JPH07109334A - Epoxy rein, epoxy resin composition and cured product thereof - Google Patents

Epoxy rein, epoxy resin composition and cured product thereof

Info

Publication number
JPH07109334A
JPH07109334A JP2759394A JP2759394A JPH07109334A JP H07109334 A JPH07109334 A JP H07109334A JP 2759394 A JP2759394 A JP 2759394A JP 2759394 A JP2759394 A JP 2759394A JP H07109334 A JPH07109334 A JP H07109334A
Authority
JP
Japan
Prior art keywords
epoxy resin
formula
parts
reaction
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2759394A
Other languages
Japanese (ja)
Inventor
Yoshiro Shimamura
芳郎 嶋村
Yasumasa Akatsuka
泰昌 赤塚
Kenichi Kuboki
健一 窪木
Masahiro Hamaguchi
昌弘 浜口
Hiromi Morita
博美 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2759394A priority Critical patent/JPH07109334A/en
Publication of JPH07109334A publication Critical patent/JPH07109334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain an epoxy resin useful as a laminating material, etc., having low dielectric constant, excellent heat resistance and water resistance, comprising a specific chemical structure. CONSTITUTION:This epoxy resin is shown by formula I ((n) is positive integer; G is glycidyl; R is H, halogen,1-4C alkyl or aryl; X is H or glycidyl; 0-95% of X is glycidyl). The epoxy resin, for example, is obtained by reacting a compound of formula II with an epihalohydrin in the presence of an alkali metal hydroxide and reacting the prepared low-molecular weight epoxy resin of formula III in the presence of a basic catalyst. The epoxy resin is mixed with a curing agent and a curing promoter to provide an epoxy resin composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエポキシ樹脂およびエポ
キシ樹脂組成物およびその硬化物に関するものであり、
本発明のエポキシ樹脂組成物は積層材料、成形材料、注
型材料、複合材料、塗料、接着剤、レジストなどの広範
囲の用途に極めて有用である。
The present invention relates to an epoxy resin, an epoxy resin composition and a cured product thereof,
The epoxy resin composition of the present invention is extremely useful for a wide range of applications such as laminate materials, molding materials, casting materials, composite materials, paints, adhesives and resists.

【0002】[0002]

【従来の技術】エポキシ樹脂は種々の硬化剤で硬化させ
ることにより、機械的性質、耐水性、耐薬品性、耐熱
性、電気的性質などに優れた硬化物となり、積層板、接
着剤、塗料、成形材料、注型材料などの幅広い分野に利
用されている。
2. Description of the Related Art Epoxy resins are cured with various curing agents to form cured products having excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc. It is used in a wide range of fields, including molding materials and casting materials.

【0003】しかし、近年特に電気、電子分野の発展に
ともない、耐熱性、耐水性、低誘電率などの諸特性のよ
り一層の向上が求められており、これら諸特性の向上を
図るためエポキシ樹脂やエポキシ樹脂用硬化剤及びその
組成物について多くの提案がなされているが未だ十分と
はいえない。
However, in recent years, particularly with the development of electric and electronic fields, further improvement in various properties such as heat resistance, water resistance, and low dielectric constant has been demanded, and in order to improve these various properties, epoxy resin is required. Many proposals have been made for a curing agent for epoxy resin and a composition thereof, but it is still insufficient.

【0004】[0004]

【発明が解決しようとする課題】その硬化物において優
れた耐熱性、耐水性、低誘電率などの特性を与える高信
頼性エポキシ樹脂を提供する。
Provided is a highly reliable epoxy resin which gives its cured product excellent properties such as heat resistance, water resistance and low dielectric constant.

【0005】[0005]

【課題を解決するための手段】本発明者らは前記のよう
な特性を付与乃至は向上させる方法について鋭意研究し
た結果、上記課題を達成できる新規なエポキシ樹脂を見
いだし本発明を完成させた。すなわち本発明は(1)式
(1)
As a result of earnest research on a method of imparting or improving the above-mentioned properties, the present inventors have found a novel epoxy resin that can achieve the above-mentioned objects and completed the present invention. That is, the present invention relates to formula (1)

【0006】[0006]

【化2】 [Chemical 2]

【0007】(式中nは平均値を示し正数を表す。又G
はグルシジル基を表す。個々のRは水素原子、ハロゲン
原子、炭素数1〜4のアルキル基、またはアリール基を
表し、個々のRはお互いに同一であっても異なっていて
もよい。又個々のXは水素原子あるいはグリシジル基を
表し、個々のXはお互いに同一であっても異なっていて
もよいが、Xの0%以上95%以下はグリシジル基であ
る。)で表されるエポキシ樹脂、
(In the formula, n represents an average value and represents a positive number.
Represents a glycidyl group. Each R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group, and each R may be the same or different from each other. Further, each X represents a hydrogen atom or a glycidyl group, and each X may be the same or different from each other, but 0% or more and 95% or less of X is a glycidyl group. ) Epoxy resin represented by

【0008】(2)エポキシ樹脂及び硬化剤、更に必要
により硬化促進剤から構成されるエポキシ樹脂組成物に
おいて、該エポキシ樹脂成分として式(1)のエポキシ
樹脂を含有することを特徴とするエポキシ樹脂組成物、
(3)積層板用に調製された上記(2)記載のエポキシ
樹脂組成物、(4)上記(2)または(3)記載のエポ
キシ樹脂組成物の硬化物、を提供するものである。
(2) An epoxy resin composition comprising an epoxy resin, a curing agent, and optionally a curing accelerator, wherein the epoxy resin of the formula (1) is contained as the epoxy resin component. Composition,
(3) An epoxy resin composition described in (2) prepared for a laminated board, and (4) a cured product of the epoxy resin composition described in (2) or (3) above.

【0009】式(1)で表されるエポキシ樹脂は例え
ば、式(2)
The epoxy resin represented by the formula (1) is represented by, for example, the formula (2)

【0010】[0010]

【化3】 [Chemical 3]

【0011】(式中n、G、Rは式(1)におけるのと
同じ意味を表す。)
(In the formula, n, G and R have the same meanings as in formula (1).)

【0012】で表される化合物とエピハロヒドリンとの
反応をジメチルスルホキシド、4級アンモニウム塩また
は1,3−ジメチル−2−イミダゾリジノンとアルカリ
金属水酸化物の共存下に行うことにより得ることができ
る。本発明者らは式(2)で表されるエポキシ樹脂のア
ルコ−ル性水酸基は一般のアルコ−ル類のそれより反応
性に富んでおり、例えばジメチルスルホキシド、4級ア
ンモニウム塩または1,3−ジメチル−2−イミダゾリ
ジノンとアルカリ金属水酸化物を共存させることにより
驚くべきことにアルコ−ル性水酸基と系中に存在するエ
ポキシ基との反応において、エピハロヒドリン由来のエ
ポキシ基のみとの反応を選択的に行え、さらにアルカリ
金属水酸化物の量を調節することにより式(2)で表さ
れるエポキシ樹脂のアルコ−ル性水酸基を所望の割合に
エポキシ化できることを見い出し本発明を完成させるに
到った。
It can be obtained by reacting the compound represented by ## STR1 ## with epihalohydrin in the presence of dimethyl sulfoxide, a quaternary ammonium salt or 1,3-dimethyl-2-imidazolidinone and an alkali metal hydroxide. . The present inventors have found that the alcoholic hydroxyl group of the epoxy resin represented by the formula (2) is more reactive than that of general alcohols, and for example, dimethyl sulfoxide, quaternary ammonium salt or 1,3 -By coexisting dimethyl-2-imidazolidinone and an alkali metal hydroxide, surprisingly, in the reaction between the alcoholic hydroxyl group and the epoxy group present in the system, the reaction with only the epoxy group derived from epihalohydrin It was found that the alcoholic hydroxyl groups of the epoxy resin represented by the formula (2) can be epoxidized to a desired ratio by selectively controlling the amount of the alkali metal hydroxide, and thus the present invention is completed. Came to.

【0013】以下、本発明の詳細を説明する。本発明に
おいて原料として使用される式(2)で表されるエポキ
シ樹脂を得る方法としては、例えばジシクロペンタジエ
ンに過剰のフェノール類を反応させて得られる式(3)
The details of the present invention will be described below. As a method for obtaining the epoxy resin represented by the formula (2) used as a raw material in the present invention, for example, a formula (3) obtained by reacting an excess phenol with dicyclopentadiene

【0014】[0014]

【化4】 [Chemical 4]

【0015】(式中Rは式(1)におけるのと同じ意味
を表す。)
(In the formula, R has the same meaning as in formula (1).)

