JPH07108103B2 - Ultrasonic motor device - Google Patents

Ultrasonic motor device

Info

Publication number
JPH07108103B2
JPH07108103B2 JP59243646A JP24364684A JPH07108103B2 JP H07108103 B2 JPH07108103 B2 JP H07108103B2 JP 59243646 A JP59243646 A JP 59243646A JP 24364684 A JP24364684 A JP 24364684A JP H07108103 B2 JPH07108103 B2 JP H07108103B2
Authority
JP
Japan
Prior art keywords
electrode groups
ultrasonic motor
electrode
driving body
motor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59243646A
Other languages
Japanese (ja)
Other versions
JPS61124274A (en
Inventor
修 川崎
律夫 稲葉
晃 徳島
宏 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59243646A priority Critical patent/JPH07108103B2/en
Publication of JPS61124274A publication Critical patent/JPS61124274A/en
Publication of JPH07108103B2 publication Critical patent/JPH07108103B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は弾性進行波を駆動力として利用する超音波モー
タ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic motor device that uses an elastic traveling wave as a driving force.

従来の技術 近年圧電セラミック等の圧電体を用いて、駆動体中に弾
性進行波を励起し、駆動体上に設置された動体を移動さ
せる超音波モータが発表され、構造が簡単、軽薄短小と
いう特徴のために話題になっている。(例えば日経メカ
ニカル'83 2/28 P44〜49) 以下、図面を参照しながら従来の超音波モータ装置につ
いて説明を行なう。
2. Description of the Related Art Recently, an ultrasonic motor that uses a piezoelectric body such as a piezoelectric ceramic to excite an elastic traveling wave in a driving body to move a moving body installed on the driving body has been announced. It is a topic because of its characteristics. (For example, Nikkei Mechanical '83 2/28 P44-49) Hereinafter, a conventional ultrasonic motor device will be described with reference to the drawings.

第3図は円環形の超音波モータの断面図である。同図に
おいて、円環形の弾性体1の主面の一方に円環形圧電セ
ラミック2を貼合せて圧電駆動体3を構成している。4
は耐磨耗性材料のスライダで、5は弾性体であり、互い
に貼合せられて動体6を構成している。動体6はスライ
ダ4を介して駆動体3と接触している。圧電セラミック
2に電界を印加すると駆動体3に曲げ振動の進行波が励
起され、動体6が回転する。
FIG. 3 is a sectional view of an annular ultrasonic motor. In the figure, a ring-shaped piezoelectric ceramic 2 is bonded to one of the main surfaces of a ring-shaped elastic body 1 to form a piezoelectric driving body 3. Four
Is a slider made of wear resistant material, and 5 is an elastic body, which are bonded to each other to form a moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4. When an electric field is applied to the piezoelectric ceramic 2, a traveling wave of bending vibration is excited in the driving body 3 and the moving body 6 rotates.

第2図は第1図の超音波モータに使用している圧電セラ
ミック2の電極構造を示している。同図では円周方向に
曲げ振動が9波長のるように電極を構成している。A,B
はそれぞれ2分の1波長相当の8個の小領域から成る電
極群で、Cは4分の3波長、Dは4分の1波長相当分の
長さの電極である。電極群A,B内の隣合う小電極部分は
互いに反対方向に厚み方向に分極されている。第2図に
示された面の反対面はベタ電極であり、弾性体1と貼合
せられる。従って弾性体1が導電体ならば、電極の一方
として弾性体1から端子を取出すこともできる。使用時
には電極群A,Bは第2図に斜線で示されたように短絡さ
れて、上記のベタ電極との間に電圧が印加される。上記
の説明により電極群A,Bはそれぞれ4分の1波長相当分
の位置的な位相ずれがある。
FIG. 2 shows the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, the electrodes are configured so that bending vibration has 9 wavelengths in the circumferential direction. A, B
Is an electrode group consisting of eight small regions each corresponding to one-half wavelength, C is a three-quarter wavelength, and D is an electrode having a length corresponding to one-quarter wavelength. Adjacent small electrode portions in the electrode groups A and B are polarized in the thickness direction in mutually opposite directions. The surface opposite to the surface shown in FIG. 2 is a solid electrode, which is bonded to the elastic body 1. Therefore, if the elastic body 1 is a conductor, the terminal can be taken out from the elastic body 1 as one of the electrodes. In use, the electrode groups A and B are short-circuited as shown by the hatched lines in FIG. 2, and a voltage is applied between the electrodes and the solid electrodes. According to the above description, the electrode groups A and B each have a positional phase shift corresponding to a quarter wavelength.

