JPH07107441B2 - Liquid fuel atomizer - Google Patents

Liquid fuel atomizer

Info

Publication number
JPH07107441B2
JPH07107441B2 JP25408586A JP25408586A JPH07107441B2 JP H07107441 B2 JPH07107441 B2 JP H07107441B2 JP 25408586 A JP25408586 A JP 25408586A JP 25408586 A JP25408586 A JP 25408586A JP H07107441 B2 JPH07107441 B2 JP H07107441B2
Authority
JP
Japan
Prior art keywords
passage
fuel
annular
atomizer
liquid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25408586A
Other languages
Japanese (ja)
Other versions
JPS63108104A (en
Inventor
芳孝 高橋
忠久 政井
文夫 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25408586A priority Critical patent/JPH07107441B2/en
Publication of JPS63108104A publication Critical patent/JPS63108104A/en
Publication of JPH07107441B2 publication Critical patent/JPH07107441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nozzles For Spraying Of Liquid Fuel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体状燃料、例えば油等の液体燃料及び石炭等
の固体と液体との混合系スラリ燃料を噴霧するアトマイ
ザに係り、特に石炭−水スラリを高圧の空気又は蒸気等
の噴霧媒体によって噴霧燃焼する際の微粒化性能を向上
するのに好適な液体状燃料噴霧アトマイザに関する。
Description: TECHNICAL FIELD The present invention relates to an atomizer for spraying a liquid fuel, for example, a liquid fuel such as oil and a mixed slurry fuel of solid and liquid such as coal, and particularly to a coal-based atomizer. The present invention relates to a liquid fuel spray atomizer suitable for improving atomization performance when spraying and combusting water slurry with a spray medium such as high-pressure air or steam.

〔従来の技術〕[Conventional technology]

石炭の流体化技術の一つに石炭−水スラリがある。これ
は、微粉炭に代わる新しい石炭の利用形態であり、電力
用叉は産業用ボイラへの利用が進められている。石炭−
水スラリは、石炭を従来の石油系燃料と同様に、ポンプ
でバーナまで供給できるために、微粉炭の空気輸送と比
較して流量の制御の簡便さと燃料供給管径の縮小などの
輸送面の利点がある。また、ボイラ用の燃料としての石
炭−水スラリを考えると、燃料の発熱量を高くする必要
性から、石炭−水スラリに含まれる石炭の濃度を62〜70
重量%にまで高くした高濃度の石炭−水スラリがボイラ
用燃料として用いられている。
Coal-water slurry is one of the fluidization technologies for coal. This is a new form of utilization of coal instead of pulverized coal, and its use for electric power or industrial boilers is being promoted. Coal
Since water slurry can supply coal to a burner with a pump, similar to conventional petroleum-based fuels, compared to pneumatic transportation of pulverized coal, the control of flow rate and reduction of fuel supply pipe diameter are important for transportation. There are advantages. In addition, considering coal-water slurry as a fuel for boilers, it is necessary to increase the calorific value of the fuel so that the concentration of coal contained in the coal-water slurry should be 62-70.
Highly concentrated coal-water slurries up to wt% are used as boiler fuels.

さて、このような流体として取扱い可能な石炭水スラリ
を燃焼する際には、液体状の石炭−水スラリを微小な噴
霧粒子にまで小さくするアトマイザが必要となる。石炭
−水スラリは石炭粒子を含み、また高粘度の流体である
ため、アトマイザには空気叉は蒸気を含む噴霧媒体とし
て用いて、気体の運動エネルギで石炭−水スラリを微小
粒子にまで噴霧する二流体アトマイザが主として用いら
れている。二流体アトマイザは種々の構造が提案されて
いる。
Now, when burning a coal water slurry that can be handled as such a fluid, an atomizer that reduces the liquid coal-water slurry into fine spray particles is required. Since the coal-water slurry contains coal particles and is a high-viscosity fluid, it is used as an atomizing medium containing air or steam in an atomizer and atomizes the coal-water slurry into fine particles with the kinetic energy of gas. Two-fluid atomizers are mainly used. Various structures have been proposed for the two-fluid atomizer.