【0016】で表される化合物のフェノール性水酸基を
エピハロヒドリンと反応させエポキシ化する方法が挙げ
られる。
A method of epoxidizing the phenolic hydroxyl group of the compound represented by the formula (1) with epihalohydrin is mentioned.

【0017】ジシクロペンタジエンと、フェノール類と
の反応(縮合)を行う場合用いるフェノール類の量はジ
シクロペンタジエン1モルに対して好ましくは3〜30
モル、特に好ましくは5〜20モルの範囲である。
When the reaction (condensation) of dicyclopentadiene with phenols is carried out, the amount of phenols used is preferably 3 to 30 relative to 1 mol of dicyclopentadiene.
The range is 5 to 20 mol, particularly preferably 5 to 20 mol.

【0018】上記縮合反応においては酸触媒を用いるの
が好ましく、酸触媒としては種々のものが使用できる
が、三弗化ホウ素、無水塩化アルミニウム、塩化亜鉛、
硫酸、塩化チタンなどのルイス酸が好ましく、特に三弗
化ホウ素、無水塩化アルミニウムなどが好ましい。この
酸触媒は単独で使用してもよく2種以上を併用してもよ
い。これら酸触媒の使用量は特に限定されるものではな
いが使用するジシクロペンタジエンの使用量に対して
0.001〜0.1モル倍の範囲で選定することが出来
る。またこれら酸触媒を反応系内に添加する場合は予め
フェノール類の加熱溶融物に添加しておいたり適当な溶
剤に希釈したりして徐々に添加することも可能である。
In the above condensation reaction, it is preferable to use an acid catalyst, and various acid catalysts can be used, but boron trifluoride, anhydrous aluminum chloride, zinc chloride,
Lewis acids such as sulfuric acid and titanium chloride are preferable, and boron trifluoride and anhydrous aluminum chloride are particularly preferable. This acid catalyst may be used alone or in combination of two or more kinds. The amount of these acid catalysts used is not particularly limited, but can be selected in the range of 0.001 to 0.1 mole times the amount of dicyclopentadiene used. When these acid catalysts are added to the reaction system, it is possible to add them to the heated melt of phenols in advance or dilute them with an appropriate solvent and gradually add them.

【0019】この反応に使用されるフェノール類には酸
化され易いものが多いために一連の反応操作中は系内を
窒素ガスなどでパージしておくことが好ましい。更にこ
の縮合反応は大きな発熱を伴うことが多く通常フェノー
ル類の加熱溶融物や溶媒溶解物に予め上記酸触媒を添加
しておき、反応温度を確認しながらジシクロペンタジエ
ンを反応系内に導入することが好ましい。
Since many of the phenols used in this reaction are easily oxidized, it is preferable to purge the inside of the system with nitrogen gas or the like during a series of reaction operations. Further, this condensation reaction is often accompanied by a large amount of heat generation, and usually the above acid catalyst is added to the heated melt or solvent melt of phenols in advance, and dicyclopentadiene is introduced into the reaction system while checking the reaction temperature. It is preferable.

【0020】この酸触媒存在下の縮合反応は好ましくは
40〜180℃の範囲で行われるが特に好ましくは80
〜150℃の範囲で行われ、反応時間は通常0.5〜1
0時間の範囲で選定することが出来る。またこれらの反
応はニトロベンゼン、ジフェニルエーテル、ジクロロベ
ンゼン、二硫化炭素など反応に不活性な溶媒の存在下で
行うこともできる。更にこうして得られた反応物は系内
が中性になるように中和を行ったり溶媒の存在下に水洗
を繰り返したのち、水を分離排水後、加熱減圧下、溶媒
及び未反応物を除去することにより式(3)で表される
化合物が得られる。
The condensation reaction in the presence of the acid catalyst is preferably carried out in the range of 40 to 180 ° C., particularly preferably 80.
The reaction time is usually 0.5-1.
It can be selected within the range of 0 hours. Further, these reactions can be carried out in the presence of a solvent inert to the reaction such as nitrobenzene, diphenyl ether, dichlorobenzene and carbon disulfide. Further, the reaction product thus obtained is neutralized so that the inside of the system becomes neutral or washed repeatedly with water in the presence of a solvent, and after water is separated and drained, the solvent and unreacted substances are removed under heating and reduced pressure. By doing so, the compound represented by the formula (3) is obtained.

【0021】式(2)で表されるエポキシ樹脂を得る方
法としては公知の方法が採用できる。例えば式(3)で
表される化合物と過剰のエピハロヒドリンの溶解混合物
にアルカリ金属水酸化物を添加し、または添加しながら
20〜120℃の温度で反応させることにより式(4)
As a method for obtaining the epoxy resin represented by the formula (2), a known method can be adopted. For example, by adding an alkali metal hydroxide to a dissolved mixture of a compound represented by the formula (3) and excess epihalohydrin, or by reacting at a temperature of 20 to 120 ° C. while adding the alkali metal hydroxide, the formula (4)

【0022】[0022]

【化5】 [Chemical 5]

【0023】(式中G、Rは式(1)におけるのと同じ
意味を表す。)
(In the formula, G and R have the same meanings as in formula (1).)

【0024】で表される低分子量のエポキシ樹脂を得た
後、更に、塩基性触媒の存在下、溶融状態または溶剤中
で、式(3)で表される化合物と70〜200℃の間の
温度で反応させることにより得ることが出来る。
After obtaining the low molecular weight epoxy resin represented by the formula (3), the compound represented by the formula (3) and the compound having a temperature of 70 to 200 ° C. are melted in a molten state or in a solvent in the presence of a basic catalyst. It can be obtained by reacting at temperature.

【0025】式(4)で表される低分子量のエポキシ樹
脂を得る反応において、アルカリ金属水酸化物はその水
溶液を使用してもよく、その場合は該アルカリ金属水酸
化物の水溶液を連続的に反応系内に添加すると共に減圧
下、または常圧下、連続的に水及びエピハロヒドリンを
留出させ、更に分液し水は除去しエピハロヒドリンは反
応系内に連続的に戻す方法でもよい。
In the reaction for obtaining the low molecular weight epoxy resin represented by the formula (4), an aqueous solution of the alkali metal hydroxide may be used, and in that case, the aqueous solution of the alkali metal hydroxide is continuously added. In the reaction system, water and epihalohydrin may be continuously distilled off under reduced pressure or normal pressure, and the liquid may be separated to remove water and the epihalohydrin may be continuously returned to the reaction system.

【0026】又、式(3)で表される化合物とエピハロ
ヒドリンの溶解混合物にテトラメチルアンモニウムクロ
ライド、テトラメチルアンモニウムブロマイド、トリメ
チルベンジルアンモニウムクロライドなどの第4級アン
モニウム塩を触媒として添加し50〜150℃で反応さ
せて得られるハロヒドリンエーテル化物にアルカリ金属
水酸化物の固体または水溶液を加え、再び20〜120
℃の温度で反応させ脱ハロゲン化水素(閉環)させる方
法でもよい。
Further, a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide or trimethylbenzylammonium chloride is added as a catalyst to a dissolved mixture of the compound represented by the formula (3) and epihalohydrin, and the mixture is added at 50 to 150 ° C. The solid or aqueous solution of an alkali metal hydroxide is added to the halohydrin ether compound obtained by the reaction in step 1, and the mixture is added again to 20 to 120.
A method in which the reaction is carried out at a temperature of ° C. and dehydrohalogenation (ring closure) is also possible.

【0027】通常これらの反応において使用されるエピ
ハロヒドリンの量は式(3)で表される化合物の水酸基
1当量に対し通常1〜20モル、好ましくは2〜10モ
ルである。アルカリ金属水酸化物の使用量は式(3)で
表される化合物の水酸基1当量に対し0.8〜15モ
ル、好ましくは0.9〜11モルである。更に、反応を
円滑に進行させるためにメタノール、エタノールなどの
アルコール類の他、ジメチルスルホン、ジメチルスルホ
キシド等の非プロトン性極性溶媒などを添加して反応を
行うことが好ましい。
Usually, the amount of epihalohydrin used in these reactions is usually 1 to 20 mol, preferably 2 to 10 mol per 1 equivalent of hydroxyl group of the compound represented by the formula (3). The amount of the alkali metal hydroxide used is 0.8 to 15 mol, preferably 0.9 to 11 mol, based on 1 equivalent of the hydroxyl group of the compound represented by the formula (3). Further, in order to allow the reaction to proceed smoothly, it is preferable to carry out the reaction by adding an aprotic polar solvent such as dimethyl sulfone or dimethyl sulfoxide in addition to alcohols such as methanol and ethanol.

