルギー量)の紫外
線を照射し、硬化被膜の厚さが13μmの耐摩耗性被膜
を表面に有するポリカーボネート樹脂の射出成形板を得
た。得られた評価結果を表2に示す。
Examples 5-12, Comparative Examples 8-16 Using the reaction solutions obtained in the above Examples and Comparative Examples, Table 1
A coating material composition having a composition as shown in was prepared.
Next, this coating material composition was treated with a polycarbonate resin (trade name: Lexan LS-2, color tone 111 clear, G.I.
E. , Manufactured by injection molding board (100 mm x 100 m x 3)
mm (thickness)), spray-coated, left at room temperature for 10 minutes, and then heat-treated in a hot air dryer at 65 ° C. for 5 minutes. Then, this is irradiated with ultraviolet rays of 2,000 mJ / cm 2 (ultraviolet integrated energy amount of wavelength 320 to 380 nm) using a high pressure mercury lamp (manufactured by Eyegraphic Co., Ltd.) in an air atmosphere, and the thickness of the cured film is 13 μm. An injection-molded plate of polycarbonate resin having a wear-resistant coating on the surface was obtained. Table 2 shows the obtained evaluation results.

【0060】実施例11 上記実施例1で得られた反応液(I)を用いて、表1に
示すような組成を有する被覆材組成物を調製した。次い
で、この被覆材組成物をメタクリル樹脂(アクリペット
VH、色調001、三菱レイヨン(株)製)の射出成形
板(100mm×100mm×3mm(厚さ))にスプ
レー塗布し、室温で10分間放置した後、熱風乾燥機中
60℃で5分間熱処理した。次いで、これを空気雰囲気
下において高圧水銀灯(アイグラフィック社製)を用
い、1600mJ/cm2 の紫外線を照射し、硬化被膜
の厚さが12μmの耐摩耗性被膜を表面に有するメタク
リル樹脂の射出成形板を得た。得られた評価結果を表2
に示す。
Example 11 Using the reaction solution (I) obtained in Example 1 above, a coating material composition having a composition shown in Table 1 was prepared. Then, this coating composition was spray-coated on a methacrylic resin (Acrypet VH, color tone 001, manufactured by Mitsubishi Rayon Co., Ltd.) injection-molded plate (100 mm × 100 mm × 3 mm (thickness)), and left at room temperature for 10 minutes. After that, heat treatment was performed in a hot air dryer at 60 ° C. for 5 minutes. Then, this was irradiated with ultraviolet rays of 1600 mJ / cm 2 using a high pressure mercury lamp (manufactured by Eyegraphic Co., Ltd.) in an air atmosphere, and an injection molding of a methacrylic resin having a wear-resistant coating with a cured coating thickness of 12 μm on the surface was performed. I got a plate. Table 2 shows the obtained evaluation results.
Shown in.

【0061】実施例12 上記実施例1で得られた反応液(I)を用いて、表1に
示すような組成を有する被覆材組成物を調製した。次い
で、この被覆材組成物をポリメタクリルイミド樹脂(P
50S 05、色調003、三菱レイヨン(株)製)の
射出成形板(100mm×120mm×3mm(厚
さ))に浸漬塗布し、室温で5分間放置した後、熱風乾
燥機中60℃で5分間熱処理した。次いで、これを空気
雰囲気下において高圧水銀灯(アイグラフィック社製)
を用い、2000mJ/cm2 の紫外線を照射し、硬化
被膜の厚さが10μmの耐摩耗性被膜を表面に有するポ
リメタクリルイミド樹脂の射出成形板を得た。得られた
評価結果を表2に示す。なお、表1中の略記号は以下の
化合物を表わす。
Example 12 Using the reaction solution (I) obtained in Example 1 above, a coating material composition having a composition shown in Table 1 was prepared. Then, the coating composition was treated with a polymethacrylimide resin (P
50S 05, color tone 003, made by Mitsubishi Rayon Co., Ltd., injection-molded plate (100 mm × 120 mm × 3 mm (thickness)) is applied by dipping and left at room temperature for 5 minutes, and then in a hot air dryer at 60 ° C. for 5 minutes. Heat treated. Then, in an air atmosphere, this is a high pressure mercury lamp (made by Eye Graphic Co.)
Was irradiated with an ultraviolet ray of 2000 mJ / cm 2 to obtain an injection-molded plate of polymethacrylimide resin having a wear-resistant coating having a cured coating thickness of 10 μm on the surface. Table 2 shows the obtained evaluation results. The abbreviations in Table 1 represent the following compounds.