二流体アトマイザには路内への噴霧孔出口直前で石炭−
水スラリと噴霧媒体とが混合される中間混合式(一般に
Yジェット式と称される)と、二流体が衝突した後、混
合室に1度入り、その後混合流体を路内へ噴出する内部
混合方式が一般によく知られている。第4図は、従来の
内部混合方式のアトマイザの断面図である(特開昭60−
36811号)。第4図において、外筒41及び内筒42との間
に形成される環状通路に噴霧媒体3が通り、内筒42の内
部に形成される円柱状通路を燃料4が通る。次に中間混
合プレート43の中央通路43aを燃料4が入り、一方、噴
霧媒体3は媒体通路45から中間混合プレート43の中央通
路43aに対し放射状に設けられた放射状通路46を通って
中央通路(一次混合部)43aで燃料4と合流する。さら
に合流混合した燃料4と噴霧媒体3は、中間混合プレー
ト43がスプレヤプレート47とによって形成される混合室
48に入り、スプレヤプレート47に設けられた噴出孔49か
ら路内に噴射される。
In the two-fluid atomizer, coal-
An intermediate mixing type (generally referred to as a Y jet type) in which water slurry and a spray medium are mixed, and an internal mixing type in which the two fluids collide with each other, enter the mixing chamber once, and then eject the mixed fluid into the passage. The scheme is generally well known. FIG. 4 is a cross-sectional view of a conventional internal mixing type atomizer (JP-A-60-
No. 36811). In FIG. 4, the spray medium 3 passes through an annular passage formed between the outer cylinder 41 and the inner cylinder 42, and the fuel 4 passes through a cylindrical passage formed inside the inner cylinder 42. Next, the fuel 4 enters the central passage 43a of the intermediate mixing plate 43, while the atomizing medium 3 passes from the medium passage 45 through the radial passages 46 radially provided to the central passage 43a of the intermediate mixing plate 43. It merges with the fuel 4 at the primary mixing part) 43a. Further, the fuel 4 and the spray medium 3 that have been merged and mixed are mixed in a mixing chamber in which the intermediate mixing plate 43 is formed by the sprayer plate 47.
It enters into 48 and is jetted into the road from the jet hole 49 provided in the sprayer plate 47.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記した内部混合方式のアトマイザにおいて、一次混合
部43aにおいては、噴霧媒体3と燃料4が合流し、その
合計流量の流体が通過するので流速が急激に増加する。
同時に一次混合部43aに流入した噴霧媒体3は、一次混
合部43aの媒体通路(放射状通路)46出口付近で拡がり
を持つために内筒42によって形成される燃料通路50側に
噴霧媒体3の一部が逆流し、燃料通路50の上流側におけ
る摩耗や燃料4側への逆圧がかかり易くなる。このた
め、噴霧媒体3の圧力変動により燃料4側へも変動を与
え、燃料の流量が不安定となる不具合が生じ易い。
In the atomizer of the internal mixing system described above, in the primary mixing section 43a, the spray medium 3 and the fuel 4 merge, and the fluid of the total flow rate passes therethrough, so that the flow velocity rapidly increases.
At the same time, the spray medium 3 that has flowed into the primary mixing portion 43a has a spread near the outlet of the medium passage (radial passage) 46 of the primary mixing portion 43a. The parts flow backward, and wear on the upstream side of the fuel passage 50 and back pressure on the fuel 4 side easily occur. For this reason, the pressure of the spray medium 3 also varies to the fuel 4 side, and the problem that the flow rate of the fuel becomes unstable tends to occur.

次に混合室48においては、燃料4と噴霧媒体3との混合
流体が図中、矢印で示すように循環流を形成しながら、
噴出孔49から噴射される。混合室48内の燃料4は、噴霧
媒体3と混合され、均一状態となって噴出孔49から噴射
されることが望ましい。しかしながら、スプレヤプレー
ト47の内壁に衝突した燃料4は、噴霧媒体3と分離し、
スプレイヤプレート47の内壁面に沿って液膜状となって
流れる。この液膜は、噴出孔49から炉内に出たときに十
分に霧状になることなく、粗粒状となって炉内に噴出さ
れる。特に1次混合部43aから混合室48に入った燃料4
は、スプレヤプレート47の内壁面に衝突し、その内壁面
に沿って放射状の液膜となって混合室48内を循環する途
中に噴出孔49が位置していることから、この液膜は噴出
孔49から炉内に出て粗粒状の噴霧を発生する。また、混
合室48内の中間プレート43側のコーナ部では、燃料循環
粒の小さな渦状停滞部ができるため、この付近に燃料4
の液膜が停滞し、生長し易い。
Next, in the mixing chamber 48, while the mixed fluid of the fuel 4 and the spray medium 3 forms a circulating flow as shown by an arrow in the figure,
It is ejected from the ejection hole 49. It is desirable that the fuel 4 in the mixing chamber 48 be mixed with the atomizing medium 3 and become uniform and be injected from the ejection holes 49. However, the fuel 4 colliding with the inner wall of the sprayer plate 47 is separated from the spray medium 3,
The liquid film flows along the inner wall surface of the sprayer plate 47. This liquid film is not atomized sufficiently when it is ejected from the ejection holes 49 into the furnace, but is coarsely pulverized and ejected into the furnace. In particular, fuel 4 entering the mixing chamber 48 from the primary mixing section 43a
Is collided with the inner wall surface of the sprayer plate 47, and becomes a radial liquid film along the inner wall surface, and since the ejection holes 49 are located in the middle of circulating in the mixing chamber 48, this liquid film is It goes out into the furnace through the ejection holes 49 and generates coarse-grained spray. Further, in the corner portion on the side of the intermediate plate 43 in the mixing chamber 48, a small vortex-like stagnant portion of the fuel circulating particles is formed, so that the fuel 4
Liquid film is stagnant and easy to grow.