【0028】これらのエポキシ化反応の反応物を水洗
後、または、水洗無しに加熱減圧下、150〜250
℃、圧力10以下でエピハロヒドリンや他の添加溶媒な
どを除去することにより式(4)で表される低分子量の
エポキシ樹脂を得ることが出来る。
After washing these reaction products of the epoxidation reaction with water, or without heating, under heating and reduced pressure, 150 to 250.
The low molecular weight epoxy resin represented by the formula (4) can be obtained by removing epihalohydrin and other added solvents at a temperature of 10 ° C. or less.

【0029】式(4)で表される低分子量のエポキシ樹
脂と式(3)で表される化合物とを反応させて式(2)
で表されるエポキシ樹脂を得る反応において、各成分の
仕込比は、式(4)で表されるエポキシ樹脂1当量に対
し式(3)で表される化合物0.05〜0.9当量が好
ましく、特に0.1〜0.85当量が好ましい。
The low molecular weight epoxy resin represented by the formula (4) is reacted with the compound represented by the formula (3) to obtain the formula (2).
In the reaction for obtaining the epoxy resin represented by, the charging ratio of each component is 0.05 to 0.9 equivalent of the compound represented by the formula (3) with respect to 1 equivalent of the epoxy resin represented by the formula (4). It is particularly preferably 0.1 to 0.85 equivalent.

【0030】塩基性触媒としては例えば、トリフェニル
ホスフィン、水酸化ナトリウム、4級アンモニウム塩、
イミダゾール類などが挙げられ、その使用量は式(4)
で表されるエポキシ樹脂に対して0.001〜1.0重
量%が好ましく、特に0.005〜0.5重量%が好ま
しい。また、溶剤を用いる場合は、メチルイソブチルケ
トン、トルエン等が挙げられる。
Examples of the basic catalyst include triphenylphosphine, sodium hydroxide, quaternary ammonium salt,
Examples include imidazoles, etc.
0.001 to 1.0% by weight is preferable, and 0.005 to 0.5% by weight is particularly preferable, with respect to the epoxy resin represented by. When a solvent is used, methyl isobutyl ketone, toluene and the like can be mentioned.

【0031】式(2)で表されるエポキシ樹脂のアルコ
−ル性水酸基とエピハロヒドリンとの反応はジメチルス
ルホキシドまたは4級アンモニウム塩または1,3−ジ
メチル−2−イミダゾリジノンとアルカリ金属水酸化物
の共存下、アルカリ金属水酸化物の使用量を調節するこ
とにより行うことができる。その際溶剤としてメタノー
ルやエタノール等のアルコ−ル類、トルエン、キシレン
等の芳香族炭化水素類、メチルイソブチルケトン、メチ
ルエチルケトン等のケトン類、テトラヒドロフラン等の
環状及びエ−テル化合物等を併用しても構わない。また
ジメチルスルホキシド、4級アンモニウム塩、1,3−
ジメチル−2−イミダゾリジノンを併用しても構わな
い。
The reaction between the alcoholic hydroxyl group of the epoxy resin represented by the formula (2) and epihalohydrin is carried out by using dimethyl sulfoxide or a quaternary ammonium salt or 1,3-dimethyl-2-imidazolidinone and an alkali metal hydroxide. Can be carried out by adjusting the amount of alkali metal hydroxide used in the presence of At that time, alcohols such as methanol and ethanol, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl isobutyl ketone and methyl ethyl ketone, and cyclic and ether compounds such as tetrahydrofuran may be used together as a solvent. I do not care. Dimethyl sulfoxide, quaternary ammonium salt, 1,3-
Dimethyl-2-imidazolidinone may be used in combination.

【0032】ジメチルスルホキシドあるいは1,3−ジ
メチル−2−イミダゾリジノンの使用量は式(2)で表
される化合物に対して5〜300重量%が好ましい。式
(2)で表される化合物に対して5重量%未満であると
式(2)で表される化合物の水酸基とエピハロヒドリン
との反応が遅くなる為、長時間の反応が必要となり好ま
しくない。また、式(2)で表される化合物に対して3
00重量%を超えると増量した効果はほとんどなくなる
一方容積効率も悪くなり好ましくない。
The amount of dimethyl sulfoxide or 1,3-dimethyl-2-imidazolidinone used is preferably 5 to 300% by weight based on the compound represented by the formula (2). If it is less than 5% by weight with respect to the compound represented by the formula (2), the reaction between the hydroxyl group of the compound represented by the formula (2) and epihalohydrin is delayed, which requires a long reaction time, which is not preferable. In addition, 3 for the compound represented by the formula (2)
If it exceeds 100% by weight, the effect of increasing the amount is almost eliminated, but the volume efficiency is deteriorated, which is not preferable.

【0033】4級アンモニウム塩としてはテトラメチル
アンモニウムクロライド、テトラメチルアンモニウムブ
ロマイド、トリメチルベンジルアンモニウムクロライド
等が挙げられ、その使用量は式(2)で表される化合物
のエポキシ化させたい水酸基1当量に対して0.3〜5
0gが好ましい。エポキシ化させたい水酸基1当量に対
して0.3g未満であると式(2)で表される化合物の
水酸基とエピハロヒドリンとの反応が遅くなり長時間の
反応が必要となり好ましくない。エポキシ化させたい水
酸基1当量に対して50gを超えると増量した効果はほ
とんどなくなる一方コストが高くなり好ましくない。
Examples of the quaternary ammonium salt include tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride and the like. The amount of the quaternary ammonium salt used is 1 equivalent of the hydroxyl group to be epoxidized in the compound represented by the formula (2). 0.3 to 5
0 g is preferred. If the amount of the hydroxyl group to be epoxidized is less than 0.3 g based on 1 equivalent, the reaction between the hydroxyl group of the compound represented by the formula (2) and epihalohydrin is delayed and a long-time reaction is required, which is not preferable. If the amount of hydroxyl groups to be epoxidized is more than 50 g per 1 equivalent of hydroxyl groups, the effect of increasing the amount will almost disappear but the cost will increase, which is not preferable.

【0034】エピハロヒドリンの使用量は式(2)で表
される化合物のエポキシ化させたい水酸基1当量に対し
て当量以上使用すれば良い。しかしながらエポキシ化さ
せたい水酸基1当量に対して20倍当量を超えると増量
した効果はほとんどなくなる一方容積効率も悪くなり好
ましくない。
The amount of epihalohydrin used may be equal to or more than 1 equivalent of the hydroxyl group to be epoxidized in the compound represented by the formula (2). However, if it exceeds 20 equivalents with respect to 1 equivalent of the hydroxyl group to be epoxidized, the effect of increasing the amount is almost lost and the volume efficiency is deteriorated, which is not preferable.

【0035】アルカリ金属水酸化物としては、苛性ソ−
ダ、苛性カリ、水酸化リチウム、水酸化カルシウムなど
が使用できるが苛性ソ−ダが好ましい。アルカリ金属水
酸化物の使用量は式(2)で表される化合物のエポキシ
化させたい水酸基1当量に対して1〜1.3倍当量使用
すれば良い。アルカリ金属水酸化物は固形でも水溶液で
も構わない。また水溶液を使用する場合は反応中、反応
系内の水は常圧下、又は減圧下において反応系外に留去
しながら反応を行うこともできる。
Examples of alkali metal hydroxides include caustic soda.
Although caustic soda, caustic potash, lithium hydroxide, calcium hydroxide and the like can be used, caustic soda is preferred. The amount of the alkali metal hydroxide used may be 1 to 1.3 times equivalent to 1 equivalent of the hydroxyl group to be epoxidized in the compound represented by the formula (2). The alkali metal hydroxide may be solid or aqueous solution. When an aqueous solution is used, the reaction can be carried out during the reaction while distilling the water in the reaction system out of the reaction system under normal pressure or reduced pressure.

【0036】反応温度は20〜100℃が好ましい。反
応温度が20℃未満であると反応が遅くなり長時間の反
応が必要となる。反応温度が100℃を超えると副反応
が多く起こり好ましくない。
The reaction temperature is preferably 20 to 100 ° C. If the reaction temperature is lower than 20 ° C, the reaction becomes slow and a long-time reaction is required. When the reaction temperature exceeds 100 ° C., many side reactions occur, which is not preferable.