以上のように構成された超音波モータについてその動作
を以下に説明する。前記圧電セラミック2の電極群Aに V=V0sin(ωt) ……(1) V0:電圧Vの瞬時値 ω:角周波数 t :時間 で表せる電圧Vを印加すると、駆動体3は円周方向に曲
げ振動をする。
The operation of the ultrasonic motor configured as described above will be described below. When a voltage V represented by V = V 0 sin (ωt) (1) V 0 : instantaneous value of voltage V ω: angular frequency t: time is applied to the electrode group A of the piezoelectric ceramic 2, the driving body 3 is circular. Bends and vibrates in the circumferential direction.

第3図は第1図の超音波モータの駆動体3のモデル化し
た斜視図であり、同図上は圧電セラミック2に電圧を印
加する前の状態で、同図下は圧電セラミック2に電圧を
印加した時の状態を示す。
FIG. 3 is a modeled perspective view of the driving body 3 of the ultrasonic motor shown in FIG. 1. The upper part of FIG. 3 shows a state before a voltage is applied to the piezoelectric ceramic 2, and the lower part of the figure shows a voltage applied to the piezoelectric ceramic 2. The state when a voltage is applied is shown.

第4図は動体6と駆動体3の接触状況を拡大して描いて
いる。圧電セラミック2の電極群Aに V=V0sin(ωt) ……(2) もう一方の電極群Bに V=V0cos(ωt) ……(3) の互いに時間的に位相がπ/2だけ異なる電圧を印加すれ
ば、駆動体3の円周方向に曲げ振動の進行波が作られ
る。何故なら、一般に進行波は振幅をξとすれば ξ=ξ0cos(ωt−kx) ……(4) ξ0:振幅ξの瞬時値 k :波数(2π/λ),λ:波長 x :位置 で乗せる。(4)式は ξ=ξ0〔cosωtcoskx+sinωtsinks〕 ……(5) と書き直せ、(5)式は進行波が、時間的にπ/2だけ位
相のずれた波cosωtとsinωt、および位置的にπ/2だ
け位相のずれたcoskxとsinkxとのそれぞれの積の和で得
られることを示している。前述の説明により、圧電セラ
ミック2は互いに位置的にπ/2だけ位相のずれた電極群
A,Bを有しており、それぞれに時間的にπ/2だけ位相の
ずれた電圧を印加すれば駆動体3に曲げ振動の進行波が
作れる。第6図は駆動体3のA点が進行波によって、長
軸2w、短軸2uの楕円運動をしている様子を示し、駆動体
3上に置かれた動体6が楕円の頂点で接触することによ
り、波の進行方向とは逆方向に v=ω・u ……(6) の速度で運動する様子を示している。即ち動体6は任意
の静圧で駆動体3に押しつけられて駆動体3の表面に接
触し、動体6と駆動体3の間の摩擦力で波の進行方向と
は逆方向に速度vで駆動される。外部に対してなす仕事
がこの摩擦力より大きい時には、動体6と駆動体3の間
に滑りが生じ速度はvよりも小さくなる。
FIG. 4 is an enlarged view of the contact state between the moving body 6 and the driving body 3. In the electrode group A of the piezoelectric ceramic 2, V = V 0 sin (ωt) ・ ・ ・ (2) In the other electrode group B, V = V 0 cos (ωt) ・ ・ ・ (3). If two different voltages are applied, a traveling wave of bending vibration is generated in the circumferential direction of the driving body 3. This is because, in general, a traveling wave has an amplitude of ξ: ξ = ξ 0 cos (ωt−kx) (4) ξ 0 : instantaneous value of amplitude ξ k: wave number (2π / λ), λ: wavelength x: Put it in position. Equation (4) can be rewritten as ξ = ξ 0 [cosωtcoskx + sinωtsinks] (5), and equation (5) shows that the traveling wave is a wave cosωt and sinωt whose phase is shifted by π / 2 in time, and π in position. It shows that it can be obtained by the sum of the products of coskx and sinkx, which are out of phase by / 2. According to the above description, the piezoelectric ceramics 2 are electrode groups that are phase-shifted from each other by π / 2.
A and B are provided, and a progressive wave of bending vibration can be generated in the driving body 3 by applying a voltage with a phase difference of π / 2 in time. FIG. 6 shows a state in which the point A of the driving body 3 makes an elliptic motion of the long axis 2w and the short axis 2u by the traveling wave, and the moving body 6 placed on the driving body 3 contacts at the apex of the ellipse. As a result, it is shown that the wave moves in the direction opposite to the traveling direction of the wave at a speed of v = ω · u (6). That is, the moving body 6 is pressed against the driving body 3 by an arbitrary static pressure and comes into contact with the surface of the driving body 3, and the frictional force between the moving body 6 and the driving body 3 drives the moving body 6 at a speed v in the direction opposite to the traveling direction of the wave. To be done. When the work done to the outside is larger than this frictional force, slippage occurs between the moving body 6 and the driving body 3 and the speed becomes smaller than v.