【0062】FA−731A:トリス(アクリロキシエ
チル)イソシアヌレート(日立化成工業(株)製) M−215:ビス(2−アクリロキシエチル)−ヒドロ
キシエチルイソシアヌレート(東亜合成化学工業(株)
製) C9 −DA:1,9−ノナンジオールジアクリレリート
(商品名ビスコート#260、大阪有機化学工業(株)
製) Lucirin−TPO:2,4,6−トリメチルベン
ゾイルジフェニルホスフィンオキサイド(BASF社
製) バイキュアー55:メチルフェニルグリオキシド(スト
ウファー社製) チヌビン−PS:2−(ヒドロキシ−5−t−ブチルフ
ェニル)ベンゾトリアゾール(チバガイギー社製) サノールLS−770:ビス(2,2,6,6−テトラ
メチル−4−ピペリジル)セバケート(三共(株)製)
FA-731A: Tris (acryloxyethyl) isocyanurate (manufactured by Hitachi Chemical Co., Ltd.) M-215: Bis (2-acryloxyethyl) -hydroxyethyl isocyanurate (Toagosei Chemical Industry Co., Ltd.)
Ltd.) C 9 -DA: 1,9- nonanediol diacrylate Les REIT (trade name BISCOAT # 260, Osaka Organic Chemical Industry Co., Ltd.
Lucirin-TPO: 2,4,6-trimethylbenzoyldiphenylphosphine oxide (manufactured by BASF) Vicure 55: methylphenylglycoxide (manufactured by Stouffer) Tinuvin-PS: 2- (hydroxy-5-t-butylphenyl) Benzotriazole (manufactured by Ciba Geigy) Sanol LS-770: bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (manufactured by Sankyo Co., Ltd.)

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】[0065]