【0037】本発明のエポキシ樹脂は単独でまたは他の
エポキシ樹脂との併用で通常のエポキシ樹脂の場合と同
様に硬化剤、さらに必要により硬化促進剤等を添加する
ことにより硬化させることができる。本発明で用いうる
硬化剤はアミン系化合物、酸無水物系化合物、アミド系
化合物、フェノ−ル系化合物などである。具体例として
は、ジアミノジフェニルメタン、ジエチレントリアミ
ン、トリエチレンテトラミン、ジアミノジフェニルスル
ホン、イソホロンジアミン、ジシアンジアミド、リノレ
ン酸の2量体とエチレンジアミンとより合成されるポリ
アミド樹脂、無水フタル酸、無水トリメリット酸、無水
ピロメリット酸、無水マレイン酸、テトラヒドロ無水フ
タル酸、メチルテトラヒドロ無水フタル酸、無水メチル
ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサ
ヒドロ無水フタル酸、フェノ−ルノボラック、及びこれ
らの変性物、イミダゾ−ル、BF3 −アミン錯体、グア
ニジン誘導体などが挙げられる。これらの硬化剤はそれ
ぞれ単独で用いてもよいし、2種以上組み合わせて用い
てもよい。
The epoxy resin of the present invention can be cured alone or in combination with other epoxy resins by adding a curing agent, and if necessary, a curing accelerator and the like, as in the case of a usual epoxy resin. The curing agent that can be used in the present invention is an amine compound, an acid anhydride compound, an amide compound, a phenol compound or the like. Specific examples include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, a polyamide resin synthesized from a dimer of linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride, and pyromyl anhydride. Mellitic acid, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic acid anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac, and modified products thereof, imidazole, BF Examples thereof include 3 -amine complexes and guanidine derivatives. These curing agents may be used alone or in combination of two or more.

【0038】これらの硬化剤の使用量は、エポキシ基に
対して0.7〜1.2当量が好ましい。エポキシ基に対
して、0.7当量に満たない場合、あるいは1.2当量
を超える場合、いずれも硬化が不完全となり良好な硬化
物性が得られない恐れがある。
The amount of these curing agents used is preferably 0.7 to 1.2 equivalents based on the epoxy group. If the amount is less than 0.7 equivalents or more than 1.2 equivalents with respect to the epoxy groups, the curing may be incomplete and good cured physical properties may not be obtained.

【0039】また本発明のエポキシ樹脂組成物には硬化
促進剤を使用しても差し支えない。硬化促進剤の具体例
としては例えば2−メチルイミダゾール、2−エチルイ
ミダゾール、2−エチル4−メチルイミダゾール等のイ
ミダゾール類、2−(ジメチルアミノメチル)フェノー
ル等の第3級アミン類、トリフェニルホスフィン等のホ
スフィン化合物、Al化合物、Ti化合物等の金属化合
物等が挙げられる。これらは単独で用いてもよく、2種
以上を併用してもよい。さらに、必要に応じて無機また
は有機の充填材等の種々の配合材を添加することができ
る。これらの硬化促進剤の使用量はエポキシ樹脂100
重量部に対して必要により0.1〜5.0重量部加える
のが好ましい。
A curing accelerator may be used in the epoxy resin composition of the present invention. Specific examples of the curing accelerator include imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole, tertiary amines such as 2- (dimethylaminomethyl) phenol, and triphenylphosphine. And other metal compounds such as phosphine compounds, Al compounds, and Ti compounds. These may be used alone or in combination of two or more. Furthermore, various compounding materials such as inorganic or organic fillers can be added as required. The amount of these curing accelerators used is 100% epoxy resin.
If necessary, it is preferable to add 0.1 to 5.0 parts by weight to parts by weight.

【0040】本発明のエポキシ樹脂、硬化剤更に必要に
より硬化促進剤を混合して本発明のエポキシ樹脂組成物
が得られるがこのエポキシ樹脂組成物は従来知られてい
る方法と同様の方法で容易にその硬化物を得ることがで
きる。例えば本発明のエポキシ樹脂と硬化剤、充填材及
びその他の添加剤とを必要に応じて押出機、ニ−ダ、ロ
−ル等を用いて均一になるまで充分に混合して本発明の
エポキシ樹脂組成物を得、そのエポキシ樹脂組成物を溶
融後注型あるいはトランスファ−成形機などを用いて成
形し、さらに80〜200℃で1時間〜6時間加熱する
ことによりその硬化物を得ることができる。
The epoxy resin of the present invention, a curing agent and, if necessary, a curing accelerator are mixed to obtain the epoxy resin composition of the present invention. The epoxy resin composition can be easily prepared by the same method as a conventionally known method. The cured product can be obtained. For example, the epoxy resin of the present invention and the curing agent, filler and other additives are sufficiently mixed by using an extruder, a kneader, a roll, etc., if necessary, until they are homogeneous, and the epoxy resin of the present invention is obtained. A resin composition is obtained, the epoxy resin composition is melted and then molded using a casting or transfer molding machine or the like, and further heated at 80 to 200 ° C. for 1 to 6 hours to obtain a cured product thereof. it can.

【0041】また本発明の樹脂組成物を溶剤に溶解さ
せ、ガラス繊維,カ−ボン繊維,ポリエステル繊維,ポ
リアミド繊維,アルミナ繊維,紙などの基材に含浸させ
加熱乾燥して得たプリプレグを熱プレス成形して硬化物
を得ることもできる。例えば本発明のエポキシ樹脂と硬
化剤、硬化促進剤、希釈用溶剤等を均一になるまで加
熱、撹拌したエポキシ樹脂組成物を、ガラスクロスに含
浸させ加熱半乾燥して溶剤分を飛ばしたプリプレグを、
必要枚数重ねて80〜200℃で1時間以上加熱プレス
することによりガラスクロス積層板を作製することが出
来る。
The prepreg obtained by dissolving the resin composition of the present invention in a solvent, impregnating it into a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating is heated. A cured product can be obtained by press molding. For example, the epoxy resin of the present invention and a curing agent, a curing accelerator, a solvent for dilution, etc. are heated and stirred until they are uniform, and the epoxy resin composition is stirred and impregnated in a glass cloth and heated and semi-dried to remove the solvent content of the prepreg ,
A glass cloth laminate can be produced by stacking the required number of sheets and heating and pressing at 80 to 200 ° C. for 1 hour or more.

【0042】この際用いる希釈用溶剤の具体例として
は、トルエン、キシレン、メチルエチルケトン、メチル
イソブチルケトン、メチルセロソルブ等が好ましく、そ
の使用量は、エポキシ樹脂組成物の溶剤希釈物中で通常
10〜70重量%、好ましくは、15〜65重量%であ
る。
Specific examples of the solvent for dilution used at this time are preferably toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, methyl cellosolve and the like, and the amount thereof is usually 10 to 70 in the solvent diluent of the epoxy resin composition. %, Preferably 15-65% by weight.

【0043】こうして得られる硬化物は高い耐熱性を保
持しているため、本発明のエポキシ樹脂組成物は、耐熱
性の要求される広範な分野で用いることが出来る。具体
的には絶縁材料、積層板、封止材料等のあらゆる電気電
子材料として有用である。又、成型材料や複合材料の分
野にも用いることが出来る。
Since the cured product thus obtained retains high heat resistance, the epoxy resin composition of the present invention can be used in a wide range of fields where heat resistance is required. Specifically, it is useful as any electric / electronic material such as an insulating material, a laminated plate, and a sealing material. It can also be used in the field of molding materials and composite materials.

【0044】[0044]

【実施例】次に本発明を実施例により更に具体的に説明
するが、以下において部は特に断わりのない限り重量部
であるものとする。尚、ガラス転移温度、吸水率、誘電
率の測定条件は次の通りである。 ガラス転移温度 熱機械測定装置(TMA):真空理工(株)製 TM−
7000 昇温速度:2℃/min 吸水率 試験片(硬化物):直径 50mm 厚さ 3mm 円盤 100℃の水中で20時間煮沸した後の重量増加量
(%) 誘電率 試験片(硬化物):直径 50mm 厚さ 3mm 円盤 JIS K−6911(誘電率の測定)に準じ誘電体損
測定装置TR−10C(安藤電気(株)製)周波数1K
Hzで測定。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples. In the following, parts are parts by weight unless otherwise specified. The conditions for measuring the glass transition temperature, water absorption rate, and dielectric constant are as follows. Glass transition temperature thermomechanical measuring device (TMA): manufactured by Vacuum Riko Co., Ltd. TM-
7000 Temperature rising rate: 2 ° C / min Water absorption rate Test piece (cured material): Diameter 50 mm Thickness 3 mm Disc Weight increase after boiling in 100 ° C water for 20 hours (%) Dielectric constant test piece (cured material): Diameter 50 mm Thickness 3 mm Disc According to JIS K-6911 (Measurement of dielectric constant) Dielectric loss measuring device TR-10C (manufactured by Ando Electric Co., Ltd.) Frequency 1K
Measured in Hz.