発明が解決しようとする問題点 以上説明してきた超音波モータの速度は v=ω・u∝ω・ξ0∝ω・I ……(7) で決まる。即ち駆動体3の曲げ振動の振幅の瞬時値ξ0
に比例し、この瞬時値ξ0は電極群A,Bに流れる電流値に
比例する。電極群A,Bへの機械的負荷が一定ならば、電
極群A,Bからみた電気インピーダンスは同一で一定とな
り、同一電圧値を印加すれば同一電流が流れ、電極群A,
B部での振幅ξ0は同一となる。しかし、実際には動体6
が回転しているため電極群A,B部での機械的負荷が変化
したり、温度上昇が起きたりして、電極群A,Bから見た
電気インピーダンスが変化すれば、同一電圧を印加して
も同一電流とならず、同一電圧の印加では電極群A,B部
によって励起される曲げ振動の変位ξは同一とはならな
い。
Problems to be Solved by the Invention The speed of the ultrasonic motor described above is determined by v = ω · u∝ω · ξ 0 ∝ω · I (7). That is, the instantaneous value ξ 0 of the bending vibration amplitude of the driving body 3
And the instantaneous value ξ 0 is proportional to the current value flowing in the electrode groups A and B. If the mechanical load on the electrode groups A and B is constant, the electrical impedance seen from the electrode groups A and B will be the same and constant, and if the same voltage value is applied, the same current will flow, and the electrode groups A,
The amplitude ξ 0 at the B part is the same. However, in reality, the moving body 6
If the electrical load seen from the electrode groups A and B changes due to changes in the mechanical load at the electrode groups A and B and temperature rise due to the rotation of the electrodes, the same voltage is applied. However, the same current is not obtained, and the displacement ξ of bending vibration excited by the electrode groups A and B is not the same when the same voltage is applied.

今、電極群A,B部によって励起される曲げ振動の変位を
ξ0,ξ0+Δξ0とすれば(5)式より ξ=ξ0〔cosωtcoskx+sinωtsinωt〕 +Δξ0sinωt・sinkx =ξ0cos(ωt−kx)+Δξ0sinωt・sinkx ……
(8) となり、変位の振幅の差Δξ0の分だけは駆動体3に定
在波が立つ。この定在波の分だけ駆動体3内での損失が
増加し、動体6の移動速度vは(6)式で示された値よ
りも小さくなり、機械出力が小さくなり効率が低下する
などの問題点がある。
If the displacement of bending vibration excited by the electrode groups A and B is ξ 0 , ξ 0 + Δξ 0 , then from equation (5) ξ = ξ 0 [cosωtcoskx + sinωtsinωt] + Δξ 0 sinωt ・ sinkx = ξ 0 cos (ωt −kx) + Δξ 0 sin ωt ・ sinkx ……
(8), and the standing wave is generated in the driving body 3 by the difference Δξ 0 between the displacement amplitudes. The loss in the driving body 3 increases by the amount of this standing wave, the moving speed v of the moving body 6 becomes smaller than the value shown by the equation (6), the mechanical output becomes small, and the efficiency decreases. There is a problem.