このように一次混合部43aで蒸気等の噴霧媒体3により
燃料4への圧力影響(背圧)を受けるため、燃料の流量
変動を来す問題がある。また、混合室48に形成される液
膜が混合室48の内壁面及びコーナ部にて発生し、この液
膜が噴出孔49から排出されたときに粗粒状の噴霧を来す
問題がある。
As described above, since the primary mixing section 43a receives the pressure effect (back pressure) on the fuel 4 by the spray medium 3 such as steam, there is a problem that the flow rate of the fuel varies. Further, there is a problem that a liquid film formed in the mixing chamber 48 is generated on the inner wall surface and the corner portion of the mixing chamber 48, and when the liquid film is discharged from the ejection hole 49, coarse spray is generated.

本発明の目的は、上記した従来技術の問題点を解消し、
燃料の流量制御を安定して行うことができ、かつ噴出孔
から微粒状の噴霧を効率的に行うことができる液体状噴
霧燃料アトマイザを提供することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art,
It is an object of the present invention to provide a liquid atomized fuel atomizer capable of stably controlling the flow rate of fuel and efficiently atomizing fine particles from the ejection holes.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、液体状燃料と噴霧媒体とを1次的に混合す
る1次混合部に連通される燃料通路が環状通路を構成
し、前記1次混合部に連通される噴霧媒体通路は環状の
燃料通路に対し、その外周側側からほぼ直交する方向の
円盤状通路で構成され、1次混合部における燃料と噴霧
媒体との混合流体形成部およびその後流側の混合流体通
過断面積は、前記円盤状の噴霧媒体通路の流体通過断面
積と前記環状の燃料通路の流体通過断面積との合計面積
よりも大きくされ、1次混合部からの混合流体が導入さ
れる混合室における前記1次混合部側に位置する隅部を
該混合室内の循環流の流れに対応した面状に形成され、
前記噴出孔に近接した混合室内壁面に少なくとも噴出孔
よりもバーナ軸側に形成された突起部を設けることによ
って達成される。
The above-mentioned object is that a fuel passage communicating with a primary mixing portion for primarily mixing a liquid fuel and a spray medium constitutes an annular passage, and a spray medium passage communicating with the primary mixing portion is annular. The mixing passage is formed by a disc-shaped passage in a direction substantially perpendicular to the outer peripheral side of the fuel passage, and the mixed fluid passage cross-sectional area of the mixed fluid forming portion of the fuel and the atomizing medium in the primary mixing portion and the downstream side is The primary mixing in the mixing chamber, which is larger than the total area of the fluid passage cross-sectional area of the disk-shaped spray medium passage and the fluid passage cross-sectional area of the annular fuel passage, and into which the mixed fluid from the primary mixing portion is introduced. The corner located on the part side is formed in a planar shape corresponding to the flow of the circulation flow in the mixing chamber,
This is achieved by providing a protrusion formed on at least the burner shaft side of the ejection hole on the wall surface of the mixing chamber adjacent to the ejection hole.

〔作用〕[Action]

1次混合部における燃料と噴霧媒体との混合部およびそ
の後流側の通過断面積は、燃料および噴霧媒体のそれぞ
れの通過断面積の合計面積よりも大きいから、噴霧媒体
圧が仮に燃料圧よりも高くなっても圧力降下をとれる下
流側の通路に流れ易くなり、燃料の上流側へ背圧を受け
にくい。このために燃料圧(流量)の制御が容易とな
る。また、環状の燃料通路に対し、噴霧媒体通路は円盤
状に構成され、かつ燃料通路に対し直交する方向から導
入されるので薄膜状の燃料に対し、噴霧媒体の有する衝
突エネルギーは、薄膜状の燃料を貫通しながら燃料の微
粒化を果たす。
Since the cross-sectional area of passage of the fuel and the atomizing medium in the primary mixing section and on the downstream side thereof is larger than the total area of the respective cross-sectional areas of passage of the fuel and the atomizing medium, the atomizing medium pressure is tentatively higher than the fuel pressure. Even if the pressure rises, it easily flows to the passage on the downstream side where the pressure drop can be taken, and it is difficult to receive back pressure on the upstream side of the fuel. Therefore, it becomes easy to control the fuel pressure (flow rate). Further, since the atomizing medium passage is formed into a disc shape with respect to the annular fuel passage and is introduced from the direction orthogonal to the fuel passage, the collision energy of the atomizing medium with respect to the thin film fuel is thin film form. Atomizing the fuel while penetrating the fuel.