【0045】実施例1 温度計、滴下ロート、冷却管、撹拌器を取り付けたフラ
スコにフェノール940部(10モル)を仕込み窒素ガ
スパージをしながら、120℃の温度で溶融させた。系
内が120℃で安定した後触媒として三弗化ホウ素ジエ
チルエーテルコンプレックス7.5部を添加し更にジシ
クロペンタジエン139部(純分重量95%)(1モ
ル)を滴下ロートを使用し3時間かけて添加し反応させ
た。滴下終了後、更に120℃で1時間の後反応を行っ
た後、ジクロルベンゼン750部を添加し50℃にまで
冷却した。次いでリン酸二水素一ナトリウム20重量%
水溶液150部を添加し更にメチルイソブチルケトン2
250部を添加した。次いでこれらの反応物を分液ロー
トに移し水洗を繰り返して系内を中性に戻した。その後
油層からロータリエバポレーターを使用し180℃、5
mHgの加熱、減圧下で溶剤及び未反応成分を除去し、
下記式(5)で表される化合物314部を得た。
Example 1 A flask equipped with a thermometer, a dropping funnel, a condenser and a stirrer was charged with 940 parts (10 moles) of phenol and melted at a temperature of 120 ° C. while purging with nitrogen gas. After the system was stabilized at 120 ° C., 7.5 parts of boron trifluoride diethyl ether complex was added as a catalyst, and 139 parts of dicyclopentadiene (pure content 95%) (1 mol) was added using a dropping funnel for 3 hours. It was added and reacted. After completion of dropping, after-reaction was further performed at 120 ° C. for 1 hour, 750 parts of dichlorobenzene was added, and the mixture was cooled to 50 ° C. Then 20% by weight monosodium dihydrogen phosphate
150 parts of aqueous solution was added, and methyl isobutyl ketone 2 was added.
250 parts were added. Next, these reaction products were transferred to a separating funnel and washed repeatedly with water to return the system to neutral. After that, use a rotary evaporator from the oil layer at 180 ° C for 5
The solvent and unreacted components are removed under reduced pressure by heating at mHg,
314 parts of a compound represented by the following formula (5) was obtained.

【0046】[0046]

【化6】 [Chemical 6]

【0047】次いで、温度計、冷却管、撹拌器を取り付
けたフラスコに窒素ガスパージをしながら上記反応で得
られた化合物160部、エピクロルヒドリン370部、
ジメチルスルホキシド92.5部を仕込み溶解させた。
更に50℃に加熱しフレーク状水酸化ナトリウム40部
を4部づつ10分おきに分割添加し、その後更に60℃
で2時間、70℃で1時間反応させた。反応終了後水洗
を繰り返し、水層は分離除去し、油層から加熱減圧下、
過剰のエピクロルヒドリンを留去し、残留物に450部
のメチルイソブチルケトンを加え、溶解した。
Next, 160 parts of the compound obtained in the above reaction and 370 parts of epichlorohydrin were charged in a flask equipped with a thermometer, a condenser and a stirrer while purging with nitrogen gas.
92.5 parts of dimethyl sulfoxide were charged and dissolved.
Heat to 50 ° C and add 40 parts of flaky sodium hydroxide every 4 minutes in increments of 4 parts, then add 60 ° C.
For 2 hours and at 70 ° C. for 1 hour. After completion of the reaction, washing with water is repeated, the aqueous layer is separated and removed, and the oil layer is heated under reduced pressure,
Excess epichlorohydrin was distilled off, and 450 parts of methyl isobutyl ketone was added to the residue and dissolved.

【0048】更に、このメチルイソブチルケトンの溶液
を70℃に加熱し30重量%の水酸化ナトリウム水溶液
13.3部を添加し1時間反応させた後、水洗を繰り返
しpHを中性とした。更に水層は分離除去し、ロータリ
ーエバポレーターを使用して油層から加熱減圧下メチル
イソブチルケトンを留去し下記式(6)で表されるエポ
キシ樹脂194部を得た。得られたエポキシ樹脂の軟化
点は62.4℃、エポキシ当量は229g/eqであっ
た。
Further, this methyl isobutyl ketone solution was heated to 70 ° C., 13.3 parts of a 30 wt% sodium hydroxide aqueous solution was added, and the mixture was reacted for 1 hour, and then washed with water repeatedly to make the pH neutral. Further, the aqueous layer was separated and removed, and methyl isobutyl ketone was distilled off from the oil layer under heating and reduced pressure using a rotary evaporator to obtain 194 parts of an epoxy resin represented by the following formula (6). The obtained epoxy resin had a softening point of 62.4 ° C. and an epoxy equivalent of 229 g / eq.

【0049】[0049]

【化7】 [Chemical 7]

【0050】(式中Gはグリシジル基を示す。)以上の
工程で得られた式(6)で表されるエポキシ樹脂183
部と、式(5)で表される化合物58部、及びメチルイ
ソブチルケトン120部をフラスコに仕込み、撹拌溶解
した後、トリフェニルホスフィン0.18部を添加し、
撹拌下120℃でメチルイソブチルケトンを減圧留去
し、更に150℃で2時間反応を行い下記式(7)で表
されるエポキシ当量547g/eq、軟化点78.6℃
のエポキシ樹脂241部を得た。
(In the formula, G represents a glycidyl group.) The epoxy resin 183 represented by the formula (6) obtained in the above steps
Parts, 58 parts of the compound represented by the formula (5), and 120 parts of methyl isobutyl ketone were charged into a flask and dissolved by stirring, and then 0.18 parts of triphenylphosphine was added,
Methyl isobutyl ketone was distilled off under reduced pressure at 120 ° C with stirring, and the mixture was further reacted at 150 ° C for 2 hours to give an epoxy equivalent of 547 g / eq represented by the following formula (7) and a softening point of 78.6 ° C.
To obtain 241 parts of an epoxy resin.

【0051】[0051]

【化8】 [Chemical 8]

【0052】(式中nは1.8(平均値)であり、Gは
グリシジル基を表す。)更に反応系中にエピクロルヒド
リン574部を加え撹拌溶解させた後、撹拌下40℃で
テトラメチルアンモニウムクロライド2.0部を添加し
た。その後フレーク状水酸化ナトリウム15.5部を9
0分かけて分割添加し、更に3時間反応を行った。反応
終了後水287部を加え水洗を行った。油水分離後、油
層より未反応のエピクロルヒドリンを減圧下に蒸留回収
し、下記式(8)で表されるエポキシ樹脂(1)229
部を得た。
(In the formula, n is 1.8 (average value) and G represents a glycidyl group.) Further, 574 parts of epichlorohydrin was added to the reaction system and dissolved by stirring, and then tetramethylammonium was added at 40 ° C. under stirring. 2.0 parts of chloride were added. Then, 15.5 parts of flaky sodium hydroxide was added to 9 parts.
The solution was added in portions over 0 minutes, and the reaction was continued for 3 hours. After the completion of the reaction, 287 parts of water was added and washed with water. After separation of the oil and water, unreacted epichlorohydrin is recovered by distillation under reduced pressure to obtain an epoxy resin (1) 229 represented by the following formula (8).
I got a part.

【0053】[0053]

【化9】 [Chemical 9]

【0054】(式中nは1.8(平均値)であり、G及
びXは前記式(1)におけるのと同じ意味を示す。)得
られたエポキシ樹脂のエポキシ当量は377g/eq、
軟化点は68.2℃であった。得られたエポキシ樹脂は
エポキシ当量から計算すると式(8)におけるXのうち
60%がグリシジル基であった。
(In the formula, n is 1.8 (average value) and G and X have the same meanings as in the formula (1).) The epoxy equivalent of the obtained epoxy resin is 377 g / eq.
The softening point was 68.2 ° C. When calculated from the epoxy equivalent of the obtained epoxy resin, 60% of X in the formula (8) was a glycidyl group.

【0055】実施例2 フレーク状水酸化ナトリウムの使用量を12.4部に変
えたほかは実施例1と同様にしてエポキシ当量401g
/eq、軟化点72.1℃エポキシ樹脂(2)226部
を得た。得られたエポキシ樹脂はエポキシ当量から計算
すると式(8)におけるXのうち48%がグリシジル基
であった。
Example 2 Epoxy equivalent of 401 g in the same manner as in Example 1 except that the amount of flaky sodium hydroxide used was changed to 12.4 parts.
/ Eq, softening point 72.1 ° C 226 parts of epoxy resin (2) was obtained. In the obtained epoxy resin, 48% of X in the formula (8) was a glycidyl group calculated from the epoxy equivalent.