本発明では上記の問題点を解決して、効率の良い機械出
力の大きい、超音波モータを提供することを目的とす
る。
It is an object of the present invention to solve the above problems and provide an efficient ultrasonic motor having a large mechanical output.

問題点を解決するための手段 弾性体と4分の1波長相当分だけ互いに位置的に位相の
ずれた2つの電極群を有する圧電体とを貼り合せて圧電
駆動体を構成し、上記駆動体上に動体を設置し、上記2
つの電極群に互いに時間的に位置の90°異なる2つの電
気信号を印加して、上記駆動体に曲げ振動の進行波を励
起し、上記動体を移動させる超音波モータにおいて、上
記2つの電極群A,Bにそれぞれ抵抗素子を直列接続し、
上記2つの直列接続体に駆動電圧を印加して、上記抵抗
素子の端子電圧により上記2つの電極群への流入電流を
検出して、上記2つの電極群に流れる電流値を実時間で
一致させることにより、駆動体中に立つ定在波をなくし
て、進行波成分のみを励起する。この結果、機械出力を
大きくして、効率を高くできる。
Means for Solving the Problems An elastic body and a piezoelectric body having two electrode groups, which are phase-shifted from each other by a quarter wavelength, are bonded together to form a piezoelectric drive body. Install the moving body on the above, 2 above
In an ultrasonic motor for moving two moving bodies by applying two electric signals whose positions are temporally different from each other by 90 ° to each other to excite a traveling wave of bending vibration in the driving body, Connect resistance elements in series to A and B respectively,
A drive voltage is applied to the two serially connected bodies, an inflow current into the two electrode groups is detected by a terminal voltage of the resistance element, and current values flowing through the two electrode groups are matched in real time. As a result, the standing wave standing in the driver is eliminated and only the traveling wave component is excited. As a result, the mechanical output can be increased and the efficiency can be increased.

作用 圧電セラミックに形成された、位置的にπ/2だけ位相の
ずれた2つの電極群A,Bにそれぞれ接続された抵抗素子
の両端電圧により、上記電極群A,Bに流入する電流値を
一致させることにより、電極群A,B部によって起こされ
る曲げ振動の変位を、それぞれξA,ξBとすれば であるから、駆動体3の曲げ振動は(9)式より、 ξ=ξ0cos(ωt−kx) ……(10) となり、定在波がなくなり、最適条件で超音波モータの
駆動ができる。
The current value flowing into the above electrode groups A and B is changed by the voltage across the resistive elements connected to the two electrode groups A and B, which are phase-shifted by π / 2 on the piezoelectric ceramic. By making them coincident, if the displacements of bending vibration caused by the electrode groups A and B are ξ A and ξ B , respectively. Therefore, the bending vibration of the driving body 3 becomes ξ = ξ 0 cos (ωt−kx) (10) from the equation (9), the standing wave disappears, and the ultrasonic motor can be driven under the optimum conditions. .

この作用は2つの電極群A,Bにそれぞれ直列接続された
抵抗素子の端子電圧を一定で同一にすることによって
も、上記2つの抵抗素子の一方の端子電圧を一定にし
て、一方の電極群への流入電流値を一定にし、他方は一
方の電流値と等しくなるように制御することによっても
得られる。
This effect is also obtained by making the terminal voltages of the resistance elements connected in series to the two electrode groups A and B constant and the same, and also making one terminal voltage of the two resistance elements constant and making one electrode group It can also be obtained by controlling the inflow current value into the other to be constant and controlling the other to be equal to one current value.