1次混合部から噴出された燃料と噴霧媒体の混合流体中
の燃料は、液膜となって混合室の内壁面に沿って循環す
る。この液膜は、直ちに噴出孔から炉内に噴出されるこ
となく、噴出孔に近接した突起部により再度1次混合部
の出口側に循環し、1次混合部からの噴出流により微粒
化された後、噴出孔から炉内に噴射される。混合室内の
隅部にはなくなり、各隅部は混合室内における循環流に
流れに対応した面状に形成されており、循環流は隅部に
滞留することなく、効率良く循環し、1次混合部からの
噴出流により微粒化された後、噴出孔から炉内に噴射さ
れる。
The fuel ejected from the primary mixing section and the fuel in the mixed fluid of the spray medium form a liquid film and circulate along the inner wall surface of the mixing chamber. This liquid film is not immediately ejected from the ejection hole into the furnace, is circulated again to the outlet side of the primary mixing portion by the protrusions close to the ejection hole, and is atomized by the ejection flow from the primary mixing portion. Then, it is injected into the furnace through the ejection holes. It disappears in the corners of the mixing chamber, and each corner is formed into a surface corresponding to the circulation flow in the mixing chamber. The circulation flow circulates efficiently without retaining in the corners, and the primary mixing is performed. After being atomized by the jet flow from the section, it is jetted into the furnace through the jet holes.

〔発明の実施例〕Example of Invention

第1図は本発明の一実施例を示す断面図、第2図は第1
図のA−A断面図、第3図は第1図のB−B視図であ
る。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG.
FIG. 3 is a sectional view taken along the line AA of FIG. 3, and FIG. 3 is a view taken along the line BB of FIG.

第1図〜第3図において、円筒状の外筒1の内部にこの
外筒1と同心円上に円筒上の内筒2が配置されている。
内筒2の一端部(搬出孔側)には鍔状の入口プレート17
が形成されている。内筒2と外筒1とによって形成され
る環状通路は噴霧媒体3の通路を構成し、内筒2の内部
に形成される円柱状通路は燃料4の通路を構成してい
る。また鍔状の入口プレート17の外周面と外筒1の円周
面との間に形成される環状通路は媒体通路5aを構成して
いる。さらに外筒1内には入口プレート17とバーナ軸方
向に対して所定の間隔を有する円環状の中間混合プレー
ト16が配置され、入口プレート17と中間混合プレート16
とによって形成される環状通路は媒体放射状通路6aを構
成している。
In FIGS. 1 to 3, a cylindrical inner cylinder 2 is arranged inside a cylindrical outer cylinder 1 concentrically with the outer cylinder 1.
A flange-shaped inlet plate 17 is provided at one end of the inner cylinder 2 (on the side of the carry-out hole).
Are formed. An annular passage formed by the inner cylinder 2 and the outer cylinder 1 constitutes a passage for the spray medium 3, and a cylindrical passage formed inside the inner cylinder 2 constitutes a passage for the fuel 4. An annular passage formed between the outer peripheral surface of the flange-shaped inlet plate 17 and the peripheral surface of the outer cylinder 1 constitutes the medium passage 5a. Further, in the outer cylinder 1, an inlet plate 17 and an annular intermediate mixing plate 16 having a predetermined distance in the burner axial direction are arranged. The inlet plate 17 and the intermediate mixing plate 16 are arranged.
The annular passage formed by and constitutes the medium radial passage 6a.

次に内筒2と中間混合プレート17の中心軸上には軸芯11
が配置されている。この軸芯11は、内筒2側の端部に円
錐突起部14が形成され、この円錐突起部14に一端部が連
続する円柱体状部の他端部はテーパ状に形成され、この
テーパ部11aは上記円柱状部よりも径の小さい円柱状部1
1bに連続している。そして前記軸芯11の円柱状部11bと
中間混合プレート16によって形成される環状通路は一次
混合部7aを構成している。前記テーパ部11aは媒体放射
状通路6aの出口面と対応している。
Next, the shaft core 11 is placed on the central axes of the inner cylinder 2 and the intermediate mixing plate 17.
Are arranged. The shaft core 11 has a conical protrusion portion 14 formed at the end portion on the inner cylinder 2 side, and the other end portion of a cylindrical body portion having one end portion continuous with the conical protrusion portion 14 is formed in a tapered shape. The portion 11a is a cylindrical portion 1 having a diameter smaller than that of the cylindrical portion 1
It is continuous to 1b. The annular passage formed by the cylindrical portion 11b of the shaft 11 and the intermediate mixing plate 16 constitutes the primary mixing portion 7a. The tapered portion 11a corresponds to the outlet surface of the medium radial passage 6a.