【0056】実施例3〜4、比較例1 実施例1〜2で得られたエポキシ樹脂(1)〜(2)、
比較としてビスフェノールA型エポキシ樹脂(エポミッ
クR−301、エポキシ当量472g/eq、軟化点7
2℃、三井石油化学(株)製)を硬化剤としてジアミノ
ジフェニルメタン(DDM)を用い、表1に示す組成及
び重量部で配合して、70℃で15分間ロールで混練し
たのち冷却、粉砕し更にトランスファー成形機により成
形後、ポストキュアを行って本発明及び比較用の硬化物
を得、そのガラス転移温度、吸水率及び誘電率を測定し
た。結果を表1に示す。
Examples 3 to 4, Comparative Example 1 Epoxy resins (1) to (2) obtained in Examples 1 and 2,
For comparison, bisphenol A type epoxy resin (Epomic R-301, epoxy equivalent 472 g / eq, softening point 7
Diaminodiphenylmethane (DDM) was used as a curing agent at 2 ° C. (manufactured by Mitsui Petrochemical Co., Ltd.) in the composition and parts by weight shown in Table 1, kneaded with a roll at 70 ° C. for 15 minutes, then cooled and ground. Further, after molding with a transfer molding machine, post-curing was performed to obtain a cured product of the present invention and a comparative product, and its glass transition temperature, water absorption rate and dielectric constant were measured. The results are shown in Table 1.

【0057】なお、トランスファー成形条件及びポスト
キュアの条件は次の通りである。 トランスファー成形条件 温度:150℃ 成形圧力:50kg/cm2 時間:3分 ポストキュアの条件 温度:160℃で時間:2時間更に 温度:180℃で時間:8時間
The transfer molding conditions and post cure conditions are as follows. Transfer molding conditions Temperature: 150 ° C. Molding pressure: 50 kg / cm 2 hours: 3 minutes Post cure conditions Temperature: 160 ° C. time: 2 hours Further temperature: 180 ° C. time: 8 hours

【0058】[0058]

【表1】 表1 実 施 例 比較例 3 4 1 エポキシ樹脂(1) 100 エポキシ樹脂(2) 100 エポミックR−301 100 エポキシ当量(g/eq) 377 401 479 DDM 10 ガラス転移温度(℃) 153 145 140 吸水率(%) 1.47 1.56 1.87 誘電率(ε) 3.35 3.32 3.87Table 1 Example 1 Comparative Example 3 4 1 Epoxy resin (1) 100 Epoxy resin (2) 100 Epomic R-301 100 Epoxy equivalent (g / eq) 377 401 479 DDM 10 Glass transition temperature (° C) 153 145 140 Water absorption (%) 1.47 1.56 1.87 Dielectric constant (ε) 3.35 3.32 3.87

【0059】実施例5 温度計、滴下ロート、冷却管、撹拌器を取り付けたフラ
スコにフェノール1410部(15モル)を仕込み窒素
ガスパージを施しながら、120℃の温度で溶融させ
た。系内が120℃に安定した後触媒として三弗化ホウ
素ジエチルエーテルコンプレックス11.3部を添加し
更にジシクロペンタジエン209部(純分重量95%)
(1.5モル)を滴下ロートを使用し3時間を要して添
加し反応させた。滴下終了後、更に120℃で1時間の
後反応を行った後、ジクロルベンゼン1100部を添加
し更に50℃にまで冷却した。次いでリン酸二水素一ナ
トリウム20重量%230部を添加し更にメチルイソブ
チルケトン3400部を添加した。次いでこれらの反応
物を分液ロートに移し水洗を繰り返して系内を中性に戻
した。その後油層からロータリエバポレーターを使用し
180℃、5mHgの加熱、減圧下で溶剤及び未反応成
分を除去し、式(5)で表される化合物470部を得
た。
Example 5 1410 parts (15 mol) of phenol was charged into a flask equipped with a thermometer, a dropping funnel, a condenser and a stirrer, and melted at a temperature of 120 ° C. while purging with nitrogen gas. After the system was stabilized at 120 ° C., 11.3 parts of boron trifluoride diethyl ether complex was added as a catalyst, and 209 parts of dicyclopentadiene (95% pure content).
(1.5 mol) was added and reacted using a dropping funnel over 3 hours. After completion of dropping, after-reaction was further performed at 120 ° C. for 1 hour, 1100 parts of dichlorobenzene was added and further cooled to 50 ° C. Then, 20 parts by weight of monosodium dihydrogen phosphate (230 parts by weight) was added, and further 3400 parts of methyl isobutyl ketone was added. Next, these reaction products were transferred to a separating funnel and washed repeatedly with water to return the system to neutral. Thereafter, the solvent and unreacted components were removed from the oil layer using a rotary evaporator at 180 ° C. under heating at 5 mHg and under reduced pressure to obtain 470 parts of a compound represented by the formula (5).

【0060】次いで、温度計、冷却管、撹拌器を取り付
けたフラスコに窒素ガスパージを施しながら上記反応で
得られた化合物240部、エピクロルヒドリン555
部、ジメチルスルホキシド140部を仕込み溶解させ
た。更に50度に加熱しフレーク状水酸化ナトリウム6
0部を100分かけて分割添加し、その後更に60℃で
2時間、70℃で1時間反応させた。反応終了後水洗を
繰り返し、水層は分離除去し、油層から加熱減圧下、過
剰のエピクロルヒドリンを留去し、残留物に680部の
メチルイソブチルケトンを加え、溶解した。
Then, 240 parts of the compound obtained in the above reaction and epichlorohydrin 555 were charged in a flask equipped with a thermometer, a condenser and a stirrer while purging with nitrogen gas.
And 140 parts of dimethyl sulfoxide were charged and dissolved. Flake sodium hydroxide 6 by heating to 50 degrees
0 part was added portionwise over 100 minutes, and then the mixture was further reacted at 60 ° C. for 2 hours and at 70 ° C. for 1 hour. After completion of the reaction, washing with water was repeated, the aqueous layer was separated and removed, excess epichlorohydrin was distilled off from the oil layer under heating and reduced pressure, and 680 parts of methyl isobutyl ketone was added and dissolved.

【0061】更に、このメチルイソブチルケトンの溶液
を70℃に加熱し30重量%の水酸化ナトリウム水溶液
20.0部を添加し1時間反応させた後、水洗を繰り返
しpHを中性とした。更に水層は分離除去し、ロータリ
ーエバポレーターを使用して油層から加熱減圧下メチル
イソブチルケトンを留去し式(6)で表されるエポキシ
樹脂291部を得た。得られたエポキシ樹脂の軟化点は
62.0℃、エポキシ当量は232g/eqであった。
Further, this methyl isobutyl ketone solution was heated to 70 ° C., 20.0 parts of a 30 wt% sodium hydroxide aqueous solution was added, and the mixture was reacted for 1 hour, and then washed with water repeatedly to make the pH neutral. Further, the aqueous layer was separated and removed, and methyl isobutyl ketone was distilled off from the oil layer under heating and reduced pressure using a rotary evaporator to obtain 291 parts of an epoxy resin represented by the formula (6). The obtained epoxy resin had a softening point of 62.0 ° C. and an epoxy equivalent of 232 g / eq.

【0062】得られた式(6)で表されるエポキシ樹脂
272部と、式(5)で表される化合物77部、及びメ
チルイソブチルケトン180部をフラスコに仕込み、撹
拌溶解した後、トリフェニルホスフィン0.27部を添
加し、撹拌下℃でメチルイソブチルケトンを減圧留去
し、更に150℃で2時間反応を行うことにより式
(7)においてnが1.5であるエポキシ樹脂349部
を得た。得られたエポキシ樹脂のエポキシ当量は494
g/eq、軟化点は72.2℃であった。
272 parts of the obtained epoxy resin represented by the formula (6), 77 parts of the compound represented by the formula (5), and 180 parts of methyl isobutyl ketone were charged into a flask and dissolved by stirring, and then triphenyl was added. 0.27 parts of phosphine was added, methyl isobutyl ketone was distilled off under reduced pressure at 0 ° C. under stirring, and further reaction was carried out at 150 ° C. for 2 hours to obtain 349 parts of epoxy resin having n of 1.5 in the formula (7). Obtained. The epoxy equivalent of the obtained epoxy resin is 494.
The g / eq and softening point were 72.2 ° C.