また双方の電極群への電流値を一定化せず、単に電流値
を一定にするだけでも、(10)式のξ0の値が変わるだ
けで定在波はたたず効率の良い駆動ができる。ξ0を一
定化すれば、駆動体と動体の間にすべりのない間は定速
回転が得られる。
In addition, even if the current value to both electrode groups is not made constant, but only the current value is made constant, the value of ξ 0 in Eq. it can. If ξ 0 is made constant, constant speed rotation can be obtained while there is no slip between the driving body and the moving body.

実施例 以下図に従って本発明の実施例について詳細な説明を行
なう。第1図は本発明の一実施例の超音波モータ装置の
ブロック図である。同図において電気信号の処理をわか
りやすくするために、超音波モータは圧電セラミック2
のみが描かれているが、実際には第3図に示したように
構成されている。電極群Aには抵抗素子RAが直列接続さ
れており、電力増幅器9により駆動電圧が印加される。
電極群Aに流入した電流は抵抗素子RAの両端電圧として
差動増幅器7により検出され、バンドパスフィルタ増幅
器8に入力される。ここで駆動周波数成分のみが抜き出
され、電力増幅器9に入力される。このループにより駆
動周波数と同一の周波数で自励発振される。差動増幅器
7、バンドパスフィルタ増幅器8および電力増幅器9が
駆動周波数で入出力の位相差が0になるように設定すれ
ば、発振周波数は駆動体3の共振周波数に一致する。
Embodiment An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram of an ultrasonic motor device according to an embodiment of the present invention. In order to make the processing of electric signals easier to understand in the figure, the ultrasonic motor is a piezoelectric ceramic 2
Although only the drawing is shown, it is actually configured as shown in FIG. A resistance element R A is connected in series to the electrode group A, and a drive voltage is applied by the power amplifier 9.
The current flowing into the electrode group A is detected by the differential amplifier 7 as the voltage across the resistance element R A , and is input to the bandpass filter amplifier 8. Here, only the driving frequency component is extracted and input to the power amplifier 9. This loop causes self-oscillation at the same frequency as the drive frequency. When the differential amplifier 7, the bandpass filter amplifier 8 and the power amplifier 9 are set so that the input / output phase difference becomes 0 at the drive frequency, the oscillation frequency matches the resonance frequency of the driver 3.

バンドパスフィルタ増幅器8の出力を90°位相器10に入
力して電力増幅器11に入力する。電力増幅器11は所定の
レベルまで増幅した信号を抵抗素子RBを通して電極群B
に入力する。これで駆動体3には曲げ振動の進行波が励
起される。抵抗素子RBの両端電圧には差動増幅器12に入
力され、電極群Bに流入した電流値が検出される。電極
群Aに流入して電流値に比例した電圧値が差動増幅器7
の出力として、電極群Bに流入した電流値に比例した電
圧値が差動増幅器12の出力として得られる。それぞれの
出力は差動増幅器13に入力されて、電極群A,Bへの流入
電流差の比例した電圧値に直される。差動増幅器13の出
力は電力増幅器11の−入力端子に入れられる。従って電
極Bへの電流値が電極Aの電流値よりもおおきくなれ
ば、差動増幅器13の出力は正となり、電力増幅器11の出
力レベルが低くなり電極群A,B間の電流値を一致させる
ように働く。
The output of the bandpass filter amplifier 8 is input to the 90 ° phase shifter 10 and the power amplifier 11. Power amplifier 11 is the electrode group B via the resistor element R B a signal amplified to a predetermined level
To enter. As a result, a traveling wave of bending vibration is excited in the driving body 3. The voltage across the resistance element R B is input to the differential amplifier 12 and the current value flowing into the electrode group B is detected. A voltage value proportional to the current value that flows into the electrode group A causes a differential amplifier 7
As the output of the differential amplifier 12, a voltage value proportional to the current value flowing into the electrode group B is obtained as the output of the differential amplifier 12. Each output is input to the differential amplifier 13 and is converted into a voltage value proportional to the difference between the currents flowing into the electrode groups A and B. The output of the differential amplifier 13 is input to the negative input terminal of the power amplifier 11. Therefore, if the current value to the electrode B becomes larger than the current value to the electrode A, the output of the differential amplifier 13 becomes positive, the output level of the power amplifier 11 becomes low, and the current values between the electrode groups A and B are made to coincide with each other. Work like.