前記外筒1に連接して円錐台状のスプレヤプレート10が
設けられ、このスプレヤプレート10には第3図に示すよ
うに円状に沿って所定の間隔をおいて複数個の噴出孔9
が配設されている。これらの噴出孔9に近接して噴出孔
9よりもスプレヤプレート10の軸側に環状突起部13が形
成されている。この環状突起部13は、スプレヤプレート
10の軸側から外側に向けて次第に突起状部の高さが高く
なり、噴出孔9側でスプレヤプレート10の内壁面に対し
垂直な面が形成されている。また前記中間混合プレート
16とスプレヤプレート10によって形成される空間部は混
合室8を構成するとともに中間混合プレート16の混合室
8に面する面側の円周縁部に環状突起部15が形成されて
いる。この環状突起部15は中間混合プレート16の円周方
向端部側になるにつれて次第に高くなっている。
A frustoconical sprayer plate 10 is provided so as to be connected to the outer cylinder 1, and the sprayer plate 10 has a plurality of ejection holes at predetermined intervals along a circle as shown in FIG. 9
Is provided. An annular protrusion 13 is formed near the ejection holes 9 and closer to the shaft side of the sprayer plate 10 than the ejection holes 9. This annular protrusion 13 is a sprayer plate.
The height of the protruding portion gradually increases from the axial side of 10 toward the outside, and a surface perpendicular to the inner wall surface of the sprayer plate 10 is formed on the ejection hole 9 side. Also, the intermediate mixing plate
The space formed by 16 and the sprayer plate 10 constitutes the mixing chamber 8, and an annular projection 15 is formed on the circumferential edge of the intermediate mixing plate 16 on the side facing the mixing chamber 8. The annular protrusion 15 is gradually higher toward the end of the intermediate mixing plate 16 in the circumferential direction.

ここで第1図中に示すd1とd2との関係はd1<d2となって
いる。また軸芯11と内筒2との間に形成される環状通路
の通過断面積A1と媒体通路6aの通過断面積A2と和は、一
次混合部7aの通過断面積A3よりも小さくされている。
Here, the relationship between d 1 and d 2 shown in FIG. 1 is d 1 <d 2 . Further, the sum of the passage cross-sectional area A 1 of the annular passage formed between the shaft core 11 and the inner cylinder 2 and the passage cross-sectional area A 2 of the medium passage 6a is smaller than the passage cross-sectional area A 3 of the primary mixing portion 7a. Has been done.

次に上記のように構成されるアトマイザの作用について
説明する。
Next, the operation of the atomizer configured as described above will be described.

燃料4は内筒2内の円柱状の中央通路を通り、噴霧媒体
3は外筒1と内筒2との間に形成される環状通路を通っ
て供給される。次に燃料4は円錐状突起部14により円柱
状の流れから円環状の流れになって環状通路に導入さ
れ、一方噴霧媒体3は媒体通路5aから円盤状の媒体通路
6aを通って燃料4の通路に対し、直交する方向から一次
混合部7aに流入し、燃料4と合流する(合流部12)。こ
のとき、一次混合部7aの入口はテーパ状となっているた
め、燃料4は束状となることなく、薄膜状の流れとな
り、この状態の燃料4に対しほぼ直角方向に噴霧媒体3
が当たる。この結果、噴霧媒体3の有する衝突エネルギ
は、薄膜状の燃料4を貫通しながら、燃料4を微粒化す
るのに有効に使われる。同時に各燃料流路および媒体流
路は、上記したようにA1+A2<A3の関係にあるから、噴
霧媒体3と燃料4はそれぞれの流速を噴霧媒体3及び燃
料4のいずれか一方の影響を受けることがなく、両者の
混合が行われる。
The fuel 4 passes through a cylindrical central passage in the inner cylinder 2, and the spray medium 3 is supplied through an annular passage formed between the outer cylinder 1 and the inner cylinder 2. Next, the fuel 4 is introduced into the annular passage by the conical protrusion 14 from the cylindrical flow into the annular flow, while the spray medium 3 is transferred from the medium passage 5a to the disc-shaped medium passage.
It flows into the primary mixing section 7a from a direction orthogonal to the passage of the fuel 4 through 6a and joins with the fuel 4 (joining section 12). At this time, since the inlet of the primary mixing portion 7a has a taper shape, the fuel 4 does not form a bundle but a thin film flow, and the spray medium 3 is in a direction substantially perpendicular to the fuel 4 in this state.
Is hit. As a result, the collision energy of the atomizing medium 3 is effectively used to atomize the fuel 4 while penetrating the thin film fuel 4. At the same time, since the fuel flow paths and the medium flow paths have the relationship of A 1 + A 2 <A 3 as described above, the spray medium 3 and the fuel 4 have the respective flow velocities of the spray medium 3 and the fuel 4 respectively. The two are mixed without being affected.