【0063】更に反応系中にエピクロルヒドリン770
部を加え撹拌溶解させた後、撹拌下40℃でテトラメチ
ルアンモニウムクロライド2.5部を添加した。その後
フレーク状水酸化ナトリウム24.3部を90分かけて
分割添加し、更に3時間反応を行った。反応終了後水3
85部を加え水洗を行った。油水分離後、油層より未反
応のエピクロルヒドリンを減圧下に蒸留回収し、式
(8)で表されるエポキシ樹脂(3)351部を得た。
得られたエポキシ樹脂のエポキシ当量は345g/e
q、軟化点は67.7℃であった。得られたエポキシ樹
脂はエポキシ当量から計算すると式(8)におけるXの
うち60%がグリシジル基であった。
Furthermore, epichlorohydrin 770 was added to the reaction system.
2.5 parts of tetramethylammonium chloride was added at 40 ° C. with stirring. After that, 24.3 parts of flaky sodium hydroxide was added in portions over 90 minutes, and the reaction was further performed for 3 hours. After the reaction, water 3
85 parts were added and washed with water. After separation of oil and water, unreacted epichlorohydrin was collected by distillation under reduced pressure to obtain 351 parts of an epoxy resin (3) represented by the formula (8).
The epoxy equivalent of the obtained epoxy resin is 345 g / e.
q and the softening point were 67.7 degreeC. When calculated from the epoxy equivalent of the obtained epoxy resin, 60% of X in the formula (8) was a glycidyl group.

【0064】実施例6 同様の方法でフレーク状水酸化ナトリウムの使用量を1
3.9部に変えたほかは実施例5と同様にしてエポキシ
当量393g/eq、軟化点69.5℃のエポキシ樹脂
(4)342部を得た。得られたエポキシ樹脂はエポキ
シ当量から計算すると式(8)におけるXのうち40%
がグリシジル基であった。
Example 6 The amount of flaky sodium hydroxide used was 1 by the same method.
342 parts of epoxy resin (4) having an epoxy equivalent of 393 g / eq and a softening point of 69.5 ° C. were obtained in the same manner as in Example 5 except that the amount was changed to 3.9 parts. The obtained epoxy resin is 40% of X in the formula (8) when calculated from the epoxy equivalent.
Was a glycidyl group.

【0065】実施例7〜8、比較例2 実施例5〜6で得られたエポキシ樹脂(3)〜(4)、
比較としてエポキシ樹脂エポミックR−301、硬化剤
としてフェノールノボラック(PN:日本化薬製)、硬
化剤として2−エチル4−メチルイミダゾールを用い、
表2に示す組成及び重量部で配合した組成物を、60〜
70℃で15分間ロール混練、冷却、粉砕し、さらにト
ランスファ−成形機により成形後、ポストキュアを行っ
て本発明及び比較用の硬化物を得て、そのガラス転移温
度、吸水率及び誘電率を測定した。
Examples 7-8, Comparative Example 2 Epoxy resins (3)-(4) obtained in Examples 5-6,
For comparison, epoxy resin Epomic R-301, phenol novolac (PN: manufactured by Nippon Kayaku) as a curing agent, and 2-ethyl 4-methylimidazole as a curing agent,
The composition shown in Table 2 and the composition blended by weight are
Roll kneading at 70 ° C. for 15 minutes, cooling, pulverization, and further molding by a transfer molding machine, post-curing to obtain a cured product of the present invention and a comparative product, and its glass transition temperature, water absorption coefficient and dielectric constant It was measured.

【0066】その結果を表2に示す。尚、トランスファ
ー成形条件及びポストキュアの条件は次の通りである。
The results are shown in Table 2. The transfer molding conditions and post cure conditions are as follows.

【0067】トランスファー成形条件 温度:160℃ 成形圧力:50kg/cm2 時間:3分 ポストキュアの条件 温度:180℃ 時間:4時間Transfer molding conditions Temperature: 160 ° C. Molding pressure: 50 kg / cm 2 hours: 3 minutes Post cure conditions Temperature: 180 ° C. Time: 4 hours

【0068】[0068]

【表2】 表2 実施例7 実施例8 比較例9 エポキシ樹脂(3) 100 エポキシ樹脂(4) 100 エポミックR−301 100 エポキシ当量(g/eq) 345 393 479 硬化剤(PN) 31 27 22 硬化促進剤(2E4MZ) 1 1 1 ガラス転移温度(℃) 135 130 110 吸水率(%) 0.6 0.6 0.8 誘電率(ε) 2.9 3.0 3.5 Table 2 Example 7 Example 8 Comparative Example 9 Epoxy resin (3) 100 Epoxy resin (4) 100 Epomic R-301 100 Epoxy equivalent (g / eq) 345 393 479 Curing agent (PN) 31 27 22 Curing accelerator (2E4MZ) 1 1 1 Glass transition temperature (℃) 135 130 110 Water absorption rate (%) 0.6 0.6 0.8 Dielectric constant (ε) 2.9 3.0 3.5

【0069】本発明のエポキシ樹脂は一般式(2)で表
されるエポキシ樹脂と比較して、表1、2より明らかな
ように、耐熱性、耐水性に優れしかも低誘電率という特
性の硬化物を与える。
Compared with the epoxy resin represented by the general formula (2), the epoxy resin of the present invention is excellent in heat resistance and water resistance as shown in Tables 1 and 2 and has a low dielectric constant. Give things.

【0070】実施例9〜10 実施例5〜6で得られたのエポキシ樹脂(3)〜(4)
を用い、これに硬化剤としてジシアンジアミド(DIC
Y)、硬化促進剤としてN,N−ジメチルベンジルアミ
ン(BDMA)、希釈溶剤としてメチルエチルケトン
(MEK)及びメチルセロソルブ(MCS)、DICY
溶解用にジメチルホルムアミド(DMF)を表3に示す
重量部で混合して得た組成物を70〜80℃で30分間
撹拌し、固形分が完全に溶解した後に、さらに40℃で
16時間エージングを行うことでワニスを調製した。こ
のワニスをガラスクロス(WEA18W105F115
N:日東紡績製)に含浸させた後120℃で10分間加
熱し半硬化したプリプレグを得た。このプリプレグを8
枚重ね、170℃、60分間、40Kgf/cm2でプ
レス成形してガラスクロス積層板を作製し、この積層板
のガラス転移温度、吸水率、半田耐熱性及び銅箔の剥離
強度を測定した。測定結果を表3に示す。
Examples 9 to 10 Epoxy resins (3) to (4) obtained in Examples 5 to 6
Dicyandiamide (DIC
Y), N, N-dimethylbenzylamine (BDMA) as a curing accelerator, methyl ethyl ketone (MEK) and methyl cellosolve (MCS) as a diluting solvent, DICY
The composition obtained by mixing dimethylformamide (DMF) in an amount shown in Table 3 for dissolution was stirred at 70 to 80 ° C for 30 minutes, and after the solid content was completely dissolved, it was further aged at 40 ° C for 16 hours. The varnish was prepared by performing. Use this varnish with glass cloth (WEA18W105F115
N: manufactured by Nitto Boseki Co., Ltd.) and then heated at 120 ° C. for 10 minutes to obtain a semi-cured prepreg. This prepreg is 8
The sheets were stacked and pressed at 170 ° C. for 60 minutes at 40 Kgf / cm 2 to produce a glass cloth laminate, and the glass transition temperature, water absorption rate, solder heat resistance, and copper foil peel strength of this laminate were measured. The measurement results are shown in Table 3.

【0070】比較例3 上記エポキシ樹脂のかわりに臭素含有ビスフェノールA
型エポキシ樹脂(エポミック R−232、エポキシ当
量483g/eq、軟化点74℃、三井石油化学(株)
製)を表3に示す重量部用い、実施例9〜10と同様に
してガラスクロス積層板を作成し、同様の特性の試験を
行った。
Comparative Example 3 Bromine-containing bisphenol A was used instead of the above epoxy resin.
Type epoxy resin (Epomic R-232, epoxy equivalent 483 g / eq, softening point 74 ° C, Mitsui Petrochemical Co., Ltd.)
Glass cloth laminates were prepared in the same manner as in Examples 9 to 10 using the weights shown in Table 3 and tested for similar properties.