上の実施例において、自励発振回路の発振強度を一定に
なるようにすれば超音波モータは定速回転し、そうでな
い場合には定速回転はしないが共に定在波はたたず効率
の良い駆動ができる。
In the above embodiment, if the oscillation intensity of the self-excited oscillation circuit is made constant, the ultrasonic motor rotates at a constant speed, otherwise it does not rotate at a constant speed, but there is no standing wave and the efficiency is high. It can drive well.

第2図は本発明の別の実施例のブロック図である。発振
器14は超音波モータの駆動周波数で発振し、電力増幅器
9により所定のレベルまで増幅される。増幅後、抵抗素
子RAを通して電極群Aに印加される。電極群Aへの流入
電流値は抵抗素子RAの端子電圧を差動増幅器7に入力す
ることにより、比例した電圧値に変換される。差動増幅
器7の出力は発振器14の制御端子に入力され、抵抗素子
RAの両端電圧が一定(電極Aへの流入電流が一定)にな
るように制御される。発振器14の出力は、また90°位相
器10にも入力され、90°だけ位相をシフトされて電力増
幅器11により所定のレベルまで増幅される。電力増幅器
11の出力は抵抗素子RBを通して電極群Bに印加される。
電極群Bに流入された電流値は、抵抗素子RBの端子電圧
を差動増幅器12に入力することにより、比例した値の電
圧値の電圧値に変換される。電極A,B間の電流値の差は
差動増幅器13の出力電圧として得られ、電流増幅器11の
−端子に入力することにより電極群A,B間の電流差を常
に0にするように働く。
FIG. 2 is a block diagram of another embodiment of the present invention. The oscillator 14 oscillates at the driving frequency of the ultrasonic motor and is amplified to a predetermined level by the power amplifier 9. After amplification, it is applied to the electrode group A through the resistance element R A. The current value flowing into the electrode group A is converted into a proportional voltage value by inputting the terminal voltage of the resistance element R A to the differential amplifier 7. The output of the differential amplifier 7 is input to the control terminal of the oscillator 14, and the resistance element
It is controlled so that the voltage across R A is constant (the current flowing into the electrode A is constant). The output of the oscillator 14 is also input to the 90 ° phase shifter 10, is phase-shifted by 90 °, and is amplified to a predetermined level by the power amplifier 11. Power amplifier
The output of 11 is applied to the electrode group B through the resistance element R B.
The current value flowing into the electrode group B is converted into a voltage value having a proportional value by inputting the terminal voltage of the resistance element R B to the differential amplifier 12. The difference in the current value between the electrodes A and B is obtained as the output voltage of the differential amplifier 13, and by inputting it to the negative terminal of the current amplifier 11, it works so that the current difference between the electrode groups A and B is always zero. .

第2図の実施例において、差動増幅器13をなくして差動
増幅器12の出力を電力増幅器11の−端子に入力して、抵
抗素子RBの端子電圧を抵抗素子RAの端子電圧に等しくな
るように、差動増幅器12の利得を微調しても、電極A,B
間の電流差を0にできる。しかし、この場合は電極群A,
Bの電流値をそれぞれ微調しなければならない。
In the embodiment of FIG. 2, the differential amplifier 13 is eliminated and the output of the differential amplifier 12 is input to the negative terminal of the power amplifier 11 so that the terminal voltage of the resistance element R B becomes equal to the terminal voltage of the resistance element R A. Therefore, even if the gain of the differential amplifier 12 is finely adjusted, the electrodes A and B are
The current difference between them can be zero. However, in this case the electrode group A,
The current value of B must be finely adjusted.