また、一次混合部7aには円盤状の媒体通路6aから噴霧媒
体3が供給されるため、燃料4に対し均一に噴霧媒体3
が衝突することから燃料4の微粒化が均一に、かつ効率
よく行われる。さらに円盤状の媒体通路6aは上記の効果
の他に入口プレート17と中間混合プレート16の二つの部
品間の間隙により形成されるから、加工が容易となる。
Further, since the atomizing medium 3 is supplied to the primary mixing section 7a from the disk-shaped medium passage 6a, the atomizing medium 3 is evenly mixed with the fuel 4.
The collision of the particles with each other allows the fuel 4 to be atomized uniformly and efficiently. Further, the disk-shaped medium passage 6a is formed by the gap between the two parts of the inlet plate 17 and the intermediate mixing plate 16 in addition to the above-mentioned effect, so that the processing becomes easy.

次に混合室8の形状は、スプレヤプレート10に設けた噴
出孔9からの噴出流が一定の拡がりを有するように円錐
台状と形成されている。そして混合室8における中心軸
に対してその周囲に循環流が形成され、噴出孔9から所
定量の燃料4と噴霧媒体3が噴出する。このとき、環状
突起部15により循環流は混合室8のコーナ部で停滞する
ことなく、循環流速を維持し、一次混合部7aから環状の
流れとなって出てくる噴出流と衝突し、壁面に沿った液
膜は再微粒化される。さらにスプレヤプレート10の内壁
前面に沿って循環する液膜は、環状突起部13によって直
ちに噴出孔9より噴出されることなく、図中矢印で示す
ように一次混合部7aの噴出口付近まで循環し、一次混合
部7aからの噴出流により再微粒化された後、噴出孔9か
ら炉内に噴出する。
Next, the shape of the mixing chamber 8 is formed in a truncated cone shape so that the jet flow from the jet holes 9 provided in the sprayer plate 10 has a certain spread. Then, a circulation flow is formed around the central axis of the mixing chamber 8, and a predetermined amount of the fuel 4 and the spray medium 3 are ejected from the ejection holes 9. At this time, the circulation flow is maintained at the corners of the mixing chamber 8 by the annular projection 15 and the circulation flow velocity is maintained, and the circulation flow collides with the jet flow that emerges as an annular flow from the primary mixing portion 7a, and the wall surface The liquid film along is re-atomized. Furthermore, the liquid film circulating along the front surface of the inner wall of the sprayer plate 10 is not immediately ejected from the ejection hole 9 by the annular protrusion 13 and is circulated to the vicinity of the ejection port of the primary mixing section 7a as shown by the arrow in the figure. Then, after being re-atomized by the jet flow from the primary mixing section 7a, it is jetted into the furnace from the jet holes 9.

このように一次混合部7aにおける効率的な燃料の微粒化
機能と混合室8における燃料の選択的及び効率的な微粒
化機能及び噴出機能との組合わせにより、燃料の最適な
噴霧微粒化が達成される。
In this way, by combining the efficient fuel atomization function in the primary mixing section 7a with the selective and efficient atomization function and injection function of the fuel in the mixing chamber 8, the optimum atomization atomization of the fuel is achieved. To be done.

第1図に示す実施例において、環状突起部15は断面三角
形状となっているが、本発明において、環状突起部15の
代わりに循環流と接する面側の断面形状が円形又は円形
類似の形状とすることが望ましい。この場合、混合室8
における循環流の形成がよりスムースになり、かつ循環
流の乱れがなく、高速な循環流を達成した状態で循環液
膜に一次混合部7aから、噴出流が衝突するので混合室8
における燃料の微粒化が更に向上する。
In the embodiment shown in FIG. 1, the annular protrusion 15 has a triangular cross-section, but in the present invention, instead of the annular protrusion 15, the cross-sectional shape on the side contacting the circulating flow is circular or a shape similar to a circle. Is desirable. In this case, the mixing chamber 8
The circulation flow in the mixing chamber 8 is made smoother, the circulation flow is not disturbed, and the jet flow collides with the circulating liquid film from the primary mixing section 7a in the state where the high-speed circulation flow is achieved.
The atomization of the fuel in is further improved.

また噴出孔9付近に形成される環状突起部13は、アトマ
イザ中心軸に対する環状形となっているが、各々噴出孔
9の心軸に対する環状形の突起部とすることもできる。
この場合、循環液膜は突起部の中心部に窪みが形成され
た噴出孔9内に入りにくくなり、窪み状の噴出孔9の上
方を通過して一次混合部7aからの噴出流により微粒化さ
れた後、噴出孔9より噴出する。突起部の外周面はその
高さ方向の底部になるにつれて裾状に拡がる形状が望ま
しい。ただし突起部には高速の循環流が衝突するので耐
摩耗性の観点からセラミックス製がよく、また突起部を
形成する部品を噴出孔9に嵌合する加工方式を採用すれ
ばアトマイザの加工が簡便となる。
Further, the annular protrusions 13 formed in the vicinity of the ejection holes 9 have an annular shape with respect to the atomizer central axis, but each may have an annular shape with respect to the ejection axis 9 core axis.
In this case, the circulating liquid film is less likely to enter the ejection hole 9 having the depression formed at the center of the protrusion, passes above the depression-shaped ejection hole 9, and is atomized by the ejection flow from the primary mixing portion 7a. After being sprayed, it spouts from the spout hole 9. It is desirable that the outer peripheral surface of the protruding portion be shaped like a skirt extending toward the bottom in the height direction. However, since a high-speed circulating flow collides with the protrusion, it is preferably made of ceramics from the viewpoint of wear resistance, and the atomizer can be easily processed by adopting a machining method in which the component forming the protrusion is fitted in the ejection hole 9. Becomes