【発明の効果】以上説明したように、本発明の製法によ
り得られた紫外線硬化性被覆材及びそれを用いた被覆材
組成物は、硬化性に優れるばかりでなく、合成樹脂成形
品の耐摩耗性改善効果に優れるものであり、耐久性、耐
候性の要求の強い自動車関連部品、特に前照灯用レンズ
カバーやテールランプあるいはサイドランプなどの用途
に特に有用である。
As described above, the UV-curable coating material obtained by the production method of the present invention and the coating material composition using the same not only have excellent curability, but also wear resistance of synthetic resin molded articles. It is excellent in the effect of improving the property, and is particularly useful for automobile-related parts which are strongly required to have durability and weather resistance, particularly for uses such as a lens cover for a headlight, a tail lamp or a side lamp.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a−1)コロイダルシリカ微粒子(固
形分)40〜90重量%と、(a−2)下記の一般式
(I) 【化1】 (式中、XはCH2 =CH−COO−基、CH2 =C
(CH3 )−COO−基、又はCH2 =CH−基、R1
は炭素数0〜8のアルキレン基、R2 ,R3 は炭素数1
〜8のアルキル基、aは1〜3の正の整数、bは0〜2
の正の整数、a+bは1〜3の整数を表わす。)で示さ
れる単量体の加水分解物(固形分)60〜10重量%
(合計100重量%)とを極性溶媒存在下に、脱水量が
理論値の30〜80%となった時点でコロイダルシリカ
の分散媒を非極性溶媒で置換し、さらに非極性溶媒中、
固形分30〜90重量%の状態で、縮合反応させること
を特徴とする紫外線硬化性被覆材の製法。
1. (a-1) 40 to 90% by weight of colloidal silica fine particles (solid content), and (a-2) the following general formula (I): (In the formula, X is a CH 2 ═CH—COO— group, CH 2 ═C
(CH 3) -COO- group, or CH 2 = CH- group, R 1
Is an alkylene group having 0 to 8 carbon atoms, R 2 and R 3 are 1 carbon atoms
To 8 alkyl groups, a is a positive integer from 1 to 3, b is 0 to 2
Is a positive integer, and a + b is an integer of 1 to 3. ) Monomer hydrolyzate (solid content) 60 to 10% by weight
(Total 100% by weight), in the presence of a polar solvent, when the dehydration amount is 30 to 80% of the theoretical value, the dispersion medium of colloidal silica is replaced with a nonpolar solvent, and further in a nonpolar solvent,
A method for producing an ultraviolet-curable coating material, which comprises subjecting a condensation reaction to a solid content of 30 to 90% by weight.
【請求項2】 (A)請求項1記載の紫外線硬化性被覆
材(固形分)5〜50重量部、 (B)1分子中に2個以上の(メタ)アクリロイルオキ
シ基を有する多官能単量体又は単量体混合物95〜50
重量部、及び (C)光重合開始剤0.01〜5重量部(上記(A)成
分と上記(B)成分との合計100重量部に対して)か
らなることを特徴とする耐摩耗性被覆材組成物。
2. (A) 5 to 50 parts by weight of the ultraviolet curable coating material (solid content) according to claim 1, (B) a polyfunctional monofunctional compound having two or more (meth) acryloyloxy groups in one molecule. Polymer or monomer mixture 95 to 50
And 5 to 10 parts by weight of (C) a photopolymerization initiator (based on a total of 100 parts by weight of the component (A) and the component (B)). Coating material composition.
JP27884493A 1993-10-13 1993-10-13 Method for producing ultraviolet-curable coating material and abrasion-resistant coating material composition using the same Expired - Lifetime JP3545439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27884493A JP3545439B2 (en) 1993-10-13 1993-10-13 Method for producing ultraviolet-curable coating material and abrasion-resistant coating material composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27884493A JP3545439B2 (en) 1993-10-13 1993-10-13 Method for producing ultraviolet-curable coating material and abrasion-resistant coating material composition using the same

Publications (2)

Publication Number Publication Date
JPH07109355A true JPH07109355A (en) 1995-04-25
JP3545439B2 JP3545439B2 (en) 2004-07-21

Family

ID=17602941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27884493A Expired - Lifetime JP3545439B2 (en) 1993-10-13 1993-10-13 Method for producing ultraviolet-curable coating material and abrasion-resistant coating material composition using the same

Country Status (1)

Country Link
JP (1) JP3545439B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011129A1 (en) * 1995-09-20 1997-03-27 Mitsubishi Rayon Co., Ltd. Coating composition forming wear-resistant coat and article covered with the coat
US5635544A (en) * 1992-11-27 1997-06-03 Mitsubishi Rayon Co., Ltd. Process for preparing a UV-curable coating material and anti-abrasion coating composition
JP2002511509A (en) * 1998-04-09 2002-04-16 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Nanostructured compacts and layers and their production using stable water-soluble precursors
JP2002129066A (en) * 2000-10-21 2002-05-09 Degussa Ag Radiation-curable coating system
JP2002322301A (en) * 2001-04-25 2002-11-08 Lintec Corp Hard-coated sheet
KR100393741B1 (en) * 2000-10-18 2003-08-09 주식회사 큐시스 Ultraviolet hard coating composition containing electrical conductive microgel and use thereof
KR100650152B1 (en) * 2005-11-02 2006-11-27 나노캠텍주식회사 Radiation curable antistatic hard coating composition and antistatic sheet and antistatic tray using it
JP2007138144A (en) * 2005-10-18 2007-06-07 Hitachi Chem Co Ltd Silica-based coated film-forming composition
JP2008001870A (en) * 2006-06-26 2008-01-10 Harada Toso Kogyosho:Kk Silicone-containing resin coating composition
KR100841017B1 (en) * 1999-09-09 2008-06-24 다다히로 오미 High-efficiency gas temperature/humidity controlling device and controlling method
WO2011048775A1 (en) * 2009-10-21 2011-04-28 株式会社豊田自動織機 Vehicle member and process for production thereof
WO2011048776A1 (en) * 2009-10-21 2011-04-28 株式会社豊田自動織機 Curable coating material composition
JP2011173945A (en) * 2010-02-23 2011-09-08 Mitsubishi Rayon Co Ltd Method for producing silica sol for film, composition for film, film, resin laminate with film on surface thereof, and method for producing the same
JP2013035274A (en) * 2011-07-13 2013-02-21 Kansai Paint Co Ltd Laminate and method of manufacturing the same
US8426027B2 (en) 2008-03-27 2013-04-23 Fujikura Kasei Co., Ltd. Composition for coating plastic substrate, coating film formed therefrom, and formed body
WO2013161866A1 (en) * 2012-04-25 2013-10-31 三菱レイヨン株式会社 Laminate and method for producing same
JP2014005393A (en) * 2012-06-26 2014-01-16 Yokohama Rubber Co Ltd:The Curable resin composition
WO2018003880A1 (en) * 2016-07-01 2018-01-04 三菱ケミカル株式会社 Active energy ray-curable resin composition, resin molded article and method for producing resin molded article

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635544A (en) * 1992-11-27 1997-06-03 Mitsubishi Rayon Co., Ltd. Process for preparing a UV-curable coating material and anti-abrasion coating composition
WO1997011129A1 (en) * 1995-09-20 1997-03-27 Mitsubishi Rayon Co., Ltd. Coating composition forming wear-resistant coat and article covered with the coat
US6306502B1 (en) 1995-09-20 2001-10-23 Mitsubishi Rayon Co., Ltd. Coating composition forming wear-resistant coat and article covered with the coat
JP2002511509A (en) * 1998-04-09 2002-04-16 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Nanostructured compacts and layers and their production using stable water-soluble precursors
KR100841017B1 (en) * 1999-09-09 2008-06-24 다다히로 오미 High-efficiency gas temperature/humidity controlling device and controlling method
KR100393741B1 (en) * 2000-10-18 2003-08-09 주식회사 큐시스 Ultraviolet hard coating composition containing electrical conductive microgel and use thereof
JP2002129066A (en) * 2000-10-21 2002-05-09 Degussa Ag Radiation-curable coating system
JP2002322301A (en) * 2001-04-25 2002-11-08 Lintec Corp Hard-coated sheet
JP2007138144A (en) * 2005-10-18 2007-06-07 Hitachi Chem Co Ltd Silica-based coated film-forming composition
KR100650152B1 (en) * 2005-11-02 2006-11-27 나노캠텍주식회사 Radiation curable antistatic hard coating composition and antistatic sheet and antistatic tray using it
JP2008001870A (en) * 2006-06-26 2008-01-10 Harada Toso Kogyosho:Kk Silicone-containing resin coating composition
US8426027B2 (en) 2008-03-27 2013-04-23 Fujikura Kasei Co., Ltd. Composition for coating plastic substrate, coating film formed therefrom, and formed body
WO2011048776A1 (en) * 2009-10-21 2011-04-28 株式会社豊田自動織機 Curable coating material composition
US8642178B2 (en) 2009-10-21 2014-02-04 Kabushiki Kaisha Toyota Jidoshokki Vehicle member and process for producing the same
JP2011088054A (en) * 2009-10-21 2011-05-06 Toyota Industries Corp Member for vehicle and method for producing the same
WO2011048775A1 (en) * 2009-10-21 2011-04-28 株式会社豊田自動織機 Vehicle member and process for production thereof
JP2011088995A (en) * 2009-10-21 2011-05-06 Toagosei Co Ltd Curable coating agent composition
US8940808B2 (en) 2009-10-21 2015-01-27 Kabushiki Kaisha Toyota Jidoshokki Curable coating agent composition
JP2011173945A (en) * 2010-02-23 2011-09-08 Mitsubishi Rayon Co Ltd Method for producing silica sol for film, composition for film, film, resin laminate with film on surface thereof, and method for producing the same
JP2013035274A (en) * 2011-07-13 2013-02-21 Kansai Paint Co Ltd Laminate and method of manufacturing the same
JPWO2013161866A1 (en) * 2012-04-25 2015-12-24 三菱レイヨン株式会社 Laminate and production method
WO2013161866A1 (en) * 2012-04-25 2013-10-31 三菱レイヨン株式会社 Laminate and method for producing same
JP2014005393A (en) * 2012-06-26 2014-01-16 Yokohama Rubber Co Ltd:The Curable resin composition
WO2018003880A1 (en) * 2016-07-01 2018-01-04 三菱ケミカル株式会社 Active energy ray-curable resin composition, resin molded article and method for producing resin molded article
JPWO2018003880A1 (en) * 2016-07-01 2019-04-18 三菱ケミカル株式会社 Active energy ray curable resin composition, resin molded article and method for producing resin molded article
US11248065B2 (en) 2016-07-01 2022-02-15 Mitsubishi Chemical Corporation Active energy ray-curable resin composition, resin molded article, and method for producing resin molded article

Also Published As

Publication number Publication date
JP3545439B2 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
JP3747065B2 (en) Abrasion-resistant film-forming coating composition and film-coated article
JPH07109355A (en) Production of ultraviolet-curing coating material and abrasion-resistant coating composition containing the same
US5104929A (en) Abrasion resistant coatings comprising silicon dioxide dispersions
CN102471453B (en) Polycarbonates having a scratch-resistant coating and having high transparency, method for the production thereof, and use thereof
US5449702A (en) Coating composition and process for producing abrasion-resistant synthetic resin molded articles
US5635544A (en) Process for preparing a UV-curable coating material and anti-abrasion coating composition
WO1995021220A1 (en) Coating composition and surface-coated molding produced therewith
JPH09157315A (en) Ultraviolet-curable resin raw material composition, resin molding surface-modified therewith, and production of the molding
JP4372268B2 (en) Resin molded product having coating agent and coating layer
JP3436492B2 (en) Thin article having a wear-resistant thin film and optical disc
JP3218132B2 (en) Forming method of surface hardened film
JP3819245B2 (en) Curable composition for coating, coated article, and outer skin for automobile
JP3096862B2 (en) Active energy radiation curable coating composition
US5494645A (en) Process for producing abrasion-resistant synthetic resin molded articles
JP3782670B2 (en) Curable composition for coating, coated article, outer plate for automobile, and active energy ray-curable composition
JP3088511B2 (en) Coating composition and surface-coated article
JP3182660B2 (en) Antistatic coating material composition
JPH05320289A (en) Actinic radiation curing coating composition
JP3984424B2 (en) Method for forming top coat film, coated article, and outer plate for automobile
JP3072193B2 (en) Coating composition and surface-coated article
EP0331087A2 (en) Ultraviolet-curing coating composition and production process of molded plastic article having hardened coating of modified surface characteristics
JP3958840B2 (en) Method for producing wear-resistant coating material composition
JP3092025B2 (en) Antistatic coating material composition
JPH05179160A (en) Antistatic covering material composition
JP3061894B2 (en) Coating composition and method for surface modification of resin molded article

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

EXPY Cancellation because of completion of term