発明の効果 以上説明したように、2つの電極群に流入する電流値を
実時間で一致させることにより、圧電駆動体に曲げ振動
の進行波のみを励起し、定在波がたたないようにしてい
るので、損失が小さく、動体の移動速度の大きい、即ち
効率の良い駆動ができる超音波モータ装置を提供でき
る。
EFFECTS OF THE INVENTION As described above, by matching the current values flowing into the two electrode groups in real time, only the traveling wave of bending vibration is excited in the piezoelectric driving body and the standing wave is prevented from standing. Therefore, it is possible to provide an ultrasonic motor device that has a small loss and a high moving speed of the moving body, that is, can be efficiently driven.

上記電流値が一定であれば、動体の速度を一定にでき
る。
If the current value is constant, the speed of the moving body can be constant.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例である超音波モータ装置のブ
ロック図、第2図は別の実施例のブロック図、第3図は
超音波モータの断面図、第4図は第2図に用いられてい
る圧電セラミックの形状と電極構造を示す平面図、第5
図は超音波モータの駆動体部の振動状態を示すモデル
図、第6図は超音波モータの原理の説明図である。 7……差動増幅器、8……バンドパスフィルタ増幅器、
9……電力増幅器、10……90°移相器、11……電力増幅
器、12……差動増幅器、13……差動増幅器、14……発振
器。
1 is a block diagram of an ultrasonic motor device according to an embodiment of the present invention, FIG. 2 is a block diagram of another embodiment, FIG. 3 is a sectional view of the ultrasonic motor, and FIG. 4 is FIG. FIG. 5 is a plan view showing the shape and electrode structure of the piezoelectric ceramic used in
FIG. 6 is a model diagram showing a vibration state of a driving body portion of the ultrasonic motor, and FIG. 6 is an explanatory diagram of the principle of the ultrasonic motor. 7 ... Differential amplifier, 8 ... Bandpass filter amplifier,
9 ... Power amplifier, 10 ... 90 ° phase shifter, 11 ... Power amplifier, 12 ... Differential amplifier, 13 ... Differential amplifier, 14 ... Oscillator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 宏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭59−216482(JP,A) 日経メカニカル 1982.3.1 P.45 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Ouchi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-59-216482 (JP, A) Nikkei Mechanical 1982.3 .1 P. 45

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】弾性体と4分の1波長相当分だけ互いに位
置的に位相のずれた2つの電極群を有する圧電体とを貼
り合せて圧電駆動体を構成し、上記駆動体上に動体を設
置し、上記2つの電極群に互いに時間的に位置の90°異
なる2つの電気信号を印加して、上記駆動体に曲げ振動
の進行波を励起し、上記駆動体上の動体を移動させる超
音波モータにおいて、上記2つの電極群に印加する上記
電気信号を、上記2つの電極群のうち1つを使用する
か、別電極を構成して使用するかして自励発振回路を構
成することにより作るか、別の発振回路により作り、上
記2つの電極群のそれぞれに抵抗素子を直列接続した2
つの直列接続体に上記電気信号を印加し、上記2つの電
極群に流入する電流値を、上記2つの抵抗素子の端子電
圧で検出して、上記2つの電極群に流れる電流値を実時
間で一致させることを特徴とする超音波モータ装置。
1. A piezoelectric driving body is formed by bonding an elastic body and a piezoelectric body having two electrode groups, which are phase-shifted from each other by an amount corresponding to a quarter wavelength, and a moving body is formed on the driving body. Is installed and two electric signals whose positions are temporally different from each other by 90 ° are applied to the two electrode groups to excite a traveling wave of bending vibration in the driving body to move the moving body on the driving body. In the ultrasonic motor, the electric signal applied to the two electrode groups is used to configure a self-excited oscillation circuit by using one of the two electrode groups or by using another electrode. Or a separate oscillator circuit and a resistor element connected in series to each of the above two electrode groups.
The electric signal is applied to two serially connected bodies, the current value flowing into the two electrode groups is detected by the terminal voltage of the two resistance elements, and the current value flowing in the two electrode groups is detected in real time. An ultrasonic motor device characterized by matching.
【請求項2】2つの電極群のうち双方とも定電流駆動を
することを特徴とする特許請求の範囲第1項記載の超音
波モータ装置。
2. The ultrasonic motor device according to claim 1, wherein both of the two electrode groups are driven by a constant current.
【請求項3】2つの電極群のうち1方を定電流駆動し、
他方を2つの抵抗素子の端子電圧の差により、上記1方
の電極群の電流値に実時間で一致させることを特徴とす
る特許請求の範囲第1項記載の超音波モータ装置。
3. One of the two electrode groups is driven with a constant current,
The ultrasonic motor device according to claim 1, wherein the other one is made to match the current value of the one electrode group in real time by a difference between the terminal voltages of the two resistance elements.
【請求項4】2つの電極群の双方とも定電流駆動とせ
ず、2つの抵抗素子の端子電圧の差の検出により、双方
の電極群への電流値を実時間で一致させることを特徴と
する特許請求の範囲第1項記載の超音波モータ装置。
4. Both of the two electrode groups are not driven with a constant current, and the current values to the two electrode groups are matched in real time by detecting the difference between the terminal voltages of the two resistance elements. The ultrasonic motor device according to claim 1.
JP59243646A 1984-11-19 1984-11-19 Ultrasonic motor device Expired - Lifetime JPH07108103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59243646A JPH07108103B2 (en) 1984-11-19 1984-11-19 Ultrasonic motor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59243646A JPH07108103B2 (en) 1984-11-19 1984-11-19 Ultrasonic motor device