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、燃料と噴霧媒体を1次的
に混合する1次混合部においてその流路断面積を、燃料
の通過断面積と噴霧媒体の通路断面積との合計面積より
も大きくしているので、噴霧媒体圧・流量変化に対する
燃料側の圧力・流量変動が軽減されるとともに1次混合
部において薄膜状の燃料に直交する方向から噴霧媒体が
衝突するから、燃料の微粒化が促進され、かつ混合室で
の燃料の循環流の形成が促進されるとともにこの循環流
は直ちに噴出孔から炉内に噴出されることなく、1次混
合部からの噴出流により再微粒化される。したがって、
噴出孔から確実に微粒化された燃料が炉内に噴射される
ため、燃料の着火性が向上する。
As described above, according to the present invention, the flow passage cross-sectional area in the primary mixing portion that primarily mixes the fuel and the spray medium is determined from the total area of the fuel passage cross-section and the spray medium passage cross-section. Since the pressure and flow rate fluctuations on the fuel side due to changes in the spray medium pressure and flow rate are reduced and the spray medium collides from the direction orthogonal to the thin film fuel in the primary mixing section, the fine particles of fuel Formation is promoted and the formation of a circulating flow of fuel in the mixing chamber is promoted, and this circulating flow is not immediately jetted into the furnace from the jet holes, but is re-atomized by the jet flow from the primary mixing section. To be done. Therefore,
Since the atomized fuel is surely injected from the ejection hole into the furnace, the ignitability of the fuel is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明にかかる液体状燃料噴霧アトマイザの断
面図、第2図は第1図のA−A断面図、第3図は第1図
のB−B視図、第4図は従来の液体状燃料噴霧アトマイ
ザの断面図である。 1……外筒、2……内筒、3……噴霧媒体、4……燃
料、5a……媒体通路、6a……放射状媒体通路、7……一
次混合部、8……混合室、9……噴出孔、10……スプレ
ヤプレート、11……軸芯、13、15……環状突起部、14…
…円錐突起部、16……中間混合プレート、17……入口プ
レート。
FIG. 1 is a sectional view of a liquid fuel spray atomizer according to the present invention, FIG. 2 is a sectional view taken along line AA of FIG. 1, FIG. 3 is a view taken along line BB of FIG. 1, and FIG. 4 is conventional. FIG. 3 is a sectional view of the liquid fuel spray atomizer of FIG. 1 ... Outer cylinder, 2 ... Inner cylinder, 3 ... Spraying medium, 4 ... Fuel, 5a ... Medium passage, 6a ... Radial medium passage, 7 ... Primary mixing section, 8 ... Mixing chamber, 9 ...... Spout hole, 10 …… Sprayer plate, 11 …… Shaft core, 13,15 …… Annular protrusion, 14…
… Conical projection, 16 …… Intermediate mixing plate, 17 …… Inlet plate.