【0071】その結果を表3に示す。尚、実施例9〜1
0及び比較例3においてガラス転移温度の試験片が50
mm×50mm、厚さ1.6mmの積層板(銅箔無し)
及び試験時間が24時間であることを除きガラス転移温
度、吸水率の測定条件は実施例3〜4と同様である。ま
た、半田耐熱性及び銅箔の剥離強度の測定条件は次の通
りである。 半田耐熱性 試験片(硬化物):50mm×50mm 厚さ 1.6mm 積層板(銅箔あり) 100℃の水中で15時間煮沸した後に280℃の半田溶液中に180 秒間浸し、表面の様子を観察する。 表面及び層間の膨れ、剥がれ等異常がなければ○ 〃 異常が有れば × 銅箔剥離強度 引張試験機:東洋ボールドウイン テンシロン RTM
−500 引張モード(180゜剥離) 測定温度:30℃、10
0℃、120℃ クロスヘッドスピード:200mm/min 銅箔:日鉱グールード製JTC箔 厚さ35μm
The results are shown in Table 3. Incidentally, Examples 9 to 1
0 and Comparative Example 3 had a glass transition temperature of 50.
mm × 50 mm, 1.6 mm thick laminated plate (without copper foil)
Also, the measurement conditions of the glass transition temperature and the water absorption are the same as those in Examples 3 to 4 except that the test time is 24 hours. The conditions for measuring the solder heat resistance and the peel strength of the copper foil are as follows. Solder heat resistance Test piece (cured product): 50 mm x 50 mm Thickness 1.6 mm Laminated board (with copper foil) Boiled in 100 ° C water for 15 hours and then immersed in a solder solution at 280 ° C for 180 seconds to show the appearance of the surface. Observe. If there is no abnormality such as swelling or peeling between the surface and the layer ○ If there is any abnormality × Copper foil peeling strength Tensile tester: Toyo Baldwin Tensilon RTM
-500 Tensile mode (180 ° peeling) Measurement temperature: 30 ° C, 10
0 ° C, 120 ° C Crosshead speed: 200 mm / min Copper foil: Nikko Gourde JTC foil Thickness 35 μm

【0072】[0072]

【表3】 表3 実施例3 実施例4 比較例2 エポキシ樹脂(3) 100 エポキシ樹脂(4) 100 エポミックR−232 100 エポキシ当量(g/eq) 345 393 483 硬化剤(DICY) 3.6 3.2 2.6 硬化促進剤(BDMA) 0.3 0.3 0.3 希釈溶剤(MEK) 55 50 50 (MCS) 11 10 10 DMF 18 16 13 ガラス転移温度(℃) 145 137 126 吸水率(%) 0.6 0.7 0.9 半田耐熱性 ○ ○ × 銅箔剥離強度(Kg/cm) 2.3 2.5 1.9Table 3 Table 3 Example 3 Example 4 Comparative Example 2 Epoxy resin (3) 100 Epoxy resin (4) 100 Epomic R-232 100 Epoxy equivalent (g / eq) 345 393 483 Curing agent (DICY) 3.6 3.2 2.6 Curing accelerator (BDMA) 0.3 0.3 0.3 Diluting solvent (MEK) 55 50 50 (MCS) 11 10 10 DMF 18 16 13 Glass transition temperature (℃) 145 137 126 Water absorption rate (%) 0.6 0.7 0.9 Solder heat resistance ○ ○ × Copper foil peel strength (Kg / cm) 2.3 2.5 1.9

【0073】表3から明らかなように本発明のエポキシ
樹脂組成物は耐熱性及び銅箔との接着強度に優れ、また
に耐水性及び誘電率関しても従来品以上である。
As is clear from Table 3, the epoxy resin composition of the present invention is excellent in heat resistance and adhesive strength with a copper foil, and is superior to conventional products in terms of water resistance and dielectric constant.

【0074】[0074]

【発明の効果】本発明のエポキシ樹脂は耐熱性、耐水性
に優れしかも低誘電率である硬化物を与えることがで
き、成形材料、注型材料、積層材料、塗料、接着剤、レ
ジストなどの広範囲の用途に極めて有用である。
INDUSTRIAL APPLICABILITY The epoxy resin of the present invention can give a cured product having excellent heat resistance and water resistance and a low dielectric constant, and can be used for molding materials, casting materials, laminating materials, paints, adhesives, resists, etc. Very useful for a wide range of applications.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一般式(1) 【化1】 (式中nは平均値を示し正数を表す。又Gはグルシジル
基を表す。個々のRは水素原子、ハロゲン原子、炭素数
1〜4のアルキル基、またはアリール基を表し、個々の
Rはお互いに同一であっても異なっていてもよい。又個
々のXは水素原子あるいはグリシジル基を表し、個々の
Xはお互いに同一であっても異なっていてもよいが、X
の0%以上95%以下はグリシジル基である。)で表さ
れるエポキシ樹脂。
1. A general formula (1): (In the formula, n represents an average value and represents a positive number. G represents a glycidyl group. Each R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group, and each R represents May be the same or different from each other, and each X represents a hydrogen atom or a glycidyl group, and each X may be the same or different from each other,
0% or more and 95% or less of is a glycidyl group. ) Epoxy resin represented by.
【請求項2】エポキシ樹脂および硬化剤、さらに必要に
より硬化促進剤から構成されるエポキシ樹脂組成物にお
いて、該エポキシ樹脂成分として請求項1記載のエポキ
シ樹脂を含有することを特徴とするエポキシ樹脂組成
物。
2. An epoxy resin composition comprising an epoxy resin, a curing agent, and optionally a curing accelerator, wherein the epoxy resin composition according to claim 1 is contained as the epoxy resin component. object.
【請求項3】積層板用に調製された請求項2記載のエポ
キシ樹脂組成物。
3. The epoxy resin composition according to claim 2, which is prepared for a laminated board.
【請求項4】請求項2または3記載のエポキシ樹脂組成
物の硬化物。
4. A cured product of the epoxy resin composition according to claim 2.
JP2759394A 1993-08-18 1994-02-01 Epoxy rein, epoxy resin composition and cured product thereof Pending JPH07109334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2759394A JPH07109334A (en) 1993-08-18 1994-02-01 Epoxy rein, epoxy resin composition and cured product thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-223969 1993-08-18
JP22396993 1993-08-18
JP2759394A JPH07109334A (en) 1993-08-18 1994-02-01 Epoxy rein, epoxy resin composition and cured product thereof

Publications (1)

Publication Number Publication Date
JPH07109334A true JPH07109334A (en) 1995-04-25

Family

ID=26365536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2759394A Pending JPH07109334A (en) 1993-08-18 1994-02-01 Epoxy rein, epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JPH07109334A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206814A (en) * 2003-12-24 2005-08-04 Sumitomo Chemical Co Ltd Epoxy compound and epoxy resin cured product obtained by curing the epoxy compound
KR20140127957A (en) * 2013-04-26 2014-11-05 코오롱인더스트리 주식회사 Low Dielectric Constant Epoxy Resin and Processes for Production thereof
JP2016069548A (en) * 2014-09-30 2016-05-09 新日鉄住金化学株式会社 Epoxy resin composition and cured article
JP2020015823A (en) * 2018-07-26 2020-01-30 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition, prepreg, laminate, and printed wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206814A (en) * 2003-12-24 2005-08-04 Sumitomo Chemical Co Ltd Epoxy compound and epoxy resin cured product obtained by curing the epoxy compound
JP4619770B2 (en) * 2003-12-24 2011-01-26 住友化学株式会社 Epoxy compound and cured epoxy resin obtained by curing the epoxy compound
KR20140127957A (en) * 2013-04-26 2014-11-05 코오롱인더스트리 주식회사 Low Dielectric Constant Epoxy Resin and Processes for Production thereof
JP2016069548A (en) * 2014-09-30 2016-05-09 新日鉄住金化学株式会社 Epoxy resin composition and cured article
JP2020015823A (en) * 2018-07-26 2020-01-30 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition, prepreg, laminate, and printed wiring board

Similar Documents

Publication Publication Date Title
JP3476027B2 (en) Manufacturing method of epoxy resin
KR0180927B1 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH1036485A (en) Epoxy resin, epoxy resin composition and cured product thereof
KR100531072B1 (en) Polyhydric phenol compounds, epoxy resins, epoxy resin compositions and cured products thereof
JP2761403B2 (en) Heat resistant epoxy resin composition
JP3659533B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH07109334A (en) Epoxy rein, epoxy resin composition and cured product thereof
JPH069752A (en) Epoxy resin composition and cured product thereof
JP2587739B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3441020B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3540018B2 (en) Epoxy resin composition and cured product thereof
JPH08193110A (en) Novolak resin, epoxy resin, epoxy resin composition, and cured article obtained therefrom
JP3476584B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3468315B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH06239966A (en) Epoxy resin, epoxy resin composition and its cured product
JPH06298904A (en) Epoxy resin composition, epoxy resin mixture and its cured material
JPH08269168A (en) Epoxy resin, epoxy resin composition and its cured product
JP3529118B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3429829B2 (en) Epoxy resin composition and cured product thereof
JP4104119B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3068285B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH06248055A (en) Epoxy resin, epoxy resin composition and its cured product
JPH1077330A (en) Epoxy resin, epoxy resin composition and its cured material
JPH10120758A (en) Epoxy resin, epoxy resin composition and its cured product
JPH10195174A (en) Epoxy resin, epoxy resin composition and cured material made therefrom