Publications (2)

Publication Number Publication Date
JPS61124274A JPS61124274A (en) 1986-06-12
JPH07108103B2 true JPH07108103B2 (en) 1995-11-15

Family

ID=17106911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59243646A Expired - Lifetime JPH07108103B2 (en) 1984-11-19 1984-11-19 Ultrasonic motor device

Country Status (1)

Country Link
JP (1) JPH07108103B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101940B2 (en) * 1986-03-10 1994-12-12 株式会社ニコン Ultrasonic motor
JP2604731B2 (en) * 1986-10-28 1997-04-30 松下電器産業株式会社 Ultrasonic motor drive
JPH0226285A (en) * 1988-07-15 1990-01-29 Sony Corp Driver circuit for ultrasonic motor
MY120661A (en) * 1994-11-18 2005-11-30 Sony Corp Method and apparatus for control of a supersonic motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日経メカニカル1982.3.1P.45

Also Published As

Publication number Publication date
JPS61124274A (en) 1986-06-12

Similar Documents

Publication Publication Date Title
KR900007413B1 (en) Drive method for ultrasonic motor
JPS6356178A (en) Driving of ultrasonic motor
JPH07108103B2 (en) Ultrasonic motor device
JP2663380B2 (en) Piezoelectric ultrasonic linear motor
JPH0815398B2 (en) Ultrasonic motor drive
JPH072022B2 (en) Ultrasonic motor driving method
JP2583904B2 (en) Ultrasonic motor driving method
JP2604731B2 (en) Ultrasonic motor drive
JP2558709B2 (en) Ultrasonic motor drive
JP2543106B2 (en) Ultrasonic motor drive
JP2636280B2 (en) Driving method of ultrasonic motor
JP2574293B2 (en) Ultrasonic motor driving method
JP3141525B2 (en) Ultrasonic motor drive control method
JPH0632569B2 (en) Ultrasonic motor driving method
JPH0710187B2 (en) Ultrasonic motor driving method
JP3161028B2 (en) Ultrasonic motor
JP2563351B2 (en) Ultrasonic motor driving method
JPS6292781A (en) Ultrasonic motor device
JP2577485B2 (en) Driving method of ultrasonic motor
JP2615848B2 (en) Ultrasonic actuator control device
JP2538088B2 (en) Driving method for ultrasonic motor
JPH07131987A (en) Drive control circuit for ultrasonic motor
JPH04331484A (en) Driving method for ultrasonic motor
JPH09145380A (en) Oscillation gyro and method for adjusting its characteristics
JPH01148079A (en) Driver for ultrasonic motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term