フロントページの続き (72)発明者 幸田 文夫 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (56)参考文献 特開 昭50−144936(JP,A) 特開 昭63−49614(JP,A) 特開 昭60−235911(JP,A)Front page continued (72) Inventor Fumio Koda 6-9 Takaracho, Kure-shi, Hiroshima Babcock Hitachi Ltd. Kure Factory (56) Reference JP-A-50-144936 (JP, A) JP-A-63-49614 ( JP, A) JP 60-235911 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アトマイザの内部で液体状の燃料と噴霧媒
体とを1次混合する1次混合部と、該1次混合部からの
混合流を混合室を経て複数個設けられた噴出孔により噴
出させる液体状燃料アトマイザにおいて、前記1次混合
部に連通される燃料通路が環状通路を構成し、前記1次
混合部に連通される噴霧媒体通路は環状の燃料通路に対
し、その外周側からほぼ直交する方向の円盤状通路で構
成され、1次混合部における燃料と噴霧媒体との混合流
体形成部およびその後流側の混合流体通過断面積は、前
記円盤状の噴霧媒体通路の流体通過断面積と前記環状の
燃料通路の流体通過断面積との合計面積よりも大きくさ
れ、前記混合室における前記1次混合部側に位置する隅
部を該混合室内の循環流の流れに対応した面状に形成さ
れ、前記噴出孔に近接した混合室内壁面に少なくとも噴
出孔よりもバーナ軸側に形成された突起部を設けたこと
を特徴とする液体状燃料噴霧アトマイザ。
1. A primary mixing section for primarily mixing a liquid fuel and a spray medium inside an atomizer, and a plurality of jet holes provided with a mixed flow from the primary mixing section through a mixing chamber. In the liquid fuel atomizer to be ejected, the fuel passage communicating with the primary mixing portion constitutes an annular passage, and the spray medium passage communicating with the primary mixing portion is an annular fuel passage from the outer peripheral side thereof. The cross-sectional area of the fluid mixture of the fuel and the atomizing medium in the primary mixing section and the passage area of the fluid mixture on the downstream side of the mixture fluid passage section of the disk-shaped atomizing medium passage are substantially perpendicular to each other. The corner area located on the primary mixing section side of the mixing chamber is larger than the total area of the area and the fluid passage cross-sectional area of the annular fuel passage, and has a planar shape corresponding to the circulation flow in the mixing chamber. Is formed in the Liquid fuel spray atomizer, characterized in that a protrusion formed on the burner axis side than the at least injection openings into the mixing chamber wall in contact.
【請求項2】前記突起部は、バーナ軸に対する円周上に
環状に設けられるとともに噴出孔よりもバーナ軸側に位
置する突起部であることを特徴とする特許請求の範囲第
(1)項記載の液体状燃料噴霧アトマイザ。
2. The projection according to claim 1, wherein the projection is a projection provided annularly on the circumference of the burner shaft and located closer to the burner shaft than the ejection hole. A liquid fuel spray atomizer as described.
【請求項3】前記突起部は,噴出孔の周囲を囲む環状の
突起部からなることを特徴とする特許請求の範囲第
(1)項記載の液体状燃料噴霧アトマイザ。
3. The liquid fuel spray atomizer according to claim 1, wherein the projection comprises an annular projection surrounding the ejection hole.
【請求項4】前記燃料通路は、バーナの中心軸上にその
先端部に円錐突起部を有する軸心が配置され、該軸心の
周囲に形成される環状通路であることを特徴とする特許
請求の範囲第(1)項記載の液体状燃料噴霧アトマイ
ザ。
4. The fuel passage is an annular passage having an axial center having a conical projection at the tip thereof arranged on the central axis of the burner and formed around the axial center. The liquid fuel spray atomizer according to claim (1).
JP25408586A 1986-10-25 1986-10-25 Liquid fuel atomizer Expired - Fee Related JPH07107441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25408586A JPH07107441B2 (en) 1986-10-25 1986-10-25 Liquid fuel atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25408586A JPH07107441B2 (en) 1986-10-25 1986-10-25 Liquid fuel atomizer

Publications (2)

Publication Number Publication Date
JPS63108104A JPS63108104A (en) 1988-05-13
JPH07107441B2 true JPH07107441B2 (en) 1995-11-15

Family

ID=17260015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25408586A Expired - Fee Related JPH07107441B2 (en) 1986-10-25 1986-10-25 Liquid fuel atomizer

Country Status (1)

Country Link
JP (1) JPH07107441B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8905835D0 (en) * 1989-03-14 1989-04-26 British Petroleum Co Plc Spray nozzle
JP5730024B2 (en) * 2011-01-12 2015-06-03 三菱日立パワーシステムズ株式会社 Spray nozzle and combustion apparatus having spray nozzle

Also Published As

Publication number Publication date
JPS63108104A (en) 1988-05-13

Similar Documents

Publication Publication Date Title
US3790086A (en) Atomizing nozzle
US6863228B2 (en) Discrete jet atomizer
TWI465291B (en) Combustion apparatus having the spray nozzle and the spray nozzle
CN100395036C (en) Double-fluid nozzle
JPS62186112A (en) Fuel spray nozzle device of burner for liquid fuel combustion
JPH07107441B2 (en) Liquid fuel atomizer
JP2005131486A (en) Spray nozzle and spraying method
CN115212497B (en) Compressed air foam generating bin for fire extinguishing system
JPH09287714A (en) Atomizer for slurry fuel
JPH0141891B2 (en)
JPS63226513A (en) Atomizer
JP2001038252A (en) Nozzle and waste liquid combustion device
JPS646823B2 (en)
CN220249982U (en) Medium atomizing oil gun
JP2004230228A (en) Vortices type two-fluid nozzle equipped with self-cleaning pintle
JPH0617737B2 (en) Slurry fuel combustion device
JPS6349612A (en) Twin fluid atomizer
JPS6057910B2 (en) Internal/external mixing type atomizer
JP3065951B2 (en) Nozzle for combustion of water-mixed liquid fuel and combustion method
JPS58190614A (en) Fuel injection atomizer
JPS58184411A (en) Fuel atomizer
JP2739749B2 (en) Burner for slurry fuel
JPS61140717A (en) Solid fuel slurry atomizer
JPS62190315A (en) Method and device for spraying slurry-like fuel
JPH0447209